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AbsTRACT: Effective thermoregulation is crucial for maintaining homeostasis. Previous research has suggested 
a link between lower steady-state body temperature and longevity, particularly in physically healthy, non-
obese older adults. However, the exact mechanisms behind this relationship remain unclear. Despite the 
physiological insights gained from studies on body temperature, limited attention has been given to its 
potential role as a biomarker of longevity in physically healthy older populations. This study aimed to 
evaluate the relationship between body temperature and longevity using historical data from two cohorts. 
The longitudinal cohort consisted of 142 individuals, followed for 25 years beginning at age 45, while the 
cross-sectional cohort included 204 individuals stratified into four lifespan categories. To examine age-
related trends in body temperature, Page’s test was employed, and ordinal regression was used. The analysis 
revealed a significant decrease in body temperature in women with age, while men showed no significant 
change. The cross-sectional analysis indicated a trend toward lower body temperatures in individuals with 
longer lifespans. Lower body temperature may reflect a reduced metabolic rate, thereby mitigating oxidative 
stress and molecular damage, both of which are known to drive aging and limit lifespan. Furthermore, 
lower body temperatures may signal a favorable inflammatory profile, which could translate into slower 
aging and increased survival. However, the observed sex-specific differences in thermoregulatory patterns 
raise important questions about the role of hormonal influences, such as estrogen levels. Overall, these 
findings suggest that lower lifetime steady-state body temperature may be a biomarker of healthy aging and 
longevity, warranting further exploration of its mechanistic underpinnings. 
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Introduction

Identifying reliable biomarkers of healthy 
aging and longevity is one of the central 
challenges in biogerontology and medical 
research (Martin-Ruiz et al. 2011; Dodds 
et al. 2014; Arai et al. 2015; Sayer and 
Kirkwood 2015; Chen et al. 2016; Davis 
et al. 2016; Ferrucci et al. 2018; Levine et 
al. 2018; Smith et al. 2019; Guerville et 
al. 2020; He et al. 2024). Among the var-
ious candidates, core body temperature 
stands out as an intriguing and potential-
ly informative biomarker (Conti 2008; 
Lehmann et al. 2013; Keil et al. 2015), 
as studies have associated lower tem-
peratures with longer lifespan and higher 
temperatures with shorter lifespan in di-
verse species, including animal models of 
aging (e.g., Caenorhabditis elegans, Dro-
sophila melanogaster, and mice) as well 
as humans (Rikke and Johnson 2004; 
Waalen and Buxbaum 2011; Palani et al. 
2023 Chmielewski et al. 2025). Reflect-
ing the delicate equilibrium between heat 
production and dissipation, body tem-
perature not only underpins homeostatic 
control but also encapsulates the cumu-
lative effects of metabolic, immunologi-
cal, and environmental influences on ag-
ing organisms (Roth et al. 2002; Ruggiero 
et al. 2008; Åström et al. 2011; Soare et 
al. 2011; Keil et al. 2015; Geneva et al. 
2019; Lee et al. 2023; Kowald et al. 2024; 
Li et al. 2024).

In healthy individuals, body temper-
ature follows a  circadian rhythm, typ-
ically reaching its lowest point in the 
early morning and peaking in the late 
afternoon. Such diurnal fluctuations 
underscore the importance of consider-
ing the timing of temperature measure-
ments, as sporadic readings may fail to 
capture the basal set point that is criti-
cal for assessing long-term health and 

survival (Simonsick et al. 2016). The 
distinction between adaptive and mala-
daptive alterations in body temperature 
is further highlighted by the differential 
responses seen in hyperthermia versus 
fever. Hyperthermia is characterized by 
an excessive accumulation of heat that 
overwhelms the body’s dissipative mech-
anisms, which is harmful to health. In 
contrast, fever is a regulated increase in 
the body’s temperature set point, which 
is orchestrated by endogenous pyrogens 
such as interleukins (e.g., IL-1, IL-6, and 
IL-8), interferons (e.g., interferon-γ), tu-
mor necrosis factor-β etc., in response to 
infectious or inflammatory stimuli. The 
fever response represents an adaptive 
strategy that evolved to combat patho-
gens and increase survival.

Previous studies have suggested that 
lower basal body temperature may be 
a  bio marker of healthy aging and great-
er longevity, particularly in physically 
healthy, non-obese older adults (Waalen 
and Buxbaum 2011; Simonsick et al. 
2016; Chmielewski et al. 2025). Howev-
er, this association remains understudied 
in the Polish population, and it is unclear 
whether reduced core temperature direct-
ly influences longevity or simply serves as 
a  surrogate marker for other health-pro-
moting processes. Enhanced immune 
responses, decreased chronic low-grade 
systemic inflammation (CLSI), and the ab-
sence of disease or infirmity may all con-
tribute to a  reduced temperature profile, 
which could also correlate with longevity 
benefits in the elderly population (Franc-
eschi and Campisi 2014; Nilsson et  al. 
2014; Proctor et al. 2015; Chmielewski 
et  al. 2016; Chmielewski and Strzelec 
2018; Ferrucci and Fabbri 2018). 

