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USEFULLNESS OF DURBIN M ETHOD FO R INVESTIGATING 

NORM ALITY IN  ONE-DIM ENSIONAL LINEAR M ODEL

Abstract. In this paper the verification of hypotheses of univariate norm ality by 

D urbin randomized method is presented.

The method of elimination of the nuisance parameters by calculating the residual 

vector and connected residual vector is presented, too.
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1. IN TRODUCTION

Investigating the normality of one-dimensional simple sample has been 

done by many statisticians. Vast literature on the subject is given by 

M a r d i  a (1980). Most frequently the problem may be reduced to constructing 

tests statistics which are functions of sample estimators of unknown 

expectation ц  and variance а г, which in the problem  o f testing for 

normality are nuisance parameters. We eliminate them by transforming 

observable random variables. One of the ways is given by D u r b i n  (1961). 

We will extend it to the case of investigating the normal distribution of 

random errors in a linear model, which performed on the transformed 

residuals obtained from the LSM in order to get a simple sample. For 

such samples which comprise independent random variables with identical 

distributions we apply normality tests.

In the paper the Durbin method for investigating normality of random 

errors in a linear model is given. Its characteristic is supplemented with 

assisting results.
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2. LINEAR M ODEL A ND  RESIDUALS

Let y\ nxl be a vector of n observable random variables given by 

a linear model

y = X ß  + e, (2.1)

where: X: nxq is a known matrix of order r(X)  = m <  q <  n,

ß : qx 1 -  a vector of unknown constant parameters,

while e: лх1 is a vector of unobserved random variables called random 

errors. The linear model is expressed by a triple (y, Xß ,  a2l) ,  where a2 > 0 

is unknown and I: n x  n is the identity matrix. This means that E(e) =  0 

and D(e) — a 2I.

The vector of residuals from the LSM is expressed by r =  фу, where 

Ф — I  — ( X ( X 'X ) ~ X '  and ( X ' X y  is the g-converse matrix o f X'X.

For the vector of residuals r we have properties which proofs can be 

found in many monographies concerning linear models: r 'l  =  0, r 'X  =  0, 

r'r =  у'фу =  е'фе, E (r) =  0, D (r) = а2 ф, E(rr') = Cov(y, r) = Cov(e, r) =  а 2ф 

and s2 = r ' r / ( n - m ) is the BLUE estimator of a 2. The property D(r) =  а 2ф 

states that the components of vector r are correlated and (usually) have 

different variances. For presenting the issue of investigating normality of 

the distribution of vector e we give some assisting results which are used 

in the applications of the Durbin method.

3. ASSISSTING RESULTS

Let X t , . . . ,Xn be a simple random sample, being a sequence o f n in-

dependent values of random variable X  which is assumed to have distribution 

N  (fa a 2). By X  and S2 we denote the sample mean and unbiased estimator 

of variance from this sample, for which some properties hold: X ~ N ( p ,  a2In), 

(n — 1)S2 ~  a 2x l -  x,_ Cov(X, S2) =  0, X  and an arb itrary  function 

g ( X v — X,..., X n — X )  are independent (n —1)S2 and are independent and 

( X t — X)/(n — 1)S are independent.

Let us define standardized variables Ut = ( X t -  X ) /S  from sample 

X t , . . . ,Xn. The variables t/„  i =  1.....n, are not independent but we have:

Cov(X!, Ui) — 0, Cov(X,  [/,) =  0, Cov(S2, Ut) = 0.

The density function f (u , )  = f ( u )  for random variable Ui is ( P e a r s o n ,  

S e k a r  1936, C r a m e r  1958, p. 273).
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Density (3.1) is a particular case of random  variable U with the 

generalized beta distribution

f (u )  =  +t _ ! • - (u - a)p Ч Ь - и ) 9 l , a < и < b,
1 ГО  +  q)

(b — a)p+q~l Г(р)Г(Я)

when and a = — (n — 1 )/\Jn, b = ( n — 1 )Д/п and p = q — (n — 2)/2

Density (3.1) is a symmetric function, so all moments about the origin 

of odd degree are equal 0, while the ones of even degrees are given by 

the formula

E( Uk) =  . (3.2)
V i! nkl2 9n + k - l

M oments about the origin of degree к  of standard deviation S  are given 

by (e.g. P a w ł o w s k i  1976, p. 46)

2*/2 a

E(Sk) = k = 0’ 1’ 2> " (3 3>

4 . D URBIN  M ETHOD FOR A SIM PLE SAMPLE

Let us suppose that we verify a composite hypothesis HC that X u ..., X„ 

is a simple sample from the distribution N(p, a 2), with unknown p and 

a 2. Let X  and S 2 be the sample mean and unbised variance estimator. 

