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ON SOME CALIBRATION ESTIMATORS  

OF SUBPOPULATION TOTAL FOR LONGITUDINAL 

DATA 

 
Abstract. The problem of modeling longitudinal profiles is considered assuming 

that the population and elements affiliation to subpopulation may change in time. The 

considerations are based on a model with auxiliary variables for longitudinal data with 

subject specific (in this case - element and subpopulation specific) random components 

(compare Verbeke, Molenberghs, 2000; Hedeker, Gibbons, 2006) which is a special case 

of the General Linear Mixed Model. In the paper calibration estimators of subpopulation 

total for data from one period are presented and some modifications for the case of lon-

gitudinal data are proposed. Design-based mean squared errors and its estimators are 

also presented. In the simulation study accuracy of the estimators is compared with Hor-

vitz-Thomson estimator and the best empirical  linear unbiased predictor derived for the 

considered model. 

Keywords: longitudinal data; general linear mixed model; empirical best linear un-

biased predictor; calibration estimators. 

 

 

1. SMALL AREA ESTIMATION AND LONGITUDINAL SURVEYS 

 

In survey sampling, the problem of estimation or prediction of subpopula-

tions’ (domains’) characteristics has become a very important issue. Besides, in 

the case of longitudinal surveys it is possible to increase the accuracy of the 

estimators or predictors by using information from other periods or even to esti-

mate or predict subpopulation’s characteristic for a period when the number 

of sampled domain elements equals zero. Domains with small or zero sample 

sizes are called small areas. The proposed solutions can be used by opinion polls 

companies, the market research sector and statistical offices during surveys con-

ducted on behalf of different types of enterprises, local authorities or even the 

central government to obtain information that is useful or even essential 

in making decisions about, inter alia, fund allocation, investments, health care or 

environmental protection. 
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2. CALIBRATION ESTIMATOR OF POPULATION TOTAL FOR 

DATA FROM ONE PERIOD 

 

Based on the design approach, Deville and Särndal [1992] propose an esti-

mator of population total given by: 

ˆ
CAL

si i
i s

t w y
 

!" ,                                                   (1) 

where: s is a sample of size n drawn from a population #  of size N, weights siw  

fulfill a so-called calibration equation. Deville and  Särndal [1992] propose a 

calibration equation given by: 

$ %1,2,..., si ik ikk p
i s i

w x x 
  #

& !" " ,                                      (2) 

where: p is the number of auxiliary variables. Based on a matrix formula, equa-

tion (2) may be written as: 

si i i
i s i

w
  #

!" "x x , 

where 
1 2

...T

i i i ipx x x' (! ) *x . 

In the case of the design approach weights giving perfect estimates for auxil-

iary variables should – intuitively – increase estimation accuracy for the variable 

of interest. Deville and Särndal [1992] argue that “... weights that perform well 

for the auxiliary variable should perform well for the study variable”. On the 

other hand, the calibration equation is a condition of model-unbiasedness of the 

population total predictor under the General Linear Model (GLM). Moreover, 

Deville and Särndal [1992] study the problem of design-unbiasedness of the 

estimator looking for weights fulfilling the calibration equation and condition-

ally minimizing some distance measure from the basic design weights 1

i id + ,!  

(where i+  are first order inclusion probabilities). For example, the following 

quadratic distance measure is considered: 

- .2( )s si i

i ii s

w d

d q
/

 

,
!" ,                                              (3) 

where: 

siw - weights of (1) fulfilling condition (2), 

iq - some positive weights uncorrelated with id  (introduced to obtain a more 

general solution). 

A design-consistent calibration estimator obtained by conditional minimiza-

tion of (3) is called the GREG estimator (the generalized regression estimator) 
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and it will be denoted by ˆGREGt . Weights obtained by conditional minimization 

of (3) are the following1: 

si si iw g d! ,                                                    (4) 

where: 
1

ˆ1 ( )HT T T
x xsi i i i i i i

i s

g d q q
,
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! 6 , "t t x x x ,                        (5) 
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 #
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x i i
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d
 

!"t x . 

