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Abstract. In many statistical tasks a necessity of testing multivariate normality 

arises. In constructing multivariate norm ality tests there is a necessity of estimating 

unknown parameters ц and £  from a given sample. The parameters are regarded as 

disturbing parameters.

The paper deals with some methods, by means of which unknown disturbing 

parameters are eliminated when the multivariate normality tests are applied.

In particular, the following methods are stressed: randomization method, reduction 

methods and conditional interval probability transformation method.

Key words: multivariate normality test, randomization method, reduction method, conditional 

interval probability transformation method.

1. IN TRODUCTION

The assumption of a multivariate distribution of investigated random 

variables is very often made in multivariate analysis when we use statistical 

inference methods. This assumption may be verified with different tests for 

multivariate normality. A broad overview of them was given by W a g n e r  

(1990). M ost of them are based on a suitable test statistics. Their distributions 

are searched when the hypothesis of multivariate normality is true. When 

the distributions are unknown the critical values are set by the M onte Carlo 

simulation.

One of the difficulties in constructing m.n.t. (multivariate normality 

tests) is the necessity of estimating unknown parameters of m.n.d. (multivariate
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f
normal distribution) from a given sample. In this case the problem may 

be reduced to the verification o f a sample hypothesis of m.n.d. by eliminating 

unknown parameters. These issues are discussed in this paper.

2. TECHNICAL NOTATION

Let I  be a /»-dimensional random vector with a m .n.d. given by 

a cumulative function Fp(x, ц, E) =  Fp(x), for x e R p, and E ( X ) = f i e R p 

and D(X)  =  Е е /p express the vector of expectations and covariance matrix 

respectively, while RP and Ip denote the real space of ^-dimensional vectors 

and symmetric, positive definite matrices of order p. The fact that X  has 

the given m.n.d. with the mentioned parameters we write by N  ~  Ир(ц, E) 

(shortly X ~ N p). The class of these distributions is expressed by the set 

N p = {Np(ji, E): f i e R p, E e / P>}

Let vector X  be divided into X  = (X lt X p)' where X t = (X i ,..., X p- x)' 

and, respectively, let ß = (ß\, црУ and

where £ 12 =  E'21. The conditional distribution of vector X i with fixed 

X p =  x p is given by

I X p ~  Np- i (ß i  + "  r ^ E 12, 2 ц — —  2 12E 2i)
° pp ° pp

Let U =  (X i X n) be a sample of n independent ^-dimensional observable

random vectors. We assume that vectors XJt / =  1.....n are identically

distributed according to given a cumulative function G(x; V) =  Gp(x), where

V is a set belonging to the space of feasible parameters. The function Gp(x) 

may be unknown, both with respect to the form and parameters, though 

we assume that for every x e R p it is a continuous function. From  sample 

U we find unbiased estimators of ц  and £  in the form of:

-  vector of the arithmetic means

x=-m,
n

-  covariance matrices

.v —----- - (UU'  — -  %X').
n — 1 n

and the matrix of the sum squares and products A  =  ( n — 1)5.



Assuming that X j e N p we can look at sample U as a model of one 

sample from the m.n.d. population. For this model we have the properties:

(i) {X, S) is a set of sufficient statistics,

(ii) X  and S  are independent,

(iii) C,X ~ N i (C'ii, a2c) and C ' S C - a h l ,  

where C'eRP,  СФ  0, a* =  C 'EC and m = n — l,

(iv) X ~ N B(ß, -Z ), S - W a -  E, m) and A  ~  W JZ ,  m), where W
F n ľ m y v

denotes the central /»-dimensional Wishart distribution with changed arguments 

and m — n — 1,

(v) c s U ~ M N p(l ® [i, £ ® 1 ) where M N p denotes the m atrix-like 

normal distribution of /»-dimensional independent random vectors with the 

distributions N p(ß, ff) and csU denotes л/7-dimensional vector created from 

U by arranging in one column consecutive verse vector of matrix U.

