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USEFULLNESS OF DURBIN METHOD FOR INVESTIGATING
NORMALITY IN ONE-DIMENSIONAL LINEAR MODEL

Abstract. In this paper the verification of hypotheses of univariate normality by
Durbin randomized method is presented.

The method of elimination of the nuisance parameters by calculating the residual
vector and connected residual vector is presented, too.
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1. INTRODUCTION

Investigating the normality of one-dimensional simple sample has been
done by many statisticians. Vast literature on the subject is given by
Mardia (1980). Most frequently the problem may be reduced to constructing
tests statistics which are functions of sample estimators of unknown
expectation u and variance o2, which in the problem of testing for
normality are nuisance parameters. We eliminate them by transforming
observable random variables. One of the ways is given by Durbin (1961).
We will extend it to the case of investigating the normal distribution of
random errors in a linear model, which performed on the transformed
residuals obtained from the LSM in order to get a simple sample. For
such samples which comprise independent random variables with identical
distributions we apply normality tests.

In the paper the Durbin method for investigating normality of random
errors in a linear model is given. Its characteristic is supplemented with
assisting results.
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2. LINEAR MODEL AND RESIDUALS

Let y: nxl be a vector of n observable random variables given by
a linear model

y=XB+e, 2.1)
where: X' nxq is a known matrix of order r(X)=m < q <n,
B: gx1 — a vector of unknown constant parameters,

while e: nxl is a vector of unobserved random variables called random
errors. The linear model is expressed by a triple (y, X, ¢2I), where ¢ > 0
is unknown and I' n x n is the identity matrix. This means that E(e) = 0
and D(e) = o?I.

The vector of residuals from the LSM is expressed by r =y, where
Y =I1—(X(X'X)"X' and (X'X)" is the g-converse matrix of X'X.

For the vector of residuals r we have properties which proofs can be
found in many monographies concerning linear models: r'1 =0, r'X = 0,
r'r=yyy = eye, E(r) =0, D(r) = oy, E(rr') = Cow(y, r) = Cov(e, 1) = o
and s* = r'r/(n—m) is the BLUE estimator of 2. The property D(r) = o%
states that the components of vector r are correlated and (usually) have
different variances. For presenting the issue of investigating normality of
the distribution of vector e we give some assisting results which are used
in the applications of the Durbin method.

3. ASSISSTING RESULTS

Let X,,..,X, be a simple random sample, being a sequence of n in-
dependent values of random variable X which is assumed to have distribution
N(u, 6®). By X and S* we denote the sample mean and unbiased estimator
of variance from this sample, for which some properties hold: X ~ N(u, ¢*/n),
(n—1)S>~a%z_ y, Cow(X,5%)=0,X and an arbitrary function
g(X,—X,..,X,—X) are independent (n—1)S* and are independent and
(X;—X)/(n—1)S are independent.

Let us define standardized variables U, = (X, — X)/S from sample
Xy X, The variables Uj, i = 1,...,n, are not independent but we have:

Cov(X,,U)=0, CowX,U)=0, Covws? U)=0.

The density function f(u;) = f (u) for random variable U;is (Pearson,
Sekar 1936, Cramer 1958, p. 273).
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Density (3.1) is a particular case of random variable U with the
generalized beta distribution
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Density (3.1) is a symmetric function, so all moments about the origin
of odd degree are equal 0, while the ones of even degrees are given by
the formula
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Moments about the origin of degree k of standard deviation S are given
by (e.g. Pawlowski 1976, p. 46)
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4. DURBIN METHOD FOR A SIMPLE SAMPLE

Let us suppose that we verify a composite hypothesis HC that X ,..., X,
is a simple sample from the distribution N(u, ¢?), with unknown u and
o2 Let X and S? be the sample mean and unbised variance estimator.
Moreover, let us denote by ¥ and §'?, the sample mean and variance from
the population with the standardized normal distribution N(0, 1). Thus, we
have Y~N(0, 1/n), (n—1)§>~y2_, and ¥ and S§'*> are independent.
What’s more, after replacing ¢ by 1 and k by 2 we get E(S'?) = 1.