Using weights (4), we obtain an estimator given by:  

- . ˆˆˆ ˆ
T

GREG HT HT
si i y x xt w y t! ! 6 ," t t B ,                            (6) 

where: 

ˆHT

y i i
i s

t d y
 

!" , 

1

ˆ T

i i i i i i ii
i s i s

d q d q y

,

  

0 1! 2 3
4 5
" "B x x x .                                      (7) 

Deville and Särndal2 prove that calibration estimators obtained by condi-

tional minimization of different distance measures are asymptotically equivalent 

to the GREG estimator in the following sense:  

- .1 1ˆ ˆ ( )CAL GREG
pN t t O n, ,, ! .                                    (8) 

Besides, simulation analyses3 show that the values and accuracy of different 

calibration estimators (calibration estimators obtained by conditional minimiza-

tion of different distance measures) are similar even for small sample sizes. Be-

cause the calibration equation may not be fulfilled Theberge [2000] proposes to 

consider the interval to which weights should belong to instead of the calibration 

equation.  

To derive asymptotic design-variance (denoted by - .2 .pD
 

) of the GREG es-

timator, Deville and Särndal [1992] use Taylor approximation and obtain the 

following formula: 

                                                 
1 For example: Särndal C.E., Swensson B., Wretman J., [1992], Model assisted survey sampling, Springer-

Verlag, New York, p.232; Rao J.N.K., [2003], Small area estimation. John Wiley & Sons, New York, p.13. 
2 Deville J.C., Särndal C.E., [1992], Calibration estimators in survey sampling, Journal of the American Statis-

tical Association, 87, p.379. 
3 For example: Singh A.C., Mohl C.A., [1996], Understanding calibration estimators in survey sampling, 

Survey methodology, 22, pp.107-115; Stukel D.M., Hidiroglou M.A., Särndal C.E., [1996], Variance estima-

tion for calibration estimators: A comparison of jackknifing versus Taylor linearization, Survey methodology, 

22, 177-125. 
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where ij+  are second order inclusion probabilities, T

i i iE y! , x B , and B  is a 

solution of  T T

i i i i i i
i i

q q
 #  #

0 1
2 3
4 5

!" "x x x xB .  

Furthermore, Deville and Särndal4 suggest to use (9) for other calibration es-

timators because of (8). To estimate (9), the following p-consistent (e.g. Rao5) 

Sen-Yates-Grundy’s type of estimator may be used:   

- .
2

2
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where: 
ˆT

i i ie y! , x B .                                                     (11) 

and B̂  is given by (7). Because estimator (10) may underestimate the variance 

of the GREG estimator, another p-consistent estimator may be used (Rao6) 

- .
2

2

1 1

ˆ ˆ
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D t

i

+ + +
+ + +! !

7

0 10 12 32 32 32 34 54 5

,
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where sig  is given by (5). This estimator will be taken into consideration in 

the simulation analysis. 

 

 

3. MODEL-CALIBRATION ESTIMATOR OF POPULATION TOTAL 

FOR DATA FROM ONE PERIOD 

 

Wu and Sitter [2001] and then Wu [2003] propose and study a model cali-

bration estimator of population total for data from one period. Let 1 2, ,..., NY Y Y  be 

independent random variables (which will not be true for the superpopulation 

model considered in this paper) of some joint distribution 8  and let us assume 

that7: 

2 2 2

( ) ( , )
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i i
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8
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;<
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<>

!

!

x  
,                                             (13) 

                                                 
4 Deville J.C., Särndal C.E., [1992], p.379. 
5 Rao J.N.K., [2003], p.15. 
6 Ibidem. 
7 Wu C., Sitter R.R., [2001], A model-calibration approach to using complete auxiliary information from 

survey data, Journal of the American Statistical Association, 96, p.186. 



ON SOME CALIBRATION ESTIMATORS OF SUBPOPULATION TOTAL FOR … 195

where 1,...,i N! , 1 2 ...
T

p? ? ?' (! ) *  and 2:  are unknown superpopulation pa-

rameters, ( , )i9 x   is some (e.g. nonlinear) known function of ix  and  , iv  is 

some known function of ix . Wu and Sitter (2001) consider a design-based esti-

mator of model parameters  given by: 

- . 1
1 1ˆ T T

s s s s

,, ,! X ! X X ! y ,                                    (14) 

where sy  is a 1n@  vector of values of the variable of interest, sX  is n p@  matrix 

of auxiliary variables and  - .1diag i n i+A A!!  is a diagonal matrix of first order 

inclusion probabilities.  

