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ON REGRESSION ANALYSIS IN THE CASE
OF HETEROGENEITY OF A SET OF OBJECTS

. 1. INTRODUCTION

" )

Regression analysis 1is undoubtedly the most often used rul-
tivariate statistical method. Here, the dependence- of a variable
Y on a set of variables x,, xz, v+ xm is studied. The use of
regression analysis is based on an assumption of homogeneity of
a set of objects, for which the regression function is deter-"
mined.

I1f stochastic approach is accepted, the homogeneity of a set
of objects (observations) means that this set constitutes a ran-
dom sample from a population where a random column vector [v,,x,,
Xoyp eery xm]' has a multivariate distribution, for example mul-
tinormal distribution. ; -

However, in real applications (particularly, when the obser-
vations are given as cross-sectional data, but also for time
series), this assumption is often not valid, that is, the hete-
rogeneity of observations occurs. For example, when the rela-
tionship between production and employment is studied -in cert-
ain branch of industry, the objects are enterprises of different
size. Thus, the set of these objects may be highly heterogenous.
So tne form of the relationship may differ significantly for
groups of enterprises. Similarly, heterogeneity may occur, when,
for example, the objects are the countries of the world.

In all such cases, the assumption of homogeneity may be un-
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justifiable, the objects may come from different populations,
Thus, it is reasonable to study the relationship for each class
of objects separately. : ;

‘In statistical and econometric papers some attentiongis paid
to the proliem of heterogenous set of objects. The general ap-
precach to determine linear regressions for different classes of
observations separately is known as switching regressions. Here,
it is assumed that the regression coefficients are constant over
classes of observations 'but are different across different clas-
ses. ;

This type of models is used in statistical papers usually for
time series. For example, it contains seasonality models (8],
piecewise regression models with known join point [9], 1In all
these models it is assumed that the classification of objects
(in this case objects are time units) in known. However, is real

‘applications it is not a case. Usually, the classification of
objects is not known a priori. When the time series are used,

some methods to classify time units and then to determine switch- .

ing regressions are proposed. They are given in [2], [4], [5],
[6]. These methods consist in the determination of switching
point (or points) for time series on the basis of time or_dummy
variable. : )

In this paper two methods of determining homogenous classes
of observations of hyperellipsoidal shape are presented. These
methods may be regarded as particular <cases of switching re-
gression models. However, they are applicable to both practical
situations, when cross-sectional data or time series are given.
In addition, they are to be used when the classification of
observations is not known. Thus, in this sense they are more ge-
neral than other methods proposed in statistical papers. One of
the proposed metnods is pure stochastic and is based on the mix-

ture of distributions, the other one is distribution-free method.

2, DESCRIPTION OF THE H"EK)GENEITY BY MEANS
OF MIXTURES OF DISTRIBUTIONS

To determine the regression function in the case of hetero-
geneity of a set of observations, an assumption will be made.

{
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" We assume that a set of objects 'constitutes a random sample from
a population, where a random vector [Y, X;, X,, ..., xm]' has a
distribution being a mixture of multivariate distributions, for
example, multivariate normal distributions.

So the density of a random vector [Y, X,, Xor ey xm]' is
given by the formula:

K
f(z) = £(y, x, Xor seey xm) B ;ga ijj (y, Xeo Xgp eees xm) =

, -0.5(m+1) & -0.5 i R L g e
(2m) j>;1 Pj|zj| exp [-0.5 (z uj) Zj (z vj)]

where:

K = number of mixture components, that is, number of homo- :
genous classes in a set of objects; i

My = expected value of a random vector [y, Xev X50 enny xm]'
for the jth component distribution;

L. - covariance matrix of a random vector Bt Xy, X

2' “evy
X ]' “for the jth component distribution; '

5 Pj = jth mixing parameter.. ;

Thus, it is easy to see, that regression, defined as condi-
tional expected value, E(YIX,, xz, ssey xm) is not a linear func-
tion. So it is unjustifiable to determine linear regression for
whole set of observations. Instead, the homogenous classes of a
set of observations, corresponding to particular component dis~
tributions, should be separated. Then, for each class, the linear
regression may be used.

3. DETERMINING HOMOGENOUS CLASSES OF HYPERELLIPSOIDAL SHAPE
BY THE MAXIMUM LIKELIHOOD METHOD

Obviously, to determine such homogenous classes, the methods
for estimating the parameters of mixtures of multivariate normal
distributions may be used. Unfortunately, serious Qdifficulties
occur.

First of all, it is to notice, that the number of parameters
to estimate is usually large.‘It is equal to:
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Klm+1 +m+1+4+05m(m+1)+1] -1 =

2 i ] j

= 0,5 K(m“ + 5m + 6)

In the simpliest case, when m =1 and K = 2, there are 11 pa-
rameters to estimate (4 expected values, 4 variances, 2 covarian-
ces and 1 mixing parameter). So the moment method of estimation
is practically useless to estimate these parameters.