As we have already mentioned in the first paragraph the parameters
u and ¢? in the problem of investigating normality are nuisance parameters.
Durbin (1961) suggests a randomization process to eliminate them. The
idea of it is to consider two further random variables ¥ and §'?> which
have the distributions mentioned earlier. According to this formula, we
determine such a random sample Y,,..., Y, that

(Y= D)S= X ~2)S, T=1,n @.1)
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We will show that sequence Y,,..,Y, is a simple sample from the
population with the distribution N(0, 1). The relation (4.1) we write as

Y,=P+8U, i=1,.n

where U, is given in point 3 and ¥ and § are random variables generated
independently of X ,..., X,.

Lemma 4.1. Random variables X, $%, U,, ¥, §% are pairwise independent.

Proof. The independence of X, §%, U, follows from the results given
in point 3. Other independences follow from assumption that X’ and §'2
are independent of X,,..., X,.

Lemma 4.2. E(Y+ S'U) =0 and D*¥+ SU) =1
Proof. From Lemma 4.1 we get
E(Y+SU)=EY)+ESU)=EY)+ E(S'U) = E(S")E(U) =0

which follows from disappearing of the moments of odd orders of va-
riable U;. From the fact, that Cow(¥+ S'U;)) =0, we get for the variance

DX(Y+S'U) = DX(¥) + D*(SU) = '11 + E(S2UP) — [E(S)E(U)P? =

1 n-—1

= -4 =1
n

n

where we used E(S'%) = 1.

We have shown that the first two moments of the left side expression
Y, =Y+ 8'U,; are identical with those for the variable with distribution
N(0, 1). Now, we will give a lemma in which we will prove that variable
S'U is normally distributed and the first one has the chi distribution and
the second has the symmetric beta distribution.

Lemma 4.3. Random variable Z = $'U has the normal distribution
N, (n-1)/n).

Proof. We use the result given by Fisz (1967, p. 71). If S’ and U are
independent random variables with densities f «(s") and f,(u) then the
distribution of Z = S'U is given by the density

16 = § 5. 100G Jas

Let us denote by C; and C, the constants
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Using the density f,(s") given, among others, by Pawlowski (1976,
p. 45) and density (3.1) we get
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We change the variable s by consecutive substitutions ¢t = (n— 1)s'?/2,
v=2n—1)t—nz’, w=/2(n—1). Then we get

C1=

o
:Ij‘e—ww(n—Z)lz—ldw.
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Coming back to the constants C, and C,, from the definition of the
gamma function, we get

2(n~1)- 1)/2 J;, Bt ¢ 2(n—4)/2(n — )=z

R = ey g G-D gz =T

et ) ol n nz?
Xgn- 2 €Xp {— 2(n— 1)} i ﬁ n— lexp {2(""' 1)}

Finally, we get the density function of the distribution N(0, (n—1)/n)
i.e. random variable Z has the normal distribution.

5. DURBIN METHOD FOR A LINEAR MODEL

In point 2 we gave the vector of residuals from LSM for model (2.1).
We are transforming it further, using Durbin’s randomization procedure.
Its use is connected with the elimination of the nuisance parameter ¢ on
which the covariance matrix of the vector of residuals depends. It requires
the use of a transformation which expresses the quotient of two random
variables with the chi-square distribution. On the other hand, the transfor-
mation of the vector of residuals should give such random variables which
are uncorrelated. Both problems can be solved in two ways.

The idea of the first one is to use some random variables, exactly as
many as there are unknown nuisance parameters, in the problems of
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investigating normality. The problem was developed in that direction by
Sarkadi (1960, 1967), Stormer (1964), Theil (1968) and Sally and
Sarkadi (1982). :

The other way considered is to extend the set of random variables by
the number of them equal exactly to the number of nuisance parameters.
These additional variables are treated as generated random variables,
independent of the observed ones. Such reasoning was already presented
in point 4. When the elements of the sample are correlated, one should
still generate a random vector with the n-dimensional N,(0, I) distribution
in order to use it to eliminate correlated variables. This idea was presented
by Golub et al. (1973) and Wagner (1982, 1990).