M oreover, let us denote by ?  and S'2, the sample mean and variance from 

the population with the standardized normal distribution N(0, 1). Thus, we 

have ? ~ N ( 0 ,  1/n), ( n — l)S '2 ~Xn~i  and Y  and S'2 are independent. 

W hat’s more, after replacing a by 1 and к by 2 we get E(S'2) = 1.

As we have already mentioned in the first paragraph the parameters 

p. and a 2 in the problem of investigating normality are nuisance parameters. 

D u r b i n  (1961) suggests a randomization process to eliminate them. The 

idea of it is to consider two further random variables Y and S'2 which 

have the distributions mentioned earlier. According to this formula, we 

determine such a random sample Yy,..., Yn that

( У , - ? ) / 5 '  =  (Х( - * ) / 5 ,  ŕ =  1.....п. (4.1)



We will show that sequence Y„ is a simple sample from the

population with the distribution N(0, 1). The relation (4.1) we write as

where Ui is given in point 3 and Y  and S' are random variables generated 

independently of X lt ...t X n.

Lemma 4.1. Random variables X ,  S2, Ub ?, S'2' are pairwise independent.

Proof. The independence of X ,  S2, Ut follows from the results given 

in point 3. Other independences follow from assumption that X '  and S'2 

are independent of ATlv .., X n.

Lemma 4.2. E ( ? + S ' U ,.) =  0 and D2( ? + S ' U i) =  1 

Proof. From Lemma 4.1 we get

E ( ? +  S'Ut) =  E(Y)  +  E(S'UJ = E ( Y ) +  EiS'UJ  =  В Д В Д )  = 0

which follows from disappearing of the moments of odd orders of va-

riable Ut. From  the fact, that C ov (Y + S 'U ^  =  0, we get for the variance

where we used E(S'2) =  1.

We have shown that the first two moments of the left side expression 

Y, =  Y +  S'Ui are identical with those for the variable with distribution 

N(0, 1). Now, we will give a lemma in which we will prove that variable 

S ’U is normally distributed and the first one has the chi distribution and 

the second has the symmetric beta distribution.

Lemma 4.3. Random variable Z  =  S’U has the normal distribution 
N(0, (n-l)/ri).

Proof. We use the result given by F i s z  (1967, p . 71/ If  S ’ and U are 

independent random  variables with densities f ^ s ' )  and f 2(u) then the 

distribution of Z  =  S'U is given by the density

Yt = ? + S V b i

D \ ? +  S'U;) = D2( ? )  +  D2(SU) = -  + E(S'2Uf) - [E(S')E(Ui)]2 =

---j------
n n

Let us denote by C x and C2 the constants
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Using the density f t (sf) given, among others, by P a w ł o w s k i  (1976, 

p. 45) and density (3.1) we get

m  = cic>ji.*->«p{—̂ i } [ i  J " 4”* ’ =

We change the variable s' by consecutive substitutions t =  (n — l)s '2/2, 

v =  2(n — l) t  — nz2, w =  /2(n — 1). Then we get

/ ( г )  » ' - « ^ х р Г -

Coming back to the constants Ct and C2, from the definition o f the 

gamma function, we get

f(z ) =  2(n — 1)("~1)/2 yfk g„~i 2("~4)/2(n — 1)<"~4)/2

2 (n - 1)/2^„_! ( n - 1 )  g„-2 ( n - 1 ) " -3

[ nz2 } 1 I n Г nz2

^ " - 2exp l  2(n 1) J ^/2ГГ\/ ЙГ-ТeXP j2(n^ T )

Finally, we get the density function of the distribution N(0, (n - l) /n )  

i.e. random variable Z has the normal distribution.

5. DURBIN METHOD FOR A LINEAR MODEL

In point 2 we gave the vector o f residuals from LSM for model (2.1). 

We are transforming it further, using D urbin’s randomization procedure. 

Its use is connected with the elimination of the nuisance param eter a2 on 

which the covariance matrix of the vector of residuals depends. It requires 

the use of a transformation which expresses the quotient of two random 

variables with the chi-square distribution. On the other hand, the transfor-

m ation of the vector of residuals should give such random variables which 

are uncorrelated. Both problems can be solved in two ways.

The idea of the first one is to use some random variables, exactly as 

m any as there are unknown nuisance parameters, in the problems of



investigating normality. The problem was developed in that direction by 

S a r k a d i  (1960, 1967), S t o r m e r  (1964), T h e i l  (1968) and S a l l y  and 

S a r  k a d i (1982).