Wu and Sitter [2001] propose a model-calibration estimator obtained 

by conditional minimization of the distance measure (3) subject to the following 

constraints 
1 ˆ ˆ1 ( , ) ( , )i si i i

i s i s i

N w w 9 9,

   #
! B !" " "x  x  .                            (15) 

They note that in the original formulation of the calibration estimator the 

constraint 1 1i

i s

N w,

 

!"  is not present (although it can be introduced assuming 

that all values of one auxiliary variable equal one). It should be noted that the 

model-calibration equations (15) simplify to the classic calibration equation (2) 

in the case of a linear superpopulation model with population specific (but not 

domain specific) parameters. 

The resulting model-calibration estimator is given by: 

ˆˆ ˆ ˆ ˆMCAL HT
y i i i N

i si

t t d9 9
  #
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4 5
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(16) 

where: 
1
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4 5
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ˆ
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0 1! 2 3
4 5
" " . 

Under some assumptions presented by Wu and Sitter8 the asymptotic design-

variance of  ˆMCt  is given by: 

- . - .
2

2
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ˆ ˆ jMCAL i
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4 5
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8 Ibidem, p.187. 
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where i i i NU y B9! , , ( , )i i N9 9! x  , - . 1
T T

N

,
! X X X y , X  is N p@  matrix 

of auxiliary variables, y  is a vector of N values of the variable of interest, 
1

2ˆ ˆ( ) ( )( )N i i N i i N i N
i i

B q q y y9 9 9 9
,

 #  #

0 1! , , ,2 3
4 5
" " , 1

N i
i

N9 9,

 #
! " , 1

N i
i

y N y,

 #
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Variance (18) may be estimated by: 
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where: ˆˆ
i i i Nu y B9! , .  

Wu [2003] proves that the model-calibration estimator of the population to-

tal is optimal in the class of the calibration estimators in the sense that it mini-

mizes model-expected asymptotic design-variance.  

 

 

4. CALIBRATION AND MODEL-CALIBRATION ESTIMATORS OF 

DOMAIN TOTAL FOR DATA FROM ONE PERIOD 

 

In the case of estimating domain totals there are at least three possible ways 

of using approaches presented in the previous sections.  

The first one is: 

ˆ
d

GREG
si id

i s

t w y
 

! " ,                                              (20) 

where siw  are weights of the calibration estimator given by (4), but used not 

for all of the sampled elements, but for elements sampled from the domain of 

interest, which gives the GREG estimator of the domain total. To estimate ap-

proximate design-variance of (20). Rao9 suggests using estimator (10), where ie  

should be replaced by *
ˆ 'T

id id i ie a y! , x B ,  

where: *

*

*

1 for

0 for

d

id

d

i
a

i

 #;
! =

C#>
, *d#  is the domain of interest, B̂'  is given by (7), 

where iy  are replaced by *id ia y . In the case of the model-calibration estimator of 

the population total it should be noted that even in the case of a linear model, but 

one having domain specific parameters, this estimator is a nonlinear function of 

iy . Hence, an estimator defined similarly to (20) is used, but model-calibration 

is problematic. 

                                                 
9 Rao J.N.K., [2003], p.17 
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The second proposal is to look for weights conditionally minimizing some 

distance measure between the estimator’s weights and the sampling weights, 

however not for the whole sample (as in (3)), but for the sample in the domain, 

where the constraint is given by a calibration equation similar to (2), but defined 

for the domain. It may be written as follows: 

- .2
min

d

d d

sdi i

i s i i

sdi i i
i s i

w d

d q

w

 

  #

; ,
D<

<
=
<

!<
>

"

" "x x

.                                            (21) 

Solving (21) provides the following weights10: 

isdi sdiw g d! ,                                                        (22) 

where: 
d

dx i
i #

! "t x  , ˆ

d

HT

dx i i
i s

d
 

! "t x  and  
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! 6 , "t t x x x .                           (23)  

Based on weights (22), the following formula of the GREG estimator of the 

domain total is obtained: 

- .# ˆˆˆ ˆ
d

T
GREG HT HT

id sdi dy dx dx d
i s

t w y t
 

! ! 6 ," t t B ,                           (24) 

where: ˆ
d
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i s
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! "  and 

1

ˆ
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T
i i i i i i i id

i s i s
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,

  

0 1
2 32 3
4 5

! " "B x x x .                                    (25) 

To estimate approximate design variance of the estimator (24), Rao11 pro-

poses to use the estimator given by (10), where ie  should be replaced by 
#

* *
ˆT

id id i id i de a y a! , x B . Similarly, the model-calibration estimator may be obtained 

by solving: 

- .2

1

min

ˆ ˆ1 ( , ) ( , )

d

d dd
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i s i i

i si i id
i s ii s

w d

d q
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,

  # 

;
<
<
=
<
<
>

,
D

! B !