The purpose of our analysis is investigating the equality o f functions 

Gp(x) and Fp(x) i.e. we ask if function Gp(x) may be considered identical 

with function Fp(x), or, if the distributions of random vectors Xj  belong 

with class Np. We call this assumption a composite null hypothesis of 

m.n.d. and write it as

HCM-. Gp{x) = Fp(x), 

against the alternative

H C M G p(x) Ф Fp(x),

The H C M  (hypothesis composite multivariate) may be expressed in the 

equivalent form

H C M : distributions X j e N p, j  = 1

Verification of H C M  hypothesis requires determining optimal s.t. for 

m aking a decision if sample U comes from the population with distribution 

M N p. Parameters fi and I  are unknown. We replace them with proper 

sample estimators. Such reasoning creates difficulties in determining a suitable 

test function and its distribution when H C M  is true. Parameters ц and £  

are not of intrest for us and arc treated as nuisance parameters.

Definition 2.1. Let N p denote the class of /7-dimensional n.d. and A the 

set of feasible decisions with parameters ц and a:

a) if there exists subset C0 с  A x  Rp, such, that C =  C0 x Ip , then ц  is 

called a disturbing parameter with respect to C;

b) if there exists subset C0 c  A x Ip , such, that C =  C0 x R p, then E is 

called a disturbing parameter with respect to C;



c) if there exists subset C0 <= A, such, that С — C0 x  R p x  Ip , then ц  and 

E are called disturbing parameters with respect to C, where x denotes the 

Cartesian product. We intend to construct a m.n.t. for verifying H C M  after 

elimination of ц  and £ . We do that through a suitable transform ation of 

sample U. Different methods of such transformation are possible. They 

allow to verify H C M  by equivalent hypotheses about the standardized 

u.n.d. (HN)  or uniform on the interval (0, 1) (HI).

3. RAN DO M IZATION M ETHOD

3.1. General remarks

In this method we use D u r b i n  (1961) procedure generalized to the 

multivariate case. The idea of it is to join as many generated random 

variables as there exist disturbing parameters in H C M  problem. In this 

case it will be generating a suitable symmetric matrix with the W ishart 

distribution and the vector of means from a population with a spherical 

/7-dimensional normal distribution, and both these variables should be 

independent of each other and of observable matrix U.

3.2. Disturbing parameters ц and £

In the considered method of transforming matrix U we use the following 

lemmas:

Lemma 3.1. ( P e a r s o n ,  S e k a r  1936) The product of independent 

random variables with the chi-square and beta distributions is identical with 

the distribution of the normally distributed variable.

Lemma 3.2. (Khatri 1959) If Wp(L, n) then U ~ M N p(0, E ® /), 

then S  =  S  +  UU'  ~  WP(E, 2ri) and Z = T ~ l U ~ M B p are independent, 

where S  = I T '  and M B p denotes the multivariate beta distribution given 

by density

f ( Z )  = cn\ I - Z Z \ b - p- * l \  

and с is a constant.

According to lemma 3.2. we transform sample U, so that it would be 

a set of vectors from the M B p population.



Let U = (U„, X„) where (U = (Х 1г. . . ,Хт), for m = n -  1, be m atrix 

received from U after elimination of vector X„. From  the matrix Un we 

determine X„ and A„ similarly as in point 2. We define vector X* = X p -  X n. 

Its properties are contained in:

Lemma 3.3. A — An +  aX*ХЦ, where a = m/n.

Proof. Let’s write X = X n + ^X*,  then nXX' =  ( n -  l )X nX '„ -

-------- гХЦХ*’ + X nX n and for matrix A  we have
n — 1

A  =  Z X jX j  + X nX n -  nXX'  =  UnU’„ -  (n -  l)X„Xn + aX*nX*n.
J=i

Lemma 3.4. X% ~  N  (0, -2) when H C M  is true.
a

Proof. When H C M  is true, then X j ~ N p(ß, £), so X p ~  N p(p., — 

and E ( X n- X n) = 0

and D ( X n) + D ( X n) - 2 C o v ( X n, X„) = E + = e ' 1! .

Lemma 3.5. ( W a g l e  1968) The density of random vector Zjf =  L ~ 1X f  

where A =  L Ľ  has the form

g(Z*) = с* I / -  aZ*Z*'  I (n- p- 2)/2

where c* is some constant.

