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ON THE EFFICIENCY OF WEIGHTED LEAST SQUARES ESTIMATORS
IN THE CASE OF A GENERAL LINEAR MODEL

1. Introduction

The concept of "efftcient estimates (estimators)” was intro-
duced by R. F 18 hsr (ofs [3]) for denoting consistent &=
symptotically normal (CAN) estimators with the asymptotically mi-
nimal variance.

Fisher’s reasoning consisted in showing that

8) it &, , 1s the maximum likelihood estimetor (MLE) of the

parameter 6, then under the following regularity conditions:

a,) the density function fyly, 8) of the distribution function F,
of s random variable Y is two=fold differentieble in O,

a,) the function 5%7 log fy(y, 8) 1s uniformly continuous in vy
at 0 = Oo,

the quantity-{ﬁ'(é(n) - ) has asymptotically nornalagietributton

with the parameters (0, 1”1 (@), where 1(8) =2 -}-Y- —5% denotes

"an information quantity given by a sample about 8, and E denotes

an expectation operator,
b) if {T(n)T denotes a sequence of asymptotically normal e-

etimates, then

1 £y (VA (T = 8)2 » 1°%(8), 8 erY,
n-+00

where R1 is thé set of real numbers.
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' If (a) and (b) hold, then the MLE é(n) should be considered
as the best asymptotically normal (BAN) estimators 4in the class
of all ssymptotically normal estimators,

Unfortunately, there are no estimators with the minimal va-
riance. It results from the following facts. Let {T . be any
scquence of estimators and the variable f?(T(n - 8) be asym-
ptotically normal with the parameters (0, o2 (O;L Let dz(eo) ¥
# 0O be for the fixed value of 60. For

-

)}
T(ny 3f |T(n) - ool >n?,

(1) ?(n) - _%
6, if IT(n)-Oolcn ,

one can check that the sequence of (¥ a)" 8) is asymptotic~
ally normal with the parameters (8,32 (e)g. where

3%(e) = d*(6) 1f @ 46,
2
() =0<0 (8, 1f 6 =8,

Using the above way of estimator improvement for the ML es-
timators in the regularity case, one can construct a sequence
{T(n)} of asymptotically normal estimators such that

J ;

(2) un by (AT, -8)? < 17,

n-+oo
and, for some 8, even

(2a) 1n gg GA(T ) - 8)% < 170,
n+co

The estimators {T(n)}that fulfil (2) end/or (2a) for 8 & 6
are called superefficient for convex loss functions and these 6
for which (2a) holds are celled superefficiency points,

The first known to us improvement of the type (1) wae presen-
ted by 3. Hodges (cf. [7]) and it was concerned with the
cass when Yy, eea Yor eees Were i.i.d. normal veriables ~ with
var (Yi) wid, § e Ri, and

|
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< — -1/41
a¥ ) if |Y(n)l < n 2 lal<t,

:

(n) * - -1/4

Vimy & l'r(n)l > n V(p) 1o the MLE of &

where ?(n) is superefficient at & = O,

These new facts have stimulated nends for modifications of
Fisher®s definition of efficiency.

We recall the following medifications:

ml) an estimator T(n) is said to be asymptotically efficient
for a parametric function g(8) 1ff:

. 2
1im t(T(h)) - g(O), lim |var (T(n))-[ﬂ_(eeq__‘a 0,
N+

n-+00

unless !(T(n)} var (T(n)) do not exist:

n2) a family of estimators &; 1o soid to be v ~ esymptoti-
cally efficient within the subspace K & 8 c Rt (asymptotically
efficient with respsct to {wc}) if for coch non=void open sot
Ko © K the following relation

(3) lim [mf sup l‘e‘:) we (Tg=0) - sup z(;)

£+0 Tt GGKO Bcl(o

e (55 - G)] =0,

holds, where Tg 1is sny estimator, ond £ 4is equal for example %;
m3) a consistent estimator T ., of O is said to be first or-
der efficient (f,o.e,) iff

' n-+00 '

in probability, where & does not depend on observations and

alog f_(y:8)

