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THE VERIFICATION OF THE MULTIVARIATE NORMAL
DISTRIBUTION HYPOTHESIS IN A ONE-SAMPLE
MODEL WITH THE METHOD OF ELIMINATION

OF DISTURBING PARAMETERS

Abstract. In many statistical tasks a necessity of testing multivariate normality
arises. In constructing multivariate normality tests there is a necessity of estimating
unknown parameters 4 and ¥ from a given sample. The parameters are regarded as
disturbing parameters.

The paper deals with some methods, by means of which unknown disturbing
parameters are eliminated when the multivariate normality tests are applied.

In particular, the following methods are stressed: randomization method, reduction
methods and conditional interval probability transformation method.

Key words: multivariate normality test, randomization method, reduction method, conditional
interval probability transformation method.

1. INTRODUCTION

The assumption of a multivariate distribution of investigated random
variables is very often made in multivariate analysis when we use statistical
inference methods. This assumption may be verified with different tests for
multivariate normality. A broad overview of them was given by Wagner
(1990). Most of them are based on a suitable test statistics. Their distributions
are searched when the hypothesis of multivariate normality is true. When
the distributions are unknown the critical values are set by the Monte Carlo
simulation.

One of the difficulties in constructing m.n.t. (multivariate normality
tests) is the necessity of estimating unknown parameters of m.n.d. (multivariate
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normal distribﬁtion) from a given sample. In this case the problem may
be reduced to the verification of a sample hypothesis of m.n.d. by eliminating
unknown parameters. These issues are discussed in this paper.

2. TECHNICAL NOTATION

Let X be a p-dimensional random vector with a m.n.d. given by
a cumulative function F(x, y, Z) = F,(x), for xeR?, and E(X) = ueR?
and D(X) = Zel, express the vector of expectations and covariance matrix
respectively, whlle R? and I, denote the real space of p-dimensional vectors
and symmetric positive deﬁnite matrices of order p. The fact that X has
the given m.n.d. with the mentioned parameters we write by N~ N (4, )
(shortly X ~N,). The class of these distributions is expressed by the set

= (N,(u, E) peR?, Tel}

Let vector X be divided into X = (X}, X,) where X, = (X,,..., X,-,)

and, respectively, let u = (4, p,)' and

p—1
5= I:zu Z, z]
Za1 Opp |t
where X, = X,. The conditional distribution of vector X, with fixed
X,=x, is given by

Xy | Xy Ny $ B s g ipn
Tpp Tpp

Let U = (X;,..., X,) be a sample of n independent p-dimensional observable
random vectors. We assume that vectors X, j=1,.,n are identically
distributed according to given a cumulative function G(x; V) = G,(x), where
V is a set belonging to the space of feasible parameters. The functxon G,(x)
may be unknown, both with respect to the form and parameters, though
we assume that for every xe R? it is a continuous function. From sample
U we find unbiased estimators of u and X in the form of:

— vector of the arithmetic means
1

X=-U1,
n
— covariance matrices
1 , 1 g,

and the matrix of the sum squares and products 4 = (n— 1)S.
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Assuming that X;e N, we can look at sample U as a model of one
sample from the m.n.d. population. For this model we have the properties:

(i) (X, S) is a set of sufficient statistics,
(ii) X and S are independent,
(iii) C'X~N,(C'u, 0d) and C'SC ~oy2,
where C'eR?, C#0, 62 =C'EC and m=n-—1,
(iv) X~ N1, ;‘Z), S~ WP(’%IZ, m) and A~ W,(Z, m), where W,(.,)

denotes the central p-dimensional Wishart distribution with changed arguments
and m=n-—1,

(v) ecsU~MN,(1 ® u, Z®1) where MN, denotes the matrix-like
normal distribution of p-dimensional independent random vectors with the
distributions N,(u, o) and csU denotes np-dimensional vector created from
U by arranging in one column consecutive verse vector of matrix U.