Given lemmas relate to vector X n. We transform them to the rest of the 

vectors X v .. .,Xn- u  what results in Z* =  L ~ i X j , j =  1 where Xj  is the 

vector of means from sample U after excluding vector Xy  We create matrix 

Z* =  whose distribution is given by lemma 3.2. when H C M  is

true. To matrix Z* we apply a randomization procedure ( D u r b i n  1961) the 

idea of which is to generate, in the problem considered, p{p +  3)/2 additional 

random variables, as many as there are different disturbing parameters.

Let B ~  W i l , n — 1) and D  ~  N„(Q, --/) be the generated random  matrix
n

and random vector with the given distributions and independent of each other 

and of matrix A.  We define matrix К  and X* such that В =  KK'  and 

X* = (D,...,D) then matrix Y* = X* + J a K Z *  ~  M N p(0, 1) when H C M  is 

true. From the sphereness of the distribution of matrix Y* we conclude that its 

elements are a random sample of np elements. Thus, the problem of verifica-

tion of H C M  was reduced to the equivalent problem o f verification of HN.



3.3. Distrubing parameter p.

Let now fi = E(X)  E 0 =  D{X)  with known Z0 In the situation considered 

we have p  disturbing param eters contained in vector p. We define 

X j  = T.öil2(Xj — X) for j  — 1 where Eq/2 is a symmetric square root 

o f matrix E 0

Lemma 3.6. X* ~  N p(0, a l ) when H C M  is true.

We generate m atrix X* ~  M N p(0, ^ / )  independent o f m atrix

U* = (Х^,...,ХЦ) and we fix Y* = X * + U * ,  which has the distribution 

M N P(0, I)  when H C M  is true. Thus the problem of verification of H C M  

was reduced to the verification of hypothesis HN.

3.4. Distrubing parameter £

Let Uit Un be as in 3.2. and let p0 =  E(X)  and E =  D(X),  we know ц0. 

We create matrix A 0 = (U — ii0Y)(U — ц0\')' and A° = A°  +  X%X%’, where 

Х°п = Х п - Ио.

Lemma 3.7. We have A°  -  Wp( l ,  n - 1) and *?~ЛГр(0, Z), when 

U ~ M N p( l® i i0, £).

Let us find Z?) =  L°X°j for A 0 =  L°L0', for j  = 1 Due to  unknown 

m atrix  E we generate m atrix  B°  ~  Wp(I, n) independent o f m atrix  

Z°  =  (Z?,..., Z°), and then we fix matrix Y° = K°Z° ~  M N p(Q, I), where 

B° =  K°K°'  when H C M  is true.

Again, the problem of HCM  was reduced to the problem of verification 

o f HN.

4. REDUCTION M ETHODS

4.1. General remarks

The reduction methods in univariate normality problem was suggested 

by S a r k a d i  (1966). The idea is to eliminate from the sample considered 

as many variables as there are distrubing parameters. This is a converse 

approach to the one in section 3. In our case sample U is transformed 

according to Hensler’s H e n  s i e r  et al. (1977) suggestion. We use the 

conditional distribution given in section 2.



4.2. Disturbing parameter ji

Let the assumption of sample U be as in 3.3. We define vector

**  =  b(U  1 +  J n X n) = b(Unl +  (1 +  J n ) X J

where b = l/(n + J n ) .  We transform sample U by reducing it by one 

vector, let us say, X n. W ithout loosing generality we can choose any other 

column vector from sample U.

Lemma 4.1. For vector X* we have

(a) E(X*)  =  Ц,

(b) D{X*) =  2 № 0,

(c) Cov(X*, Xj) =  6E0,

(d) X* ~  N p(ß, 2bL0) when H C M  is true.

Proof, (a) E(X*) = b[mE(Xj) + (1 +  Jn)]E(X„) = b(n +  Jn) f i  = p 

where m = n — 1

(b) D(X*) = b2[mD(Xj) +  (1 +  J n ) 2D{Xn)\ =  b2(m +  1 +  2yjn +  n )E 0 =  26E0;

(c) Cov(X*, Xj)  =  Cov(U 1 +  J n X n, Xj) = b £  Cov(Xk, X }) +

+  bsJnCov(Xn, Xj) = 6E0; *=1

(d) follows from the linear mapping X* =  UB, where

В
‘[iw*}

To eliminate disturbing parameter fi we use transformation 

Yj = Xj  — X*  for 1 ,. . . ,и -1 .