—B'EL—'

All presented definitions of efficiency are qualitdtivo in
nature and deal with the asymptotic behaviour o: estimators. Thay.
can be generalized into the case of 8 ¢ R®, R being the Eu-

S
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¢lidenn epaco with the dimension k, by including ell the restri-

ctions smplied by the multi-dimensionality of the considered pro-
blems. Though the wholo asymptotics of efficiency is indiepena-
able (both in R and R‘) ag 2 bockground knowledge for smell sam=
plo analysis of efficiency, in practice we noed some meesures of
efficiency for small samples, and the knowledge how they behave
in dependence on changes of assumptions which underlie the mo=
del generating the obsarvations Y,

Ths purpose of this paper 1is to present one of possible
ways of measuring the efficlency and to analyze sqme propert=
ies of the presented aterminantal efficiency measure,

In § 2 we presont an snalysis of the propartiee of weighte
ed estimators in the cnsa of a general linear model,

In 5 3 wse present a determinantal efficiency measure and.
prove that its range belongs to <O,1>¢:Ri.

In § 4 we derive lower bounds of the determinantal efficie~
ncy measure. '

2. Some Properties of wo%ghted Estimators
in the Case of a General Linear Model

By a general linesr model we understand the following model:

oMo = (™K, 8,7 < XB+3, ki mlyngun, B, = M (xp, 2)),

whera: .
R™K . the set of nxk resl matrices,
8 ~ a probability space, 8 = (u,<¥, ?),
U - & set of elementary events, 1
F ~ the d-Borel field of U subsets,
P - a3 complete probability measure,
X8 = E(Y), 0e=8(Y) = ey - 2(Y) (v- e(y))' - $(2),
xerM™* g ¢k
"“P - J’ (xg, n)" L1 “the probability distribution of Y ie n-

'Jrur..ional normal distribution with E(Y) = X8, $(Y) a n = g o'.
One of the possible estimetion quelity functionals for the
medal oﬂun is of the form
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(5) ¢ = 1 a2 (v - xp)1 2,

where [«| denotes Euclideon norm in i
About 0 we assume further
Al) n 4s nonsingular positive dofinite real matrix, i.e,

o det o # O,

By convexity of ¢ and (A1) it 1s eosy to find thot:

(6) arg mén 1a°22 (v . xp)]® « B = (X0 =1x)1 x*n "ty

and by the definition of Y and assumptions of qun vie get

(7)  $(8) = (a0 xa " s(v ) x(xax)! = (x'atx)?!
Denoting
'10

L = (X°a™*x) $ g, mhéc, e

kxn
1 R

we have

(8) 8 « Ly,

for the ne-weighted least-squares (n-WLS) estimator, and
(8a) 61 =LY,

for any other weighted least squares estimator.

To be unbissed the estimator 61 must fulfil !(51)- LyXP =
=8, t.6. L Xw=wIn,. The last relation holds iff CX = 0, By
the lest condition the estimator ﬁ can be written &8s

: A
(8b) B = f “Liz.
By (8b) and the properties of the dispersion operstor £ we

have

5(6)-Ln;1-|.nL + LOC" + COL® + Cac’,

Since LaC’ = (X0 3x)"1x* "X’ - (x n"x)"‘x C”, then by CX =
= 0 we obtain
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LOC" = 0, and by the seme arguments COL® = O,
Thus
(9) 3(51) wi AL % CRC%,
By (7) and (9) we obtoin

(10) .%(61) - 3(8) = cac”’,

By. (A1) and properties of Gram matrices, the matrix Cac’ is
also positive definite iff rank C = ronk X = ko.