The purpose of our analysis is investigating the equality of functions
G,(x) and F,(x) i.e. we ask if function G,(x) may be considered identical
with function F,(x), or, if the distributions of random vectors X, belong
with class N,. We call this assumption a composite null hypothesis of
m.n.d. and write it as

HCM: G,(x) = F,(x),
against the alternative
HCM,: G,(x) # F,(x),

The HCM (hypothesis composite multivariate) may be expressed in the
equivalent form

HCM: distributions X;eN,, j = 1,...,n.

Verification of HCM hypothesis requires determining optimal s.t. for
making a decision if sample U comes from the population with distribution
MN,. Parameters u and X are unknown. We replace them with proper
sample estimators. Such reasoning creates difficulties in determining a suitable
test function and its distribution when HCM is true. Parameters u and
are not of intrest for us and are treated as nuisance parameters.

Definition 2.1. Let N, denote the class of p-dimensional n.d. and A the
set of feasible decisions with parameters u and o:

a) if there exists subset C, < A x R?, such, that C = C, x I, then u is
called a disturbing parameter with respect to C;

b) if there exists subset C, < A x I, such, that C = C, x RP, then X is
called a disturbing parameter with respect to C;
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c) if there exists subset Cy < A, such, that C = Cy x R? x I/, then p and
X are called disturbing parameters with respect to C, where x denotes the
Cartesian product. We intend to construct a m.n.t. for verifying HCM after
elimination of x and X. We do that through a suitable transformation of
sample U. Different methods of such transformation are possible. They
allow to verify HCM by equivalent hypotheses about the standardized
u.nd. (HN) or uniform on the interval (0, 1) (HJ).

3. RANDOMIZATION METHOD
3.1. General remarks

In this method we use Durbin (1961) procedure generalized to the
multivariate case. The idea of it is to join as many generated random
variables as there exist disturbing parameters in HCM problem. In this
case it will be generating a suitable symmetric matrix with the Wishart
distribution and the vector of means from a population with a spherical
p-dimensional normal distribution, and both these variables should be
independent of each other and of observable matrix U.

3.2. Disturbing parameters u and X

In the considered method of transforming matrix U we use the following
lemmas:

Lemma 3.1. (Pearson, Sekar 1936) The product of independent
random variables with the chi-square and beta distributions is identical with
the distribution of the normally distributed variable.

Lemma 3.2. (Khatri 1959) If S~ W,(Z, n) then U~ MN,(0, ZQI),
then §=S+UU'~W,Z, 2n) and Z=T 'U~MB, arc independent,
where §'= T'T’ and MB, denotes the multivariate beta distribution given
by density

f(z) = cnlI— ZZI (n—p-l)/Z,
and c is a constant.

According to lemma 3.2. we transform sample U, so that it would be
a set of vectors from the MB, population.
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Let U= (U, X, where (U= (X,,..,X,), for m=n—1, be matrix
received from U after elimination of vector X,. From the matrix U, we
determine X, and 4, similarly as in point 2. We define vector X* = X o 5
Its properties are contained in:

Lemma 33. 4 = A, + aX}Xy), where a = mj/n.

Proof. Let’s write X=X, + %X,’f, then n¥X'=@n-1)XX, -

_;,"ZTX:X:"*'XHX:' and for matrix 4 we have
n—1

A=Y XX+ X, X,— nX% = U,U,— (n— )X, X, + aX*X*.
i=1

Lemma 34. Xy~ N, (0, %2) when HCM is true.

Proof. When HCM is true, then X;~ N,(u, Z), so X,~ N,(u, n—é——Z)

and E(X,—X,)=0

and D(X,)+ D(X,)—2Cov(X,, X)=2X +;é—1—2 = LY,
Lemma 3.5. (Wagle 1968) The density of random vector Z¥ = L™ 'X*
where 4 = LL' has the form

8(2%) = et |1 aZyzy| P22
where c¥ is some constant.