In our considerations we apply the Durbin formula. We have one
nuisance parameter (variance ¢®) and n correlated random variables being
the components of the random vector r of the residuals. We generate
a random variable (n— 1)§'> ~ y2_; and independently of it random vector
v with an arbitrary distribution with the moments E(v) =0 and D(v) = L
We create a corrected vector of LSM residuals

’

rY =%r+(1-—|/1)v, (5.1)

where $% = r'r/(n—m).

To prove that the components of vector r* are uncorrelated we use the
result given in points 2, 3 and 4.

Lemma 5.1. E(r*) =0 and D(r*) = I.

Proof. From independence of S$'* and vector v of vector y, we get
Cov(§', r) = Cov(S’, v) = Cov(S, r) = Cov(S, v) =0 and Cov(r, v). For the

expectation we have E(r*) = E %r +(I—VY)E(v) = E(S")E é . But every

component of vector r/S has the same distribution with expectation equal
0 according to Lemma 4.3, i.e. E(*)=0. Further, due to the earlier
mentioned covariances, we get

S/ S:z
D(r*) = D(:S‘ r) +(I—=y)D(V)I —y) = E [37 rr'] -
—E(%r)[E(%r)]-&-I—lll = %%:%E(rr’) +1—-y = %azll/ +I1—-y =1,
what follows from E(S'*) =1 and (3.3) at k = 2.

Given lemma shows that the components of vector r* are uncorrelated
and get a simple sample.
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6. TESTING FOR NORMALITY OF RANDOM ERRORS

The result of Lemma 5.1 will be used to test normality of random
errors in model (2.1). Let N = {N,(p, 6®I):u= XB, 0> >0} be a class of
n-dimensional normal distributions with the given parameters. We set the
null hypothesis that the distribution of vector e belongs to class N, which
we write as Hyee N against the alternative H,:e¢N.

We verify the hypothesis H, with vector of r* of corrected residuals. It
is the sum of two vectors. The first is created from the transformation of
observable random vector y and generated random variable with the
chi-square distribution with n-1 degrees of freedom. If the hypothesis H,
is true then, according to Lemma 4.3 each of its components is normally
distributed. About the second vector we can assume that, in particular, it
is a random vector with the distribution N,(0, I). Thus, the sum of the
two independent vectors, each normally distributed, gives a random vector
normally distributed. And conversly, with the help of Cramer Lemma, (see
e.g. Rao 1982, p. 525) assuming that vector r* is normally distributed
and, at the same time, it is composed of the two earlier mentioned
independent random vectors, then each of them is normally distributed. It
implies that the vector of random errors is normally distributed.

The verification of H, is done with the help of a simple sample,
which is created by the components of vector r* and with the help
of test for normality. At n<50 the Shapiro, Wilk (1965) test is
recommended, and at 50 <n< | 100 the D’Agostino (1971) test. The
tests mentioned are omnibus tests i.e. they are both sensitive to de-
partures from the symmetry and curtosis of the normal distribution.
They are characterized by power and their critical values are known.
The Shapiro-Wilk and Shapiro—Francia tests have left-side critical re-
gions. This means that the big values of the tests statistics do not lead
to rejection of H, Furthermore, the D’Agostino test has a two-sided
critical region. The H, hypothesis is not rejected with this test when
the value of the test statistic lies between the upper and lower critical
values.
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Wieslaw Wagner

PRZYDATNOSC METODY DURBINA DO BADANIA NORMALNOSCI
W JEDNOWYMIAROWYM MODELU LINIOWYM

W pracy przedstawiono metod¢ randamizacyjna Durbina do testowania normalnoéci
bledéw losowych.

Zaprezentowano rowniez metod¢ eliminacji parametréw zaklocenia poprzez obliczanie
wektora resztowego i skorygowanego wektora resztowego.