"

" " "x  x  
,                    (26) 

but under linear model (even with domain specific parameters) (26) simplifies to 

(21), where the vector of ones is included.  

                                                 
10 Ibidem, p.18. 
11 Ibidem. 
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The third proposal uses GREG (MGREG) 

- . ˆ ˆˆˆ ˆ
d

T
MGREG HT HT T i

d dy dx dx
i s i

e
t t

+ 
! 6 , ! 6 "dxt t B t B ,                          (27) 

(where B̂  is given by (7) and ie  is given by (11)) that has the following bench-

marking property: 

1

ˆ ˆ
D

MGREG GREG
d

d

t t
!

!" ,                                               (28) 

where ˆGREGt  is given by (6). Särndal and Hidiroglou [1989] propose to improve 

(27) by modifying somewhat the error term 
d

i

i s i

e

+ 
" . But their modification suffers 

when the domain sample size is small, unlike the case of the estimator (27)12.  

To estimate p-variance of (27) Rao13 proposes to use (10), where ie  are re-

placed by *id ia e . This variance estimator is valid even if the small area sample 

size is small, provided that the overall sample size is large. Similarly, we pro-

pose a formula of the modified model calibration estimator of the domain total: 

ˆˆ ˆ ˆ ˆ
d d

MMCAL HT
i i i Nd dy

i i s

t t d B9 9
 #  

0 1
2 32 3
4 5

! 6 ," " ,                        (29) 

(where ˆ
NB  is given by (17)) which has the following benchmarking property: 

1

ˆ ˆ
D

MMCAL MCAL
d

d

t t
!

!" , 

where ˆMCALt  is given by (16). To estimate p-variance of (29) we will use (19), 

where iu  will be replaced by *id ia u . 

 

 

5. MODEL FOR LONGITUDINAL DATA 

 

In the paper, longitudinal data for periods t=1,...,M are considered. In the pe-

riod t the population of size tN  is denoted by t# . The population in the period t 

is divided into D disjoint domains (subpopulations) dt#  of size dtN , where 

d=1,...,D. Let the set of population elements for which observations are available 

in the period t be denoted by st and its size by nt. The set of the domain elements 

for which observations are available in the period t is denoted by dts  and its size 

by ndt.  

We assume that the population may change in time and that one population 

element may change its domain membership in time (from a technical point of 

                                                 
12 Ibidem, p.21. 
13 Ibidem. 
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view, observations of some population element which changes its domain mem-

bership are treated as observations of a new population element). This means 

that i and t completely identify domain membership, but additional subscript d 

will be needed as well. Let idM  denote the number of periods when the i-th 

population element may be potentially observed in the d-th domain (when the i-

th population element belongs to the d-th domain). Let us denote the number of 

periods when the i-th population element (which belongs to the d-th domain) is 

observed by idm . Let rid id idm M m! , .  

Values of the variable of interest are realizations of random variables 
idjY  for 

the i-th population element which belongs to the d-th domain in the period 
ijt , 

where i=1,...,N, j=1,...,Mid, d=1,...,D. The vector of size 1idM @  of random vari-

ables 
idjY  for the i-th population element which belongs to the d-th domain will 

be denoted by id idjY' (! ) *Y , where 1,..., idj M! . 