Lemma 4.2. When H C M  is true random vectors Ŷ , j  =  1 ,...,и— 1 have 

independent distributions Np(0, £).

Proof. E(Yj) — 0 what follows directly from lemma 4.1. To determine 

covariance matrix Yj of vectors we present them in the form

Yj = ( \ - b ) X j - b l x k + ( l + j n ) x n
* = 1

then D(Xj)  =  [(1 -  b)2 +  b2(n -  2 +  (1 +  V « )2)]20 =  (1 -  26 +  b2 +  2 b \ n  +  

+ \]n) — b 2)Lо =  £ 0. To prove independence of Yj we determine covariance 

Cov(Yj, Yj.) = Cov(Xj, Xj.) -  2 Cov(X*, X r ) +  D(X*)  =  -  26Z0 +  26Z0 =  0 

on strenght of lemma 4.1.



The normality of the distribution of vectors Yj follows directly from 

the orthogonal transformation у  = UB where В  = (bjj) is a m atrix with 

elements given in the form ( S a r k a d i  and T u s n a d y  1977)

and the last и-th column is supplemented with Gram-Schm idt orthogona- 
lization (OG-S) method.

The verification of the HC.M with sample U was reduced to verification 
of H N  with sample Y lt..., Yn- i  of p(n — 1) independent random  variables.

Now we have q — p  + p(p +  l)/2  =  p(p  +  3)/2 parameters o f noise.
Our reasoning needs np — q = (2n—p  — 3)/2 independent random variables 

free from parameters p  and E. This means reducing e.g. the variables 
of matrix U by q.

In transforming matrix U we use the lemma about conditional distribution 
given in section 2 and the following lemma.

Lemma 4.3. ( H e n s l e r  et al. 1977) If random vectors Xp j = l , . . . , n  
are /^-dimensional and independent and D(Xj) =  £  and Y* = (Y t,...,Y„) = UA 
where A  is a suitable orthogonal matrix, then vectors y 2, . . , y „ are independent 
with the distribution N p(0, £) if and only if X j ~  N p(ajyE(Y ̂ ), £), j  =  1 
where an  are the elements of the first column of matrix A.

According to the given lemma, first we check the univariate normality 
o f random variable Xp, then we use the orthogonal transform ation to 
remove it and we start investigating the (p — 1) -  dimensional normality 
provided that X p ~  N x. Earlier we eliminate parameter p  as in 4 .2.

Let us consider the procedure for p = 2 assuming E(Xj) =  0 for D ( X )  =  2  
7 = 1 ,. . . ,  m, where m = n — \. We define verse vectors (/< 1)t U(1) such that 
U — ( i/(2))' and an orthogonal m atrix A  with the first colum n 
an  — X 2j/(U(2)Ulz))112, j  — 1 ,—,m.  Other columns are supplemented with the 
help of OG-S. Let us consider two n-element univariate random samples 
created o f the elements of vectors Uw  and W  =  Wm) = U(i)A.

According to lemma 4.3 the verification of H C M  will be equivalent to 
verification of two HN stating that sample X 21, X 22 ,—, X 2m comes from the 
population N(0, a 22), and sample W2, fV3,..., Wm comes from population 
N{0, o'2) where ff2 =  (1 -  p > u .

4.3. Distrubing parameters fi and X



Instead of verifying two hypotheses we rnay verify the hypothesis of 
the joined normality combining Fisher tests.

According to Sarkadi m ethod we transform variables W2, W 3,..., Wm to 
variables

R  -  KJ- 1 - j  = 2,..., m —1,
W*

where W* = (fVj + ... + WQ112, and function ipj(t) is given by the relation

ô /([i/M »]2) =  2 P / 0 - 1

where P / t )  and 1 — Q / j )  are the cumulative functions of the t-Student and 
chi-square distributions respectively.

