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NUMERICAL ASPECTS OF DETERMINING MEASURES
AND CONTOURS IN DEPTH FOR DATA IN R?

ABSTRACT. Measures and contours in depth are new statistical techniques applied
in the analysis of observations. They are particularly applied in the visualisation of
2-dimentional samples in R” space. The theory of measures and contours in depth for the
case of R* has been presented in numerous scientific papers by Donoho and
Gasko (1992), He and Wang (1997), Rousseeuw and Ruts (1996,
1999), Ruts and Rousseeuw (1996). The papers by the above authors are
mainly theoretical. They have put less emphasis on applications. Such situation could be
explained by the lack of adequate software in this field in such common statistical pack-
ages as SAS, SPSS, or STATISTICA.

This paper focuses on the numerical aspects of construction of the contour for sam-
ples in space R®. Certain numerical aspects with their direct implementation in the
TURBO-PASCAL programming language were presented. The prepared program did
numerical calculations, It allowed us to focus attention on the basic features of contours
in depth being the graphical visualisation of 2-dimentional samples.

The theoretical basis, as regards measures in depth and contours in depth, are included
in the above-mentioned papers and in the article by Wagner and Kobylinska
(2000).

I. THEORETICAL AND NUMERICAL BASIS

The basic numerical denotations and numerical aspects referring to a
2-dimentional sample were specified in the following points. The % TP symbol
denotes the implementation of these issues in the TURBO-PASCAL program-
ming language.
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(a) Assumptions.
— n-—element set size,
- (X,Y) -apair of observable random variables,

- (x;,);) = two-dimensional observation of the i-th element,
- X ={x.,y): i=1,2,.., n} - two-dimensional sample (TDS),
- 0=(0,,0,)e R* —agiven point for determining depth measure in 7DS;

(b) Samples in a non-decreasing order:;
% TP: SORT(n,X) procedure,
X xS xp) S .. S X, YY) Sye)S S Yy
where (.) is a rank of observation in a disordered sample,
% TP: {no.,rank,x},
(c) A rectangular of the dispersion (RD) of TDS

A 0)) By va)) s COGy Vi) s DxgyYi)) »

RD = x4y, X)X (¥ Y0
s TP:

A(xmin’ymin) = (xmin’ymin)' B(xmax1ymin) T (xmax’ymin) ’
C(xmax’ymax) = (xmax’ymax)’ D(xmin’ymax) =(xmin’ymax) ’

Point © = (6,,60,) belongs to RD, i.e. is its internal or peripheral point, if at
the same time its coordinates belong to the variation ranges of the features X and
Y, i.e. when 6, € (x(‘),x(2)> and 0,€ < Ya)s y(2)> . If ®e RD, then the distance
from the RD sides could be calculated and illustrated by fig. 1.
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Fig. 1. The distance from the RD

Distances d, for i=1,2,3,4 are expressed by the following formulas:
d, =6, —Xq)» d,=0,- Ya) dy = X(n) -0, d, = V) -6,.

The area of RD is divided into four disjoint areas P,, i =1,2,3,4, described

as follows:
( E RD;x€ <x(l), > < ,),92>}

P =
{( y)€ RD; x€ <9 X(n) ) YE <y(,),02>}
p={
P =1

( e RD; x€ (6,,x(,,)> YE <92,)’(n >}

(x,y)e RD; xe(x(,), )ye(ez,y(,, )}

in such a manner that RD = R, + P, + P, + P,. Then the size of these areas is cal-
culated n, =# {P,}, i=1,2,3,4,for which the condition n=n, +n, +ny +n, is

met.
(d) Area of RD

IRD| = (xy = X))y = Y1) »



22 Matgorzata Kobylifiska, Wieslaw Wagner

» Rescaled area of RD
|RD|=¢|RD]
where ¢ — is a sufficiently small number,
» Multiple rescaled area of RD
|RD|" = n[RD,
(e) Classic numerical characteristics

» Ranges: - R,R,, » Standard deviation: - sy,sy,
» Arithmetic means: — x,y, » Variation coefficients: — v,