We consider superpopulation models used for longitudinal data14, which are 

special cases of the GLM and the General Linear Mixed Model (GLMM). The 

following two-stage model is assumed. Firstly: 

id id id id! 6Y Z " e ,                                            (30) 

where i=1,...,N; d=1,...,D, idY  is a random vector of size 1idM @ , idZ  is known 

matrix of size idM q@ , id"  is a vector of unknown parameters of size 1q@ , ide  is 

a random component vector of size 1idM @ . Vectors ide  (i=1,...,N; d=1,...,D) are 

independent with 0 vector of expected values and variance-covariance matrix 

idR . Although idR  may depend on i, it is often assumed that 2

idid e M:!R I  where 

idMI is the identity matrix of rank idM . Secondly, we assume that: 

id id id! 6" K " v ,                                              (31) 

where i=1,...,N; d=1,...,D, idK  is known matrix of size q p@ , "  is a vector 

of unknown parameters of size 1p@ , idv  is a vector of random components of 

size 1q@ . It is assumed that vectors idv  (i=1,...,N; d=1,...,D) are independent 

with 0 vector of expected values and variance-covariance matrix id !G H , which 

means that idG  does not depend on i. 

                                                 
14 For example: Verbeke G., Molenberghs G., [2000], Linear Mixed Models for Longitudinal Data, Springer-

Verlag, New York; Hedeker D., Gibbons R.D., [2006], Longitudinal Data Analysis, John Wiley & Sons, 

Hoboken, New Jersey. 
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Verbeke, Molenberghs15 present similar assumptions to (30) and (31), how-

ever 3 differences exist. Firstly, in the book assumptions are made for profiles 

defined by elements. In this paper, assumptions are made for profiles defined by 

elements and domain membership, i.e. idY  (of size 1idM @ ). Secondly, in the 

book the assumptions are made only for the sampled elements (i.e. i=1,...,n). In 

this paper they are made for all population elements (i=1,...,N). Thirdly, the nota-

tions by Verbeke and Molenberghs [2000] do not take into account (unlike this 

paper) the possibility of population changing in time. 

Based on (30) and (31), we obtain: 

id id id id id! 6 6Y X " Z v e ,                                         (32) 

where i=1,...,N; d=1,...,D, id id id!X Z K is known matrix of size idM p@ . Let 
2 ( )id idD8!V Y . Hence, T

id id id id! 6V Z HZ R .  

Let Ad be a column vector and 1 1( ) ... ...
T

T T T

d D d d Dcol A A ' (! ) *A A A A  be a column 

vector obtained by stacking Ad vectors. Note that by stacking idY  vectors 

(i.e. 
1 1

( ( ))
dd D i N idcol colA A A A!Y Y from (32) we obtain the formula of the GLMM.  

 

 

6. CALIBRATION AND MODEL-CALIBRATION ESTIMATORS FOR 

LONGITUDINAL DATA 

 

Under model (32), to estimate domain total in period t we may use: 

(i) GREG direct estimator given by (20) (which will be denoted by GREGd), 

(ii) GREG direct estimator given by (20), where the calibration equation in-

cludes auxiliary variables from all periods (which will be denoted by 

GREGd4 and omitted from the simulation study due to the small domain 

sample sizes), 

(iii) GREG# indirect estimator given by (24) (which will be denoted by GREGi), 

(iv) GREG# indirect estimator given by (24), where the calibration equation 

includes auxiliary variables not from one, but from all periods (which will be 

denoted by GREGi4), 

(v) MGREG estimator given by (27) (which will be denoted by MGREGpop), 

(vi) Modified MGREG estimator given by (27), but with B̂  not obtained using 

all sample information from the period of interest (as in (27)), but using 

sample information from the domain of interest from all periods according to 

the following formula: 

                                                 
15 Verbeke G., Molenberghs G., [2000], p.20. 
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* *
1 1

1

ˆ
m m

d j d j
j j

T
i i i i i i i i

i s i s

d q d q y

! !

,

  

0 1
2 3
2 3
2 3
4 5

! " "B x x x

! !

,                           (33) 

(which will be denoted by MGREGdom), 

(vii) Modified Model Calibrating estimator (29) (which will be denoted by 

MMCALpop), where: 

, ˆ
NB  given by (17) is estimated using y’s from the period of interest,  

, ˆˆ ( , )i i9 9! x  , where ˆ ˆ! "  is design-based estimator of "  (see (32)) 

given by general formula (14), where information (on x’s, y’s and i+ ’s) from 

all periods is used (which will be denoted by MMCALpop) 

(viii) Modified Model Calibrating estimator (29) (the estimator will be de-

noted by MMCALdom) where: 

, ˆ
NB  given by (17) is replaced by: 

2

* *
1 1

1

ˆ ˆ( ) ( )( )ˆ
i i i

m m

d j d j
j j

i i i iN

i s i s

y yB d q d q9 9 9 9

! !