Ve have proved therefore

Theorem 1. Under the model Nl , the linear estie
mator 4is efficlent in the sense that any other linesr estimator
51 = (L + C)Y has the dispersion matrix H(B,) defined by (9) and
such that a(61)>.s(é). i,e. 5(51) - 3(B) 18 a positive definite
matrix, @

The estimator B is the Q-WLS eatimator with the weight ma-
trix 0., It can be used only if this maetrix is exactly  known
in practice, In most practical situations we do not know the
matrix but its aepproximation, i.e. the matrix Q + where ¢
runs the indices of estimators of autocorrelation coefficients
of p, and 8§ runs the indices of sutocorrelation schemes, The
cohcrete form ofQ sdopends on the assumed autocorrelation scha=
mes about the components of the vector = as well as estimation
methods for the autocorrelation coefficient £ in a specified
autocorrelation schems., The most often used echemes in practi=-
cal economatric and statistical applications are as follows:

~ first order autoregressive schemes,

-~ second order eutoregressive schemes,

- fourth order sutoregressive schemes (for a quarterly data),

~ first order moving-average scheme,

= combining autoregressive moving-average scheme.

The above mentioned types of schemes, as well as other scha=
mes, form tha first critorion of the differentiation of Qy.+ The
secord criterion is formed by different types of estimation me=
thods for the autocorrelation coefficient P. i.e. for exampla,
the following eetimators:
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a) tha sample first order autocorrelation coefficient (or the
sample correlation between the successive residuals)

Z EeBret

ta2
By = 12—, ¥

where a; (unobservable) were roplaced by the LS residusls E, =
- Y‘ - xtﬂ, x & (xtz‘ “s e th), B = (X X) X Y' t = 1,.0!,
nei, n;

b) Theil’s modification of él'

n
(n=k) 2 ; EeEeny

» tm2
By = n '

n
(n=1) Z Ef

tel
¢) the estimator

By =1~ g "Z(E 'Ecz)/z v

t=l

d) Theil”s-Nagar’s modification of g,. i.e.

-é: "2(1-%)"‘2'
n? - kz

e) Dent’s adjustment of Theil-Nagar estimator

é:’.%(é':'U)u

where:

m= 1

(ll'-i)] P = n? (1+

n =k
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m o= tr [(X7HX) (X°X)71],

H 46 the matrix from an approximation of the inverse of sz e
= 8, d.0. H1Fla(apr - 20n,

Except for very restrictive cases there is no eufficiont
knowledge about behaviour of the bias-robustness, mean square
orror (MSE)=robustness, efficiency robustness of nus-WLS o8t
mators on the changes of assumptions defining Nk, for each known
(ot, 8). Thie cells for extensive studies on numerical simulation
robustness., In this psper, however, we will not qqalyzo the
problems of studying robustness, Inetead of this we will study
some properties of 0 S-WLS estimator with respect to 0N=WLS-
~gstimator, One of such properties concerns the conditions of e-
quality of dispereion matrices of O_p~VWLSE and 0O-WLSE, 1.0,
for dispersion of B,z = B0, = (X0 =1 x)>"ix%q, 2t Y, B =« B(0) =

' 15 15 ¢85

e (xX"0"1)"x" a"1v, For the brevity of notation we denote o =
= (1.6)' ﬂta - cu-
By (7) and the properties of the operator $ we have

-1

(8, = (x" a7 % aa atx(x"agtn?

and
B(B) = (X" a~ix)"1

We shall fix the conditions of equality 3 (B,) = 3(8), Such"con-
ditions ere given in
Theorewn 2, 3 :
» s)aa, = a,0; _
b) V is the matrix of the eigen vectors of O, and Q, 1,e.
V'V ewW =1 : , : -
c) Vo * Rk g of the form V = (v PR I LA I e
) where v , (4 =1, n) 4e the i~th column of V. and
- opn-k”- | A 2 -‘ 3 y
Vovo - 21(.‘). v°v° = I(n)l .
. d) the metrix X eatisfies, "alternatively, one of the fol~-
lowing conditionss ~
di) X = V_,°
0 : kxk
dz)X-Voc,dct G 20, 6 e R,
d3) X = V°G. GG = GG* = I(k)' G eR

L

kxk"»
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then
(11) H(B,) = 5(B), *

To prove this theorem one needs to use conditions (a)=(d),
the properties of symmetry, poutti#e definitaness of Qy 0, the-
oremof Stoll ond Wong [6,p. 227) ond the result-
ing fecte that OV = VA, a v ava™, v n'1 . A"'V‘.nqv Sm
« Ve, aglv «vet, v'a3t 2 F"lv, where A, F are the diago-
nal matrices of eigenvalues of Q and ng. end A°Y, F” are
the eigenvalues matrices for a™t and nd . A detailed proof is
given in the work [S].