Given lemmas relate to vector X,. We transform them to the rest of the
vectors Xj,..., X,—y, what results in Z} = L™'X}, j=1,..,n where X is the
vector of means from sample U after excluding vector X, We create matrix
Z* = (Z%,..., Z¥), whose distribution is given by lemma 3.2. when HCM is
true. To matrix Z* we apply a randomization procedure (Durbin 1961) the
idea of which is to generate, in the problem considered, p(p + 3)/2 additional
random variables, as many as there are different disturbing parameters.

Let B~ W (I, n—1) and D ~ N0, '111) be the generated random matrix

and random vector with the given distributions and independent of each other
and of matrix 4. We define matrix K and X* such that B = KK’ and
X* = (D,...,D) then matrix Y* = X*+ ./aKZ* ~ MN,(0, 1) when HCM is
true. From the sphereness of the distribution of matrix ¥* we conclude that its
elements are a random sample of np elements. Thus, the problem of verifica-
tion of HCM was reduced to the equivalent problem of verification of HN.
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3.3. Distrubing parameter u

Let now u = E(X) £, = D(X) with known Z; In the situation considered
we have p disturbing parameters contained in vector u. We define
X} =Z5Y%(X,— X) for j=1,.,n, where Z§/*> is a symmetric square root
of matrix Z,

Lemma 3.6. X; ~N,(0, al) when HCM is true.

1
We generate matrix X*~ MN,(0, ;11) independent of matrix

U* = (X},...X¥) and we fix Y* = X*+ U* which has the distribution
MN,(0, I) when HCM is true. Thus the problem of verification of HCM
was reduced to the verification of hypothesis HN.

3.4. Distrubing parameter X

Let U,, U, be as in 3.2. and let py = E(X) and X = D(X), we know .
We create matrix A4° = (U— pol)(U— pol’) and A4° = A2+ X9XY', where
Xl? = Xn — Ko-

Lemma 3.7. We have A)~ W, (Z, n—1) and X} ~N,0, %), when
U~ MN,(1®u,, I).

Let us find Z9 = L°XY for 4° = L°LY, for j = 1,...,n. Due to unknown
matrix £ we generate matrix B°~ W,(I, n) independent of matrix
Z2° = (ZY%,...,20), and then we fix matrix Y° = K°Z°~ MN,(0, I), where
B® = K°K” when HCM is true.

Again, the problem of HCM was reduced to the problem of verification
of HN.

4. REDUCTION METHODS

4.1. General remarks

The reduction methods in univariate normality problem was suggested
by Sarkadi (1966). The idea is to eliminate from the sample considered
as many variables as there are distrubing parameters. This is a converse
approach to the one in section 3. In our case sample U is transformed
according to Hensler’s Hensler et al. (1977) suggestion. We use the
conditional distribution given in section 2.
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4.2. Disturbing parameter u

Let the assumption of sample U be as in 3.3. We define vector
X* = b(U1 +/nX,) = b(U,1 + (1 + /n)X,)

where b = l/(n+\/;). We transform sample U by reducing it by one
vector, let us say, X,. Without loosing generality we can choose any other
column vector from sample U.

Lemma 4.1. For vector X* we have

(@) EQX*) =y,

(b) D(X*)=2bZ,,

(€) Cov(X*, X)=bZ,,

(d) X*~N,(u, 2bZ;) when HCM is true.

Proof. (a) E(X*) = b[mE(X))+ (1 +/n)E(X,) = b(n+/n)u = p
where m=n—1
(b) D(X*) = b*[mD (X)) + (1 +/n)*D(X,)] = bz(m +1+42\n+n)L, = 2bZ,;
(©) Cov(X*, X)) = Cov(Ul +/nX,, X) = b z Cow(X,, X)) +

+ an Cov(X,, X)) = bZ,;
(d) follows from the linear mapping X* = UB, where

i b[ltrf]

To eliminate disturbing parameter y we use transformation
Yj=X,—X* forj=1,.,n—1.