The other way considered is to extend the set of random variables by 

the number o f them equal exactly to the number of nuisance parameters. 

These additional variables are treated as generated random  variables, 

independent of the observed ones. Such reasoning was already presented 

in point 4. When the elements o f the sample are correlated, one should 

still generate a random vector with the и-dimensional N n(0, I) distribution 

in order to use it to eliminate correlated variables. This idea was presented 

by G o l u b  et al. (1973) and Wagner (1982, 1990).

In our considerations we apply the Durbin formula. We have one 

nuisance parameter (variance a2) and n correlated random variables being 

the components of the random vector r of the residuals. We generate 

a random  variable (n — \)S'2 ~ X n - i  and independently of it random vector 

v with an arbitrary distribution with the moments E(v)  = 0  and D(v)  — I. 

We create a corrected vector of LSM residuals

r* = y  + ( I - i t / )v ,  (5.1)

where S2 = r'r/(n — m).

To prove that the components of vector r* are uncorrelated we use the 

result given in points 2, 3 and 4.

Lemma 5.1. E(r*) =  0 and D(r*) =  I.

Proof. From  independence of S'2 and vector v of vector y, we get 

Cov(S', r) =  Cov(S', v) =  Cov(S, r) = Cov(S, v) =  0 and Cov(r, v). For the

expectation we have E(r*) = E ^ -  r ĵ + (I — ф)Е(у) — E ( S ' ) E ^ j .  But every

component of vector r/S has the same distribution with expectation equal

0 according to Lemma 4.3, i.e. E(r*) = 0. Further, due to the earlier 

mentioned covariances, we get

D(r*) =  + tp)D(v)(I — ф)' — E [ J  rr'J -

«!■ + 1 -  Ф = ~ ^ S2j £ (rr') + 1 - ф  = ^ а 2Ф + 1 ~ Ф  = 1,

what follows from E(S ) = 1 and (3.3) at к = 2.

Given lemma shows that the components of vector r* are uncorrelated 

and get a simple sample.



6 . TESTING FOR NORM A LITY  OF RANDOM  ERRORS

The result of Lemma 5.1 will be used to test normality of random 

errors in model (2.1). Let N  =  <t 2I): ц  = Xß ,  a2 > 0} be a class of 

и-dimensional normal distributions with the given parameters. We set the 

null hypothesis that the distribution of vector e belongs to class N,  which 

we write as H 0: e e N  against the alternative

We verify the hypothesis H 0 with vector of r* o f corrected residuals. It 

is the sum of two vectors. The first is created from the transform ation of 

observable random  vector у  and generated random  variable with the 

chi-square distribution with n-1 degrees of freedom. If the hypothesis H 0 

is true then, according to Lemma 4.3 each of its components is normally 

distributed. About the second vector we can assume that, in particular, it 

is a random vector with the distribution N„(0, I). Thus, the sum of the 

two independent vectors, each normally distributed, gives a random vector 

normally distributed. And conversly, with the help of Cramer Lemma, (see 

e.g. R a o  1982, p. 525) assuming that vector r* is normally distributed 

and, at the same time, it is composed of the two earlier mentioned 

independent random vectors, then each o f them is normally distributed. It 

implies that the vector of random errors is normally distributed.

The verification of H 0 is done with the help of a simple sample, 

which is created by the components o f vector r* and with the help 

of test for normality. At n <  50 the S h a p i r o ,  W i l k  (1965) test is 

recommended, and at 5 0 < n < | 1 0 0  the D ’A g o s t i n o  (1971) test. The 

tests mentioned are omnibus tests i.e. they are both sensitive to  de-

partures from the symmetry and curtosis of the normal distribution. 

They are characterized by power and their critical values are known. 

The Shapiro-W ilk and Shapiro-Francia tests have left-side critical re-

gions. This means that the big values of the tests statistics do not lead 

to rejection of H 0. Furthermore, the D ’Agostino test has a two-sided 

critical region. The H 0 hypothesis is not rejected with this test when 

the value of the test statistic lies between the upper and lower critical 

values.
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Wiesław Wagner

PRZYDATNOŚĆ M ETODY D URBINA  DO BADANIA NORM ALNOŚCI 
W JEDNOW YM IAROW YM  M ODELU LINIOW YM

W pracy przedstawiono metodę randamizacyjną Durbina do testowania normalności 
błędów losowych.

Zaprezentowano również metodę eliminacji parametrów zakłócenia poprzez obliczanie 
wektora resztowego i skorygowanego wektora resztowego.