As a result, instead of verifying H N  for sample W2, W 3,..., Wm we verify 
equivalent hypothesis HJ for sample R 2,... ,Rm _ 2. Using this reasoning to 
sample X 21, X 22,. . . ,X2m we reduce the problem of verification of H N  to 
the problem of verifing H J  for sample Т1г..., Tm Linking the two samples 
we get (2n — 3)-element sample which, when H C M  is true, is a sequence 
of independent random variables with the uniform distribution over the 
interval (0, 1). Let us remark that starting from sample U we reduced the 
problem  to 5 variables connected with param eters ц у, p 2, a22 and 

&12 =  Pcri l ff22-
We consider the case p > 2. We assume, according to the lemma 

given in section 2 about the conditional distribution, that after к itera-
tions we have

Ü «  =  ( Ą k\ . . . , X ^ )  =  (ü*<*>, £/$*>)',

u w = д а , - ,  о

where m =  n — 1 and q — p  —к + 1. We investigate the normality o f va-
riables X 1, X 2, .~,Xp- k provided that Xp ~ N U Х р-х  ~  ^Vlv .., X q ~  N t , fixing 

elements af? = X u j K U f f i U f f i ' Y 12 of orthogonal m atrix A (k) and 
C/|J)+1) -  U*lk)A lk). M atrix A (k) has the first column af? and the other 

elements are supplemented with the help of OG-S. As a result o f con-
secutive iterations, where l ŕ l) =  U, we get independent samples o f sizes 

n — I, n — 2,..., n —p  — I. The problem of verification of H C M  was redu-
ced to verification of p  independent samples. It is possible to apply 

procedures o f tests for normality for many independent samples which 

were mentioned in the p  = 2 case. A stronger action is the verification 
of HJ that the joined sample of size e.g. m = p(2n —p  — 3)/2 comes from 
the population with the distribution 7(0, 1). This reasoning is analogous 

to the one given for p  =  2.



5. CON DITION AL INTERVAL PROBABILITY TRA N SFORM A TION  M ETHOD

5.1. General remarks

We will now apply a transform ation of sample U using the property 
of the characterization of the N R distribution with the ^-dimensional 
t-Student distribution (t -  S p). It regards the conditional cumulative function. 
This function is determined by replacing unknown parameters p. and £  of 
the N p distributions with their sufficient statistics, which have the property 
o f double transitiveness.

This means that random variables from sample U are transformed into 
a set of pq, where q = n - p -  1, independent random variables with the 
distributions /(0 , 1). Our reasoning has two stages. In the first we determine 
the best, unbiased estimator of the density function of distribution N p from 
sample U\ in the second we use this density to determine the conditional 
density of the t - S p distribution. The last density refers to the set of 
n —p — 1 vectors. The elements of these vectors are quantiles of the 
t-Student distribution with the suitable number of the degrees of freedom 
when H C M  is true.

The notion of the conditional integral probability transform ation will 
be understood according to the following definition.

Definition 5.1. Let G(x, y) be the cumulative function o f the bivariate 
distribution o f (X, Y) and G(x, y 0) its conditional cum ulative function 

when Y  = y 0.
The transformation U = G(X, y 0) is called a conditional interval probability 

transformation.
W ith the transformation given in definition 5.1. is connected a familiar 

fact that if X  is a continuous random variable then U is a random  variable 
with the distribution /(0 , 1).

5.2. Disturbing parameters ц and £

Let Q„(X) = (X -  X j A ^ i X - X n) be a quadratic form for random vector 
X,  where X n = U\/n and A„ =  UU'  -  nX„X„- Numbers Tn =  (X n, A„) determi-
ned from the whole sample U are a system of sufficient statistics of parameters 
H and £  of distribution N p. They have the property of double transitive- 
ncss. This means that if (7^) is a sequence of sufficient statistics then each 
pair (T„, A'n + i) and (Tn+l, X n+i) may by computed from the other. For 
instance for T„ =  X„ where (Tn+i, X„+i) =  ((nXn + Xn+l)/(n + 1), Xn+l) and 
( Tn, X n+1) =  (((« +  l)Jf„ -  X n+1)/n, X n+1).



Analogously, let us denote by Ti — (Xp Aj) the system of sufficient 
statistics from sample X t Further, let L'jL j = A J i for j  = p  + 2,...,n. 
Sets Tj are considered fixed.