% TP:
Ranges: b el BB S T

Vy,

Arithmetic means: Xk Wy ke
Standard deviation: =~ x =k k kY —k Kk
Variation coefficients: x —* * #*, y — sk s %,

where the * * * symbol is a numerical value with respectively given formant,
(f) A sample matrix of covariance S and its inverse matrix S

2
ce [sx Syy
2 L]
S*)’ s)'

§ R % Lo :
are variances and s, =——2(x,. - X)(y; = y) is a covariance be-
n—1ig

where s?, s§

tween variables X and Y, and

where s'' =53/|8|, s?=s"=-5,/|S|, s? =s3/|S| and ;S|=s£s§ —sﬁy,
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& TP;
» Matrix S = (si):
Sl1=sk %k g12 =% % *,

S21 =% %k §22 =k % *,

» Matrix $™' = (s~1,ij)

s=Ll1= %% % g-112= **x

Fel0]e MRS 122 s K

(g) Classic typical dispersion areas (CTDA) of TDS

» TOR, =(%—ks,;%+ks,)x(y—ks,,y+ks,) for k=1,2,3,

» The area of ICTDAkI = 4k2s,sy "

» The percentage ratio of theTDA, and the dispersion rectangle area in %

100[TDA
Th =—|-—'il, k=1,2,3 ,
[RD)

% TP: for k=1,2,3 are given coordinates of the vertex points A,B,C,D

for the TDA,
(h) The distance of the Euklidean d; and the diameter 6 of the RD set

> dy={x-x) -2} x,x,€ R for 1si<js<n,

i n
% TP: (iyj,dy)ms m=1,2,...,(2),

» 06=d, = max {du} 3

1Si< jsn
o TP (p,g:d )
(i) The distance of the Euclid ean vector observations RD from a given vec-
tor depth 6

d ={(x,-0)(x =02, i=1,2..n

& TP: (nr,d,)
(j) Collinearity of three points from within the 7DS
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» For each three points x;,x;,x, € TDS a triangle A, =A(x,~,x,.,xk) can

be constructed and its area calculated

Io'w o 1

1
Sy =Eabsx,.l Xy Xyl

ik

= labs
2

Xl
Xio Xj2 X2

» The total number of all triangles
g =('3’J= <n(n-1(n-2),

» The total area of all triangles Ay

n=2 n=l n
P=3. % XSy
i=l jitl k=j+l

TDS includes all collinear observations if PSIRDr, where |RD|* was given
in point (d). Three points x;,x;,x, € R? from the TDS sample are collinear

<eg, when the A, triangle area is not larger than the given suffi-

when, S ik

ijk
ciently small number of €,

& TP: (nr,iy, ji,k ), where i, jik € {1,2,0,n };

(k) Determination of observation multiple occurrence in PD.

Conditional samples are determined YIX =x and X IY =y, which cor-
responds to the projection of observation in TDS, respectively onto OX and QY
axis. The algorithm for determining the conditional samples includes the fol-
lowing steps:

(a) TDS is projected onto the OX axis:

(i) pairs (xj, yj) are arranged, j=1,2,..,n according to the X; value,

obtaining a non-decreasingly arranged array x()< X2) S o S X,
(ii) m of different values is determined x,',x,',...,x,,' in the X(1) X (2)p++» X(n)

array,
(iii) a conditional TDS for a given x;' is created
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CTDS(X =x;)={(xj,yj):xj =x"j=1 2,...,n}

as well as their sizes n;, = #{CTDS(X =x,.')} for i=1,2,..m,
% TP: (i,ni,,xi’**yk, ke {il,jz,..‘,j,,‘_ }), R e SR 1)
(B) TDS is projected onto the OY axis:
(i) pairs (x;,y;) are arranged, j=1,2,..,n according to the y; value, ob-
taining the following array yq) < yp)<...< y(,),
(i) r of different values is determined y,',y,',...,y," in the yqy, Yio)oes ¥n)

array,
(iii) a conditional TDS for a given y;" is created

CTDS(Y = y)) ={x;,9) 1y, = 33 j =1 2,n}

and their sizes n, = #{CTDS(Y =y,")} fori=1,2,..,7,

@ TP (ing, 3 %% x, k€ i dyvec Ju, Iy 12 12000ar;

(1) the y = a+ bx lines include the given two points x;,x; € TDS
» The determinant form

SN A |
Lj:lx xy x,[=0,
Y Xo Xp

» The extended form

Ly (xj = x)(y = X;2) = (x5 = %, )(x — %) = 0.