' The most often used method of estimation is maximum likeli~-
hood method. However for the mixtures of multivariate normal dis-
tributions, the likelihood function (and, as a congequence, ‘the
necessary conditions to obtain extreme values of estimates) is
so complicated (see e.g. [3]), that it is not possible to get the
estimates analytically. They can be obtained only by means of nu-
merical method. Here, an iterative alagorithm, presented in £13,
is used. This algorithm may be described in the following way:

1. Initial values of estimates are chosen (in any way):

A0
Fjl j=1l ceer K

"0 4 »

)_j, e m e X :
20 0 .

Pj, )z', ubc'K

'hey have to satisfy the conditions:

>
p
*2, In the 1lth step (1 =1, 2, ...) of iterative procedure, the
values of so called a posteriori probabilities are determined,
using Bayes formula f{(for i =1, ..., n; 3§ =1, ..., K):

’; -0 2 expL 0. S(z = “1 1) (Zl 1)- (8 t"j? =l ]

wf
{i» -1 g1y -0.5 exp[—O.S(zi - a,ﬁ”)(z,ﬁ - ’(zi ]

where:
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£, = [y, %4+ %30 voey % 1" denotes the ith observation of

© a random vector [y, Xer Xp0 enny xm]’.

Then the estiﬁates are calculated, using the following for-
mulag  (for 40m 1,700, K)y

B o
E1 CTEREN
n

Blate)

n
3 BIGIe) (2 -] (2 - §)Y

LN |
>, B Gz

n
P; = n! I 5l(jlzi)
i=1

3. The iterative procedure, described above, is being con-
tinued untill tne values of a posteriori probabilities (and, as
a consequence, the estimates obtained in consecutive iterations)
do not change significantly; for example, if the condition: :

ma;l $r+1(jlli) - ?r(jlzi) [fa€g

i,3 .

is satisfied, where € is small positive number.

Then, using obtained estimates, the assignment of all obser-
vations to the classes, is performed. To solve this, the follow-
ing alternative conditions may he proposed:

the ith object (that is, the observation z;) is assigned to
the jth class, if:

a) ﬁr(jlzi) = max ﬁr(llzi), or:
A

"~ -1
C r o _ary (& A
b) dij m&n dil' where d;, = (2, -{) (21) (= s

It is easy to show, that the condition b is the particular



42 Krzygztof Jajuga

case of the condition a, if the equality of covariance matrices
and the equality of mixing parameters for each comporent of the
mixture are assumed.

4. DETERMINING HOMOGENOUS CLASSE3 OF HYPERELLIPSOIDAL SHAPE
BY THE DISTRIBUTION-FREE METHOD

To deterndine such homogenous classes, which correspond to

~ equiprobability contours of multivariate normal distributions, a

aistribution-free method may be used. This method is based on: the
minimization of the following function:

n K 2

A A £1.4d

T it

where:

f1 - so called degree of belongingness o{ the ith observa-
tion to the jth class,

dij - distance of the ith observation to the jth class, it
is egual to:

d1j = (zi - vj)"Mj (zi - vj),
) where :

v, and M, are respectively (m + 1) ~ dimensional vector and
positive definite (m + 1) x (m + 1) matrix, describing size and
shape of the jth class.

The function L is linear with respect to Hj (3 =1, ceny
K), so the minimum of this function does not exist, since we can
always change Mj in such a way, that the decrease of L 1is ob-
tained. Thus aaditional conditions are introduced. There are the
following:

IM,l = r,, g 0 ol Pt e ST
j 3 j
\ \
K
j; £5= 1 T DA

So finally we minimize the function:
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L, E £, (.l1 - vj)' "j('i - ) - PN Ay (F; ’13") 1

P )
E uy (mjl - xy

where A,, Az, sik-are Am’ Myr Mgy +sey Up are Lagrange multipliers.

Also in this case extreme values may be obtained by means of
numerical methods. It is implemented by the following :lterativo/
algorithm (see [3]):

1. Initial values of degrees of belongingness fgj (1 = 1,
.es, n;° 3 =1, ..., K), as well as positive numbers Lys Tpr sees
Iy are chosen (in any way). They have to satisfy the conditions:

a) o<f‘1’j<1, I L Top oS RECSTRNRE ST
K o0
b) Z1f1j-1, P T A e

2, In the lth step (1 =1, 2, ...) of the iterative procedu-
re, it is to determine:

a) the values describing size and shape of classes, using
formulas (3 =1, ..., K):

n . 1
; (2317 (=g = ¥)) (2, - v)’
):; (23310 .