Another triviel situation when 8(B,) w3(B) holdo. 18 dotor-
ained b tho condtuon nu-a. i.,e. then (X’ i) *x* a"taa
x(x* 23x)"? «(x* a"tx)"?

3. A Determinantal Efﬂcsonox Measure

We recall that the moost efficient estimator in the case of
Nk, ie the estimator f = 8(0)end any other sstimator including
Bo, is less efficient. 1In order to arrive et this conclusion we
represent the matrix O, 88 N % O + A, It 1is easy to find “that

-1

tas Ay oot a-1(a"t o aH"3at opn™t g,

where G s a~ (™ & Al)ig-1

By definition of B we now have

Ba = (x(a™! « )™ - o)y,
and since

> P |

(x(0=t - 620"} w (X a~2x - x6x)"! & (x%0"ix)?
- (x*a"2x)" [(x* 0"2x)"t & (x'c;x)""']‘1 (x* a1,

x“(a~1 . e)y = x“0"ly - x’GY,




96 Wladyelaw Milo, Zbigniew Wasilewski

theraiore

(12) By = (L +0C)Y,

whero:

(13) L= (x*a"2x)"2x* =%,

(138) ¢ = =(x0"2x)"1x°6¢ = (x*a"1x)"! [(x* a=1x)"1 .

- (x°ex)™ " (x* a"2x)"Y (x"at . x°G).

By (12) and Theorem 1 we obtain that 3(B,)>%(8), 1.e. B 1e
less officient than B. For fixed finite sample sizes (espectally
small sample sizes) it 1s very important to have a measure of
efficiency of the given estimator Qu. Such a measure 1is de~
fined in

Defindtdion 1. The determinantal efficiency measu=
re of the estimator Qd for @ in NM, 1s the quotient of the
determinant of the matrix 3(8) to the determinant of the matrix
8(8), 1.,

der($(8
(14) .wsd - .fféa(x.n,na) ~ ﬁ-ﬁ-ﬁﬁr-

dotz(x‘nalx)
det (X"a7'X) det (X* ngrangix) '’

where Vg3 = effg (X,00,) denotes the detsrminantal efficiency
measure ofaﬁd aes the function of X, aa,. @

Let us assume that:

A2) o 1s nonsingular positive definite resl matrix (rank f=-
i L n),

A3) an,=a 0.

By (A1), (A2), (A3) the facts that the inverse of positive
definite matrix is also @ poutivo definite matrix and the pro=-
duct of positive definite matrices 1s also a positive definite
matrix = (for proofs of this statements see [1], chepters 4, 6)

we obtain that

(15) n'i, n‘;"1 are positive definite (p.d.) reel matrices,
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-1 -1

(16) a," o 0y de p.d, matrix,

and by the properties of Gram motrices

1 -1

(17) x*a™3x, x* aglx, x*azlaallx ere p.d. metrices.

-

By the properties of Gram detorminante we get
-1 ol -l
(18) det(x‘a™"x) >0, dot(x “1x) > 0, |xag angx|>o0.
From (18) end (14) we have therefore

(19) Vé >0
ol

and

(20) W3 « 0 1f det (x°a"'x) # 0, dot (X"a3anTX) ¥ 0,
o

det (X" agix) = 0.

For k <k, ‘Pé g. 8o the meocsure makes no ©ense and
there lrtaos a noeg for modifications = one of such modifice-
tions can be based on taking

» tr(aién
vﬁu tr a)

Now we establish that W* < 1,

Beceuse for positive gofinita matrix the determinent is equal
to the product of its positive eigenvalues, therefore by the
fact that (B8,)>5(B) we come to the conclusion

(21) dot(b(ﬁa)) > dot(®(B)).