The total number of lines (;] i %n(n —1). The y =a+bx line in the direc-

tional form including points x; and x;:
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Let set I' of the #{I'} = :) size express the set of all lines. For a given L;

line, the (x,,x,) point, lies either on:

(i) a line, then Ly(x,,%,) = 0,

(ii) on the left side, when L;(x,,x,) <0,

(iii) on the right side, when L;(x,,x,) > 0.

Case (i) is a 7, points set lying on the L; line, case (ii) is a half-plane 7,
and case (iii) determines the half-plane 7,. The L; line is a limiting line (divid-

ing) for £ n - 2 points within the 7DS in R?. The numbers of points lying on
the half-planes 7, and 7, are determined by:

Jo=#1{m, )} and j, = #{mp},

in such a way thatj, +j,=n-2, and their minimum is expressed
by j, = min{j,, J,}- In the set of numbers j, the maximum number is calculated,
for example ji,y , which allows to determine the number of possible contours for

the analysed TDS, which is k =[j';“" ]+1. where [.] is an integer part of the

integer function argument.
n
% TP: (nr,i, j,a,b,tg(a), j,, jy, J,) , fornr going from I to [2];

(m) Contour TDS.

For order to create contours of TDS the lines given in point (1) are used. The
contours are built from the edges of calculated lines and their intersection points.
As mentioned before, for n points are defined g = n(n—1)/2 straight lines of

L; made of pairs (i, j) which meet the condition: 1<i < j, <n. We consider

pairs of straight lines L, ; and L, ; when (i, j,)€ I" and (i,,j;)€ I" for which
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index pairs include the following ranges: 1<i < j, <n; (i, /)€ {i +1,
iy +2,...,n}~{j, } This way we can exclude the pairs of straight lines which had a

common observation point from a sample (e.g. pairs of the straight lines (2, 4),
(4, 5) have a common point 4, which is also their intersecting point). It has been
recorded that the total number of possible pair of straight lines with repeated

point numbers to be created could be as large as: (g] = %n(n -2)(n?®-1). The

total number of intersection points of two lines is expressed by the formula:

n=3 -k —
g,=3% (" ; J:%f(n-k)(n—k—1)(n-k—2),n =4,5,6,...
k=1 k=1

In particular for n = 4, 5, 6, 7 the following equation is true
g, =2n> =21n* +79n 105, whereas for n = 8, 9, 10, 11 the equation is the

following form g, =4n’ = 66n* + 422n - 990.

Table 1 includes the illustration of the above formula for a sample of exem-
plary n = 6 elements. The set I = {1, 2, 3, 4, 5, 6} was divided into two sub-sets
{i, j} and {i o 1,...,6}— {j}, and all possible pairs that could be created from the

elements in set {i +1,...,6}={j} were given. By summing all the obtained pairs
(i,j) and (i’, j), is

AT

3
q6=%E(6—k)(5—k)(4-—k)--%{5-4-3+4-3-2+3-2»1}=45
k=1

or

» The contour convex hull. It is a convex closed polygon built on the ver-
texes of certain observations from TDS and its each side is determined by the
lines whose one of the two separating planes is empty. It means that, according
to point (/), the limiting lines y = a + bx of this polygon are determined the areas

m, and 7, such as, either # {r, }=0 or #{x,}=0 (Fig. 2).
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Table 1