Lemma 4.2. When HCM is true random vectors Y, j=1,.,n—1 have
independent distributions N,(0, X).

Proof. E(Y;) =0 what follows directly from lemma 4.1. To determine
covariance matrix Y; of vectors we present them in the form

Y, =(1-bX,- [Z (1 +Jn)x]
k#

then D(X)) =[(1 —b)* +b*(n— 2+ (1 +/n)?)]Zo = (1 — 2b + b + 2b*(n +
+J;l) b*)E, = Z,. To prove independence of Y; we determine covariance
CoWY;, Y;) = Cov(X, X;) —2Cov(X*, X;)+ D(X*) = —2b%,+2bZ, =0
on strenght of lemma 4.1.
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The normality of the distribution of vectors Y; follows directly from
the orthogonal transformation y = UB where B = (b;;) is a matrix with
elements given in the form (Sarkadi and Tusnady 1977)

1-b, j=j'=1,.,n—1
b”,= "—b, j#jl, j, j’= 1,...,71"‘1
—(+/nb, j=nj=1.,n-1

and the last n-th column is supplemented with Gram-Schmidt orthogona-
lization (OG-S) method.

The verification of the HCM with sample U was reduced to verification
of HN with sample Y,,..., ¥,-; of p(n— 1) independent random variables.

4.3. Distrubing parameters y and X

Now we have ¢ =p+ p(p+1)/2 = p(p + 3)/2 parameters of noise.

Our reasoning needs np — g = (2n— p — 3)/2 independent random variables
free from parameters x and X. This means reducing e.g. the variables
of matrix U by 4.

In transforming matrix U we use the lemma about conditional distribution
given in section 2 and the following lemma.

Lemma 4.3. (Hensler et al. 1977) If random vectors X, j=1,..,n
are p-dimensional and independent and D(X)) = X and Y* = (Y,,...,Y,) = U4
where A4 is a suitable orthogonal matrix, then vectors Y,,..., ¥, are independent
with the distribution N,(0, Z) if and only if X;~ N (a;;E(Yy), Z), j = 1,...,n,
where a;; are the clements of the first column of matrix A.

According to the given lemma, first we check the univariate normality
of random variable X, then we use the orthogonal transformation to
remove it and we start investigating the (p—1) — dimensional normality
provided that X,~ N,. Earlier we eliminate parameter y as in 4.2.

Let us consider the procedure for p = 2 assuming E(X)) = 0 for D(X)) =Z
j=1,.,m, where m=n—1. We define verse vectors Uy, U, such that
U= (Uyy, Upy) and an orthogonal matrix 4 with the first column
ajy = X;/(UnyUlpy)''?, j = 1,...,m. Other columns are supplemented with the
help of OG-S. Let us consider two n-element univariate random samples
created of the elements of vectors Uy, and W= (W,,..,W,)= Uyn4.
According to lemma 4.3 the verification of HCM will be equivalent to
verification of two HN stating that sample X,,, X5,,..., X3,, comes from the
population N(0, 0,,), and sample W,, W,,..., W, comes from population
N(0, 0%) where 02 = (1 — p?)ay;.
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Instead of verifying two hypotheses we may verify the hypothesis of
the joined normality combining Fisher tests.

According to Sarkadi method we transform variables W,, W,,..., W, to
variables

4
Rj-y = w,.“j‘ll’m—z[“‘—‘—n;;—‘—

where W* = (W5 + ...+ W35)"?, and function } ({) is given by the relation

O (A1) = 2P ) - 1

where P(f) and 1— Q(f) are the cumulative functions of the t-Student and
chi-square distributions respectively.