“Hence offs - Wﬁ < 1.

We havo provod the following theorem.

Theorem 3. Under the assumptions of ol ,(A1), (A2)
the range of the determinantal efficiency measure Wﬁd is the in-
terval <0,1>, ‘

Note: It is essy to check that for O, =4, ‘Pé -1,

In practice it is worth knowing the values of lowor bounds of
fi’ﬁd determined for some typical o = (3,6) combinations of auto-
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correlotion schemee and ostimaotors of p. Ve derive
Lounds in the next section,

4, Lower Bounds of wé
hed

One of the possible ways of deriving lower bounds of
in the case of X =V , i.e, XX = 21() y cen be besed on
method of Lagrange multipliers. Let

(22) g = 1n (wém)"1 - 2 tr t.(v(”vo - 21(,‘)).

wheres

these

in (“Péd)"z = 1n dot(vs n"‘v ) + ln det (V n lnn ‘v ) -

=~ 2 1n det (Vo na Vo)

and L is the upper triangular matrix of k(k+1)/2 of Lagrange’s

multipliers. From (A1)-(A3) it follows

(22a) ogta™ e aa3l, alaeanal .l
-q,n"l = H, H =N,
(22b) - (na aq 1)0 Wl O LW il
(22¢) vt (n"‘nnof) =t (ataa}),
(229) (agy nn:)H = H (n""n a3y,
(a5l a aghw? « W2 (o aagh),
(22e) aFaathi? « vt (a3t a a7y,

Ya can formulate now

Theorenm 4, 1f Vv V = 21,y &nd (22‘) (22.) hbldv
and the function g is conttnuoua twofold duforontnblo. thcn

k

(23) int (ef* (v aa ))>n 2h n-1+1 (h1 + h::_h1
i=l ;

e,
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(24) 3 v, ¢ vovo - zx(k)

where 2H" = V;Hvo is the matrix of the form H* = diag (h:. PR
higde @

Proof. Differentiating g with respect to X and L (cf.
[4], p. 616) snd putting 3g/dX = O and g/L = O, where O deno=
tes zaro matrix, we have
.m'\';v‘,)'1 -

-1 - -1 -1 -1 -1 , -1
(24a) o Vo("o“ vo) + oy ““avo(vo“a‘

-1 P -l -1 *
- 2nav°(v°n0 vo) - 2V°(L e L

(24b) : : v;vo - 2x(k) = 0,

Premultiplying (24a) by V; and using (24b) we have

(24¢) ' e L a0
and hence
-l v -q -1 -1 -1 - -1 -l ‘1
(244) a”lv, (Vi aTV )T e g an v, (v, ag aa"v )" «
-1 P 8 -1
© 2navo(vonav°) ’

Premultiplying (24d) by o, and using the dafinition of H we ob-
tain ' :

Sy W | -l s ml ied =i o =1, \=1
(240) wo(von yo) + H vo(v‘,n°l an v, -zvo(vonqvo) 3

Premultiplying (24e) by H and using the rules of the addition
of the matrices we obtain ‘ :

(24) WPV (V2 a"2v )™t = 2wy (V] agiv)™h + vp(vg g angvy) 0.
#ron Theorem 2 and corollary 1 (From [7], § 6.6, P. 228) it

follows that matrices He, H, 0;1,n"'.n;1,nn;1 are simulteneously
'dtoggnaluod by the matrix Vo of the sdu_!.-prthogonnl trensforma~
tion V.., Hence, :

oag) W00 ™ - Gl e
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+ ?1(\/.1“ nn V’t)-l = 0, 1 = 1. veey k
and by virtue of the theorem, that the determinant of the diago=
nal matrix is equal to the product of its main diagonsl elements
we get

(25) efp \Vﬂ.%)-ﬂ(v 4 n vo ) (v a1 0 ) 1(v ~1 M'1 0)-1
i=l _ o
Premultiplying (24g) by vo;(v?1 rl'lvox) wo obtain .