The division of the 6-element set into two sub-sets
{i,i} fi+1....6}-{i} Pairs (i’,j’)
(1,2) (3,4,5,6) (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)
(1,3) (2,4,5,6) 2,4), (2,5), (2,6), (4,5), (4,6), (5,6)
(1,4) {2,3,5,6) (2,3), (2,5), (2,6), (3,5), (3,6), (5,6)
(1,5) {2,3,4,6) (2,3), (2,4), (2,6), (3,4), (3,6), (4,6)
(1,6) {2,3,4,5) (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)
2,3) {4, 5, 6) (4,5), (4,6), (5,6)
2,4) {3, 5, 6} (3,5), (3,6), (5,6)
(2,5) {2,4,6) (2,4), (2,6), (4,6)
(2,6) (3,4, 5) (3,4), (3,5), (4,5)
(3,4) (4,5} (4,5)
(3,5) {4, 6} (4,6)
(3,6) (4,5} 4,5)

15 1

0 5 10 15

Fig. 2. Illustration of the separating lines

% TP: ((Ip), 1, j, a, b), where (i, j) point numbers from set I" determining
edges of the convex hull and a and b are the coefficients of the line crossing the

observations x;, x; € R*.
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If all observations from 7DS are included in the convex hull, the analysis of
TDS is finished. It occurs when # {M 0}= n, that is when set M includes all the

observations from 7DS included in the convex hull.
» k-th, k = 1, 2,... degree closed convex contours. In order to determine
contour Kon, of k-th degree, the arrangement of lines from set I' defined in

point () is used, for which one of the halfplanes either 7z, or 7, includes k
points from 7DS (Fig.3).

15 1

#{ny}=1

104

15

Fig. 3. The illustration of separating half-planes of the k = 1 size

Let set ‘¥, be the set of the lines, of the m, = # {#,} size. Actual selection
of lines to set ‘¥, is done through reviewing j, value, for which j, =k, what is
done in point (/). For m, lines from set ¥, a set of contour vertexes Kon, is
determined, from intersection of two lines (i, j;,a;,b;) and (i, j5,@;,b; ), when
(i, 1)y, J) €Y, and r, i #i,, J,# j,. Let set ®, express such estab-
lished set of vertexes about sizes r, = # {®, }. The size reduction of I, in the
set @, is completed by eliminating the following intersecting points:
X =X (i Jioias J2)s Yo = Yo(ys Jysiyy Jp) Of straight lines L, L, €Y, for
which:

a) the conditions i, =i, or j, = j,, are met and the number of such cases is
determined by number f,,

b) (x,,¥,) € RD, 1i.e. a pair of co-ordinates (x,,y,) does not belong to the

area of a scattering rectangle (RD), and the number of such pairs is determined
by number g,.
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Finally we obtain set ®; of the size r, =r, - f, —q,. h, 21 points from
2-dimensional sample (7DS) are included in the contour Kon, . It means that
each contour includes at least one observation from 7DS. The set of these points
is expressed by set M. Conditions i, #i, and j, # j, aim at eliminating such
line intersecting points that may overlap with these observations in 7DS, that are
included in the convex hull and in the previously determined contours
Kon,,Kon,,...,Kon, .

Depth measures for elements of set ®;, k=1,2,... were determined using
the three triangles area method (W agner andKobylinska 2000).

II. NUMERICAL EXAMPLE

The illustration of the presented implementation of the prepared program in
the TURBO-PASCAL language for determining depth measures as well as the
construction of the convex hull and two depth contours was presented for the
following two-dimensional sample:

{(2,3),(4,9),(7,3),(9,12), (10,0), (11,9), (14,9), (13,6), (17,5), (20,10)}.