,

  

, , ,

0 1
2 3
2 3
2 3
4 5

! " "
! !

, 

, ˆˆ ( , )i i9 9! x  , where ˆ ˆ! "  is design-based estimator of "  (see (32)) 

given by general formula (14), where information (on x’s, y’s and i+ ’s) from all 

periods is used (which will be denoted by MMCALdom). 

It is worth noticing that estimators GREGd4, GREGi4, MGREGdom, 

MMCALpop and MMCALdom are new proposals of calibration estimators for 

longitudinal data obtained by modifying known calibration or model calibration 

estimators. 

In the case of estimators GREGd, GREGi and MGREGpop we use informa-

tion on the variable of interest and auxiliary variables only from the period of 

interest. In the case of estimators GREGd4 and GREGi4 we use information on 

the variable of interest from the period of interest and auxiliary variables from 

all periods. In the case of estimators MGREGdom, MMCALpop and MMCAL-

dom we use information on the variable of interest and auxiliary variables from 

all periods. 

 

 

7. SIMULATION ANALYSIS 

 

The Monte Carlo simulation analysis based on real data on N=314 Polish 

poviats (excluding cites with poviat’s rights), which represent NTS 4 level, for 

M=4 years 2005-2008 (data derived from www.stat.gov.pl).  
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Graph 1. Relative design biases of estimators (%) of considered estimators 

in 6 domains 
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Source: developed by the author. 
 

Graph 2. Relative design RMSE (%) of considered estimators in 6 domains 
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Source: developed by the author. 
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Graph 3. Relative design biases of MSE estimators (%) in 6 domains 
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Source: developed by the author.  

The problem is to estimate subpopulations (domains) totals for D=6 regions 

(NTS 1 level) in 2008. The variable of interest is the poviats’ own revenues (in 

PLN) and the auxiliary variable is the population size in the poviats (in persons). 

In the graphs below, each point represents the value of some statistics for one 

out of six domains. The simulation is design-based. In this case, a sample of the 

size n=79 elements (ca 25% of population size) is a balanced panel sample 

drawn at random in the first period with inclusion probabilities proportional to 

the value of the auxiliary variable in this period. With this sample size, it was 

possible to estimate all domain totals in each iteration, even using direct estima-

tors. The number of samples drawn in the simulation equals 10 000. 

In the simulation, absolute relative design biases of all estimators are smaller 

than 2%. Comparing the values of design relative RMSE we note that the high-

est accuracy is obtained for GREGd, MGREGpop and MMCALpop. When these 

3 estimators are compared, then the absolute relative biases of design MSEs 

estimators are the smallest, on average, for MGREGpop. MGREGdom and 

MMCALdom use sample domain information only from 4 periods and may be 

more accurate for data with a larger number of periods. 
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8. SUMMARY 

 

In the paper, several modification of calibration and model-calibration esti-

mators of domain total for longitudinal data are proposed along with estimators 

of design MSE. Their accuracies are compared for real longitudinal data on Pol-

ish poviats.  
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O PEWNYCH ESTYMATORACH KALIBROWANYCH WARTO#CI 

GLOBALNEJ W PODPOPULACJI W OPARCIU O DANE  

PRZEKROJOWO-CZASOWE 

W artykule rozwa#ane s! modyfikacje znanych estymatorów kalibrowanych warto$ci 

globalnej w domenie na przypadek danych wielookresowych (w tym zmodyfikowany 

estymator kalibrowany modelowo). Dok"adno$% zaproponowanych estymatorów zosta"a 

porównana z wykorzystaniem rzeczywistych danych wielookresowych. Najwa#niejsze 

rezultaty teoretyczne s! prezentowane w cz&$ci 3 (wzór opisuj!cy zmodyfikowany esty-

mator kalibrowany modelowo warto$ci globalnej w domenie i estymator jego p-b"&du 

$redniokwadratowego), w cz&$ci 4 (zaproponowany model nadpopulacji) i w cz&$ci 

5 (nowe propozycje estymatorów dla danych wielookresowych).  

 