0 \~1
v.i) +

(25a) 2n’1° - 2h§ (VO 1 a” v° )(v

*(v‘_’lnl")(vlninn ")1 0 Aad sy ok

Vlhen A of this squared-equation in respect to h* is greater than
0, .0,

-3 o

4(v a* °1)2(v '1 v° ) 2 . 8(v® H a~iv 1)(v n cm. 10

equation (25a) has two roote, different from zero, tho sum of
them baing of the form

X o’ =1 o 0/ =1 0 \~»1
+ he, = (V0. @ V.i)(v.ill V.i) i

. >
(zsb) h 24 s

i1

and their product has. the form

* 1 -1 ° =1 =1 0 \=1
(25¢) "11 o (v° a )(v agad Vo )T

from (255) and (25¢) it follows dirsctly

(25¢) (V0L Av0O% = (V0L a8 )2, o nih)"2
(25 o) (\:i Qe =3 .n.n.'1 °) 1. 2(v ‘a~ty °)°1 hti 12

Using (25d) and (25e) we can rewrite (25) in the form

\ . A * -2
(26) efau("d“'“a) ﬂ 2h{1hio(hYy + hyy)
$ 1=l
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In order to find Anf efé (Vo.rynb) we must choose two disjoint

subgroups {hii' gt 1} {hiz' T :2} from the set {h“

coey h:'} in such a way that the relation defining ef“al (Vo, ngmu)

in (26) reaches its minimum. In accordance with the combinatori-
£

cal discussion (similar to thot of Bloomf ield=-tiat=
s on [2])we have that the expression efé reaches its minimum
o

»* * 40
for hyy = hy, hy, = h ie1e Lee.
*
inf °féu(vo'“'“a) ﬂ 2hih® g (N + by 1»1)

i=1

which completes the proof.

Relation (23) may be used for examining the runs of ronge of
the lower bound of the determinantal efiiciency measure of the
cetimator éu‘

It 1s interesting to determine other lower bounds rather than
these from Theorem 4 for X = V , To fix them on the basis of
stationarity conditions for Wé“ one has to find solutions of
the following equations:

Vs,

(27) —x -(2 det (X’ '1x)dot2(x'n;1x))n Ix(x*n "'x) 1_(det(x"a~1x),

X

ax(x*a"1x)"t ~(der(x* ot agt o agix(xay o niixyd ieve,

3W~

B,
(28) - (det?(x°n7tx)) ngtx(x’ adx)ixadt -natix,
an
-1 - -l
(x*alaalx)"x* = 0,
YN
(29) e o - 0—1x (x* n-lx)-lxo n~1 * 0;1X(x n nn 1x)-1 - —1 gt

Whether there are general solutions of (27)=(29)? If they e~
xist, - fhay involve additional asssumptions about the  extensions
of dot functions with respect to o or fgor X or the restrictive
form of X, Due to space limitations we will not continue the di=
scussion of this problem and leave the problem open. :
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- 15 Fingl Remarks

The results obtained in this poper will be used in our Stue
dies on robustness of WLS estimators os well ss for the constru~
ction of efficiency tubles for different combinations of pairs
(g9 6).

The analysis presented in the poper does not include the ca=
se whon ko < k end np<n in the model Nk e
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0 EFEKTYWNOSCI WAZONYCH ESTYMATORGY
NAIMNIEISZYCH KVUADRATOW
W PRZYPADKU OGOLNEGO MODELU LINIOWEGO

.

Giéwnym celem pracz jest zaprezentownnie jednego z mozliwych
sposobéw mierzenia efektywnosdci w motych prébach 1 zenalizowanie
niektérych wtasnoéci wazonych estymatoréw najmniejszych kwadratéw
L przedstawionej wyznacznikowej miary efektywnodci, W sz2czendlno=
éci przedstawiono:
8) analizg wlasnoéci estymatordw wazonych w przypedku ogblno=
go modelu liniowego, :
o 12) dowéd, 2e miare efektywnodci znajduje sie W przadzianle
L) ’
¢) wyznaczanie dolnego kresu wyznacznikowej miary efektywnoscl.