The numerical data was listed in the correlation chart (Fig. 4). The main
numerical statistics of the given set:

- dispersion rectangle determined by the vertexes: A(2, 1), B(20, 1), C(20,
16) and D(2, 16),

—~ diameter of set 18.68 between points (2, 3) and (20, 8),

- means;: x=10.7, y = 7.7,

- medians: Med, = 10.5, Med, =9,

~ Standard deviation: s, = 5.58, s, =4.64,

- Variation coefficients (%): v, =51.1, v, = 60.3,

—  Skewness coefficients: 0.07 and 0.20,
— Linear correlation coefficients r = 0.322,

The observations in 7DS are included in the following (Fig. 5).
~  Convex hull = {1,2,5,8,9,10},

~  Contours: Kon, =1{3,4}, Kon, ={7} and Kon, =1{6}.
The point of co-ordinates (11, 9), is Tukey’s median for the analysed sample.
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Fig. 5. Convex hull and contours

REFERENCES

Donoho D.L,Gasko M. (1992), Breakdown Properties of Location Estimates Based on
Halfspace Depth and Projected Qutlyingness, ,,The Annals of Statistics”, 20, 1803-1827,

He X, Wang G.(1997), Convergence of Depth Contours for Multivariate Datasets, , The
Annals of Statistics”, 25, 495-504.



32 Malgorzata Kobylinska, Wiestaw Wagner

Rousseeuw P.J,Ruts L (1999), The Depth Function of a Population Distribution,
»Metrika”, 49, 213-244,

Ruts ILRousseeuw P.J. (1996), Computing Depth Contours of Bivariate Point Clouds,
,«Computational Statistics and Data Analysis”, 23, 153-168.

Wagner W,Kobylinska M. (2000), Measures and Contour of Depth in Statistical
Description of Two-dimensional Sample, Wroctaw University of Economics, Publishing
House, 200-216.

Malgorzata Kobylinska, Wiestaw Wagner

ASPEKTY NUMERYCZNE WYZNACZANIA MIAR I KONTUROW
ZANURZENIA DLA DANYCH W R?

W statystycznej analizie mierzalnych ciaglych danych liczbowych w R? stosuje si¢ najcze-
§ciej analizg korelacyjna i regresyjna oparta na metodzie najmniejszych kwadratow. Jednakze w
przypadku danych nietypowych (np. obserwacje wplywowe, obserwacje odstajace) uzyskiwane
wyniki z tych analiz nie zawsze sq wystarczajgce. Jest ona uzupelniana analiza diagnostyczng
wykorzystujaca rézne testy statystyczne (np. ucigte studentyzowane reszty), pozwalajacg na wy-
krywanie wplywu obserwacji nietypowych na jako$¢ uzyskanych estymatoréw badanych parame-
tréw dotyczacych wspotezynnikow regres;ji i korelacji.

Nieco odmiennym podejéciem do analizy proby dwuwymiarowej jest korzystanie z miar
i konturéw zanurzenia. W tej analizie zwraca si¢ glownie uwagg na stopien zanurzenia poszcze-
gblnych obserwacji w strukturze danych z R,

Formalnie przyjmuje sig, iz zadana jest proba dwuwymiarowa (PD) {(x,-, y)ii= 1,2,...,n},

oraz punkt 0 =(6,,0,)'€ R? dla badania zanurzenia w PD. Do wyznaczania miar zanurzenia

stosuje si¢ podejécie simpleksowe, ktére w R* sprowadza si¢ do rozpatrywania zbioréw mozli-
wych trojkatow pokrywajacych punkt 0. Przy rozwigzywaniu tego zagadnienia przeprowadza si¢
rozmaite obliczenia numeryczne, ktére zostaly szczegbtowo przedstawione w pracy. Stanowity
one podstawe do przygotowania programu obliczeniowego w jezyku TURBO-PASCAL.

Na obecnym etapie implementacji wymienionego programu mozna wyznaczaé miary zanu-
1zenia pigcioma réznymi metodami, takimi jak: metoda cosinuséw, trzech pél tréjkata, liniowych
kombinacji wypuklych, trzech pélptaszczyzn rozdzielajacych, przeksztalcenia katowego oraz
metodg odlegloéci Mahalanobisa.

Takze nadmienionym programem wyznacza si¢ kontury zanurzenia, w tym ich punkty wierz-
chotkowe oraz przynalezno$¢ punktéw z PD do poszczeg6lnych stopni konturéw, wraz ze wska-
zaniem punktu medianowego w PD.