[r3|"j'] ol (Pl).1

b) the distances of the objects to each class, using formula:
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1y .1 1 3
dij i (.i = vj) “j (zi -vj)l 18 Tylewes' Bg 3 1, «sey K

c) new values of degrees of belongingness, for each object,
according to the rule:

- if such k exists, that dik = 0, then:
1 13 =k )
fij- ' 39 A ara AR
(E 1S I

- if for each k, dik # 0, then:

R R

fij=—r—3——. G Pl
S o

;;3 ir

3. The iterative procedure is continued untill the values of
degrees of belongingness do not change significantly, for ex-
anple, if the condition:

max | f

r+1
gl 4

X
- fijl <Eg

is satisfied, where € 1is a small positive number.

Similarly as for the maximum likelihood method, the assign-
nent of objects to classes is made. To solve this, the following
v
condition is used: .

the ith object (that is, the observation zi) is assigned to
tne jth class, if:

r

A=
fij = max fil

1
5. EXAMPLES

As an illustration of described methods, four examples will
be presented. In all examples the set of objects is heterogenous
and several homogenous subsets of this set can be distinguished.
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To make a graphic presentation of examples possible, m = 1 was
assumed. 1In each example the homogenous classes were determined
by means of both described methods. The number of classes was
known and fixed. For all examples the same classificatlions were
obtained for both methods, that is, the maximum likelihood me-
thod and the distribution-free method. Then for each homogenous
class the linear regression function was determined. To make com-
parisons, linear regression function for the whole set of objects
was also determined. For each regression function the determina-
tion coefficients were calculated. They measure the goodness~of~-
-fit of each regression function. The results are presented be-
low and on  the Figures 1, 2, 3 and 4. These Figures 1-4 con-
tain the observations (the two-dimensional points corresponding
to the observations are numbered by integer numbers) and the re-
gression lines.

Example LnD w355 ARt
The classification is as follows:

class 1: objects 1-10,

class 2: objects 11-25,

class 3: objects 26-35,

Regression functions and determination coefficients for each
class:

o

ol

¢ = 1.9423 x + 5.8077,  R% = 0.8243

A2 2

¥ = 0,9747 X' — 17,1910, R2 = 0.9622

~3 2

¥° = 0.4905 x ~ 3.9192, R = 0.9308
and for whole set of objects:

¥ = -0.5196 x + 11.8093, R® =

0.2774

Example 2, R'= 50, K =23
The classification is as follows:

class 1: objects 1-12, 14-23, 39,

class 2: objects 13, 24-38, 40-50.

Regression functions and determination coefficients for each
class:
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o1 2

¥ =1.,1242 X - 1.1553, R = 0.9468

§% %= -1,1887 X + 23.1388, R = 0.9056
and for whole set of objects:

¥ = 0.0706 X + 10,0351, R? = 0.0034

Examp lge, 3, n% 40, K= 2,

The classification is as follows:
class 1: objects 1-18,
class 2: objects 19-40.
Regression functions and determination coefficients for each

class:
¢! = 1.0024 x - 0;6834, R? = 0.9468
¥% = -0,7330 X + 17.0680, R = 0.6681
and for the whole set of objects:
I
¢ = 0.0565 X + 5.7116, R? = 0.0110 "

Example &, *nr e g8 UK =20
The classification is as follows:
class ': objects 1-12,
class 2: objects 13-24.
Regression functions and determination cdefficients for each

class:
Y 4 2
Y ta 2L 2NET N h QN TR, R1 = 0,6931
A2 2
Y™ = 0.4623 X +3,1261, R2 = 0.7795

and for the whole set of objects:

¥ = -0.0736 X + 11.0238, R® = 0.0053

In these examples it is easy to see the usefulness of both
methods to determine the homogenous ¢lasses of hyperellipsoidal
shape. ' Due to determining linear regressions for each class se-
parately, considerable improvement of goodness-of-fit is achiev-
ed.

[S——



Fig. 1. Observations and regression lines for example 1
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Fig. 2. Observations

and regression lines for example 2
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Fig. 3, Observations and n.egressian lines for example 3 Fig. 4. Observations and regression lines for example 4
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UWAGI O ANALIZIE REGRESJI
W PRZYPADKU NIEJEDNORODNEGO ZBTORU OBIEKTOW

W artykule prezentuje sig¢ metodologie badad statystycznych w rozumieniu
analizy regresji dla przypadku, gdy =zbidér obiektdw, bedacych przedmiotem ba~
dania, nie jest jednorodny. Proponuje si¢ dwie metody pozwalajgce okreélié
homogeniczne klasy o hiperelipsoidalnym ksztalcie. Wszystkie rozwazania sg i-
lustrowane czterema przyk}adami.