Lemma 5.1. If U ~  M N p then the unbiased estimator with minimum 
variance for the density of distribution Np is

/ (* )  = dn\An\~ 1/2(0 -  е „ м ) (?- 2)/2,

for Q„(x) < a f ( x )  =  0 for Qn(x)>  a, where dn is a constant depending 

only on n, and a = ( n — l)/n.

Lemma 5.2. ( R i n c o n - G a l l a r d o  et al. 1979). Let the distribution 

of /7-dimensional random vector Y  with the fixed Tn be given by the 

conditional probability from lemma 5.1. Then random vector

Z  =  L „ ( Y - X n)l(a -  Q(Y))1,Z 

has the conditional density of the form 

g(z) =  3n(l +  z'z)~("~1)/2 

respective to the distribution t — S p and 3n is some constant.

Lemma 5.3. ( D i c k e y  1967). The conditional cumulative function of 

the i-th component of random vector Z  =  (Z 1,...,Z J,)' with the distribution 

given in lemma 5.2. is

JP(Zi |Z 1,...,Z i_ 1) =  P 4+i+1

where Pf (.) is given by the cummulative function of the distribution t — S f .

Our results were given for sufficient statistics Tn. We can transform 

them to statistics T j , j  = p  + 2,...,n. As they also have the property of 

double transitiveness we can use lemmas 5.2 and 5.3 for vectors

Z; =  L f X j  -  Xj)/W -  1 )/j -  Qj(Xj)l112, 

where L'j L j  — A j 1, and then we define p q  random variables

p+l-2
j - p + 1 - 2  

i-x

42

J +  Yi z* 
k= 1

where Zj  =  (Z iy,...,Z ^ ) ' for i = l,...,p; j  = p  + 2,...,n.

Thus, the problem of the verification of H C M  has been reduced to the 

verification of HJ.

1/2

z ,
q + i — 1

i - i

i +  £  П
*:= t



5.4. Disturbing parameters ц and er

The results from 5.3. will be transformed to the case of unknown ц and 
E =  ct2Z;0 where a 2 is unknown, £ 0-known. We define L*L* — 'Zq 1, 
g = t r (Ľô1A n) and Z*  = L*(Xj  — Xj)/\g(j  — (Xj — — Xj)]112 for
j  =  3,..., n and Z* =  (Z*j,..., Zpj)'. Then, p(n — 2) random variables

p(J  — 2 )  + i — 1
1/2

2) + i - l z u i - i

1 +  ľ  z ? 2 
* = i

have independent distributions /(0 , 1) for i =  1 j  =  3 Thi s means 
that again, the problem of the verification of hypothesis HCM  has been 
reduced to HI.

6. FIN AL REM ARKS

All the given transformations have the property of identity. The results 
o f testing H C M  do not depend on the order of vectors in sample. The 
numerical side of the methods used is easy. There are many computer 
packages connected with the suitable decomposition of a positive definite 
symmetric matrix determining orthogonal matrix with the help o f OG-S 
or computing the cummulative function of the t-Student distribution. The 
property of double transitiveness may also be programmed according to 
R i n c o n - G a l l a r d o  and Q u e s e n b e r r y  (1982) algorithm.

The power properties of these procedures for different distributions of 
alternatives require separate analysis, as well as thier comparison with 
known t.m.n.
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SPRAW DZENIE HIPOTEZY O W IELOW YMIAROW YM ROZK ŁA DZIE 

NORM ALNYM  W M ODELU JEDNEJ PRÓBY M ETODĄ ELIM INACJI 
PARAM ETRÓW  ZAKŁÓCAJĄCYCH

W wielu zagadnieniach statystycznych zachodzi potrzeba weryfikacji hipotezy o wielo-
wymiarowym rozkładzie normalnym. Przy konstrukcji testów weryfikujących taką hipotezę 
istnieje konieczność oszacowania, na podstawie próby losowej, nieznanych param etrów  
rozkładu ß  i £ , które traktowane są jako parametry uboczne, zakłócające.

W pracy przedstawione zostały metody, za pomocą których eliminuje się nieznane, 
zakłócające parametry w testach służących do weryfikacji hipotezy o normalności. W szczególności 
zostały omówione następujące metod y: randomizacji, redukcji oraz warunkowego całkowego 
przekształcenia probabilistycznego.