As a result, instead of verifying HN for sample W,, Ws,..., W,, we verify
equivalent hypothesis HJ for sample R,,..., R,-,. Using this reasoning to
sample X,,, X3,,...,X;,, we reduce the problem of verification of HN to
the problem of verifing HJ for sample T},..., T,,—;. Linking the two samples
we get (2n— 3)-element sample which, when HCM is true, is a sequence
of independent random variables with the uniform distribution over the
interval (0, 1). Let us remark that starting from sample U we reduced the
problem to 5 variables connected with parameters pu,,pu,,0,, and
012 = P011033.

We consider the case p > 2. We assume, according to the lemma
given in section 2 about the conditional distribution, that after k itera-
tions we have

U™ = (X(lk)’m’ X("l:)) o (Ut(k), Uagk))r,
U = (X X0

where m=n—1 and ¢g=p—k+1. We investigate the normality of va-
riables Xy, X,,..., X, provided that X,~N,X,_y~N,,..X;~N,, fixing
elements aff = X, /(ULPULP)'> of orthogonal matrix A® and
U = U*®4®, Matrix A% has the first column aff and the other
elements are supplemented with the help of OG-S. As a result of con-
secutive iterations, where U = U, we get independent samples of sizes
n—1,n—2,..,n—p—1. The problem of verification of HCM was redu-
ced to verification of p independent samples. It is possible to apply
procedures of tests for normality for many independent samples which
were mentioned in the p=2 case. A stronger action is the verification
of HJ that the joined sample of size e.g. m = p(2n —p — 3)/2 comes from
the population with the distribution J(0, 1). This reasoning is analogous
to the one given for p = 2.
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5. CONDITIONAL INTERVAL PROBABILITY TRANSFORMATION METHOD
5.1. General remarks

We will now apply a transformation of sample U using the property
of the characterization of the N, distribution with the p-dimensional
t-Student distribution (¢ — S,). It regards the conditional cumulative function.
This function is determined by replacing unknown parameters y and X of
the N, distributions with their sufficient statistics, which have the property
of double transitiveness.

This means that random variables from sample U are transformed into
a set of pg, where ¢ = n—p—1, independent random variables with the
distributions J(0, 1). Our reasoning has two stages. In the first we determine
the best, unbiased estimator of the density function of distribution N, from
sample U; in the second we use this density to determine the conditional
density of the ¢—S, distribution. The last density refers to the set of
n—p—1 vectors. The elements of these vectors are quantiles of the
t-Student distribution with the suitable number of the degrees of freedom
when HCM is true.

The notion of the conditional integral probability transformation will
be understood according to the following definition.

Definition 5.1. Let G(x, y) be the cumulative function of the bivariate
distribution of (X, ¥) and G(x, y,) its conditional cumultative function
when Y = y,.

The transformation U = G(X, y,) is called a conditional interval probability
transformation.

With the transformation given in definition 5.1. is connected a familiar
fact that if X is a continuous random variable then U is a random variable
with the distribution J(0, 1).

5.2. Disturbing parameters ;. and X

Let 0,(X) = (X — X,)’4, (X — X,) be a quadratic form for random vector
X, where X, = Ul/n and 4, = UU' —nX,X,. Numbers T, = (X,, 4,) determi-
ned from the whole sample U are a system of sufficient statistics of parameters
p and X of distribution N, They have the property of double transitive-
ness. This means that if (7,) is a sequence of sufficient statistics then each
pair (T,, X,+1) and (T4, X,41) may by computed from the other. For
instance for T, = X, where (Tyi 1, Xp+1) = (X, + Xas )/(n + 1), Xa41) and
(Tm Xn+l) = («n =+ I)Xn _Xn+ 1)/71, Xn+ 1)'
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Analogously, let us denote by T;=(X;,4;) the system of sufficient
statistics from sample Xj,..., X; Further, let LjL; = Aj?t for j=p+2,.,n.
Sets 7 are considered fixed.

Lemma 5.1. If U~ MN, then the unbiased estimator with minimum
variance for the density of distribution N, is

S(x) = d,| 4,] ~*(a— Q@ (x))e" 72,
for Q,(x)<a f(x)=0 for Q,(x)>a, where d, is a constant depending
only on n, and a = (n— 1)/n.

Lemma 5.2. (Rincon-Gallardo et al. 1979). Let the distribution
of p-dimensional random vector Y with the fixed 7, be given by the
conditional probability from lemma 5.1. Then random vector

Z =LY~ X)/(a— Q(V)*?
has the conditional density of the form
g(2) = d1 + 72)~ -2
respective to the distribution ¢~ S, and d, is some constant.
Lemma 53. (Dickey 1967). The conditional cumulative function of

the i-th component of random vector Z = (Z,,..., Z,) with the distribution
given in lemma 5.2. is
1
g+i-—1 i
Y - W T

1+ Y Z¢
k=1

P(Zilzp"" Zi—l) = Pq+l+1 21

where P,(.) is given by the cummulative function of the distribution ¢— Sy

Our results were given for sufficient statistics 7,. We can transform
them to statistics T, j=p+2,.,n. As they also have the property of
double transitiveness we can use lemmas 5.2 and 5.3 for vectors

Z;= L{X;— X)/( — D)}j - QX ))*2,
where LjL;= A;', and then we define pg random variables

2 8
J.—. —
Uy=Pp-pri=alZy| =25 |,

1+ Y 22
k=1

where Z; = (Zy,...,Z,)) for i=1,..,p; j=p+2,..,n.
Thus, the problem of the verification of HCM has been reduced to the
verification of HJ.
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5.4. Disturbing parameters x and o

The results from 5.3. will be transformed to the case of unknown u and
¥ = ¢?%, where ¢ is unknown, Z,-known. We define L*L* = X;!,
g=1tr(EZ5'4,) and ZJ = L*(X,— X)/[g( — (X; — X))Z5 ' (X, — X)]*/* for
Jj=3,..,n and Z} = (Z};,...,Z};). Then, p(n—2) random variables

1/2
pi—=2)+i—1
Ui Lyy=ayei- 125l =t lia s

14 Y Z#*
k=1

have independent distributions J(0, 1) for i = 1,..., p; j = 3,...,n. This means
that again, the problem of the verification of hypothesis HCM has been
reduced to HI.

6. FINAL REMARKS

All the given transformations have the property of identity. The results
of testing HCM do not depend on the order of vectors in sample. The
numerical side of the methods used is easy. There are many computer
packages connected with the suitable decomposition of a positive definite
symmetric matrix determining orthogonal matrix with the help of OG-S
or computing the cummulative function of the t-Student distribution. The
property of double transitiveness may also be programmed according to
Rincon-Gallardo and Quesenberry (1982) algorithm.

The power properties of these procedures for different distributions of
alternatives require separate analysis, as well as thier comparison with
known t.m.n.
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SPRAWDZENIE HIPOTEZY O WIELOWYMIAROWYM ROZKLADZIE
NORMALNYM W MODELU JEDNEJ PROBY METODA ELIMINACII
PARAMETROW ZAKLOCAJACYCH

W wielu zagadnieniach statystycznych zachodzi potrzeba weryfikacji hipotezy o wielo-
wymiarowym rozkladzie normalnym. Przy konstrukcji testow weryfikujacych taka hipotezg
istnieje konieczno§¢ oszacowania, na podstawie préby losowej, nieznanych parametrow
rozkladu p i Z, ktére traktowane sa jako parametry uboczne, zaklocajace.

W pracy przedstawione zostaly metody, za pomoca ktérych eliminuje si¢ nieznane,
zaklocajgce parametry w testach shuzgcych do weryfikacji hipotezy o normalnosci. W szczegolnosei
zostaly oméwione nastgpujace metody: randomizacji, redukcji oraz warunkowego catkowego
przeksztalcenia probabilistycznego.

£

K ¢