One should consider whether there 
are factors and mechanisms that under-
lie the association between lower life-
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time steady-state body temperature and 
extended longevity, and, if so, identify 
what they are. For instance, the phenom-
enon of lower body temperature has been 
closely linked with caloric restriction 
(CR), which is a  well-established inter-
vention that promotes longevity across 
a  range of species (Colman et al. 2009; 
Fontana et al. 2010; Anderson and Wein-
druch 2010; Chmielewski 2017; 2020; 
Picca et al. 2017; Campisi et al. 2019; 
Dorling et al. 2020; Speakman 2020; Gi-
acomello and Toniolo 2021; Hoong and 
Chua  2021; Sultanova et al. 2021; Wa-
ziry et al. 2023; Di Francesco et al. 2024; 
Greenhill 2024). CR is known to induce 
a  metabolic shift characterized by re-
duced energy expenditure and improved 
physiological efficiency, which is often 
accompanied by a modest decline in core 
temperature (Carrillo and Flouris 2011). 

Furthermore, subclinical conditions 
such as endocrine disorders, latent in-
fections (e.g., tuberculosis, hepatitis B 
and C, and HIV), autoimmune disorders 
(e.g., lupus), as well as insulin resistance, 
metabolic dysregulation, and type  2 di-
abetes mellitus, have been linked to el-
evated body temperature and reduced 
survival. Moreover, unhealthy lifestyle 
factors, including chronic psychologi-
cal stress, long-term alcohol consump-
tion, and inadequate sleep, can lead to 
changes in inflammatory cytokines and 
white blood cell counts (Mullington et al. 
2010; Knutson 2012; Chen et al. 2024). 
Conversely, progressive sarcopenia and 
atherosclerosis—conditions common-
ly observed in older adults—can lead to 
a decline in body temperature, but they 
are also associated with increased cardi-
ovascular risk and premature mortality 
(Barquera et al. 2015; Herrington et al. 
2016; Agnelli et al. 2020; Bayraktar et al. 
2020; He et al. 2021).

Despite the physiological insights 
gained from studies on body tempera-
ture (Lu et al. 2010; Obermeyer et al. 
2017; Diamond et al. 2021), little at-
tention has been devoted to its poten-
tial role as an independent biomarker 
of longevity in physically healthy old-
er populations. Most clinical meas-
urements of body temperature are 
conducted during acute illness or 
hospitalization, which restricts our un-
derstanding of its normative patterns 
in the context of longevity among com-
munity-dwelling older adults. This gap 
is especially pronounced in historical 
cohorts, where comprehensive longi-
tudinal data are extraordinarily scarce. 
Consequently, key questions regarding 
the typical profiles of core body temper-
ature and their association with reliable 
markers of survival (e.g., inflammatory 
biomarkers and epigenetic ‘clocks’) in 
long-lived versus short-lived individu-
als remain largely unexplored. 

This study aims to address this gap 
by analyzing both longitudinal and 
cross-sectional data to investigate wheth-
er lower body temperature is associat-
ed with greater longevity in physically 
healthy older adults within the Polish 
population. 

Materials and methods

Study Population
The study adhered to the principles of the 
Declaration of Helsinki. Archival clinical 
data from physical examinations at the 
Mental Health Center in the vicinity of 
Zielona Góra, Lubuskie Province, Po-
land, were used for this research. Ethical 
approval for the study was granted by the 
institutional review board in 2007 as part 
of a doctoral research project. All medi-
cal records were anonymized to protect 
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patient confidentiality and subsequently 
used to construct a comprehensive data-
base incorporating both longitudinal and 
cross-sectional data.

The longitudinal cohort comprised 
142 residents (68 men and 74 wom-
en), who were monitored continuously 
from ages 45 to 70 years. These individ-
uals reached the age of 70 years, after 
which their outcomes were not further 
tracked. The cross-sectional cohort 
consisted of 204 individuals, including 
98 men and 106 women, who were as-
sessed during periodic clinical exam-
inations at multiple intervals. These 
participants were stratified into four 
lifespan categories based on death certif-
icates: (1) short lifespan: 15 men (aged 
50–58 years, mean age 53 years) and 
12 women (aged 50–58 years, mean age 
53 years), (2) medium lifespan: 26 men 
(aged 58–65 years, mean age 63 years) 
and 30 women (aged 58–65 years, mean 
age 63 years), (3) long lifespan: 42 men 
(aged 65–72 years, mean age 68 years) 
and 40 women (aged 65–72 years, mean 
age 68 years), and (4) very long lifespan: 
15 men and 24 women (aged 76+). The 
short lifespan category included only 
individuals who lived significantly be-
low their life expectancy at birth (< e0), 
while the medium and long lifespan cat-
egories contained individuals with life 
expectancies close to e0. The very long 
lifespan category exclusively included 
individuals who surpassed 76 years, 
thus exceeding the e0 threshold.

Physiological Measurements 
Sublingual body temperature (°C) was 
measured monthly under clinical condi-
tions using a standard thermometer with 
0.1°C accuracy. All measurements were 
taken systematically by trained medical 
personnel in standardized conditions at 

the same medical institution, typically in 
the morning. This study used only aver-
aged data derived from 60 measurements 
per 5-year period for each individual in 
the longitudinal cohort, resulting in 300 
measurements per person over the entire 
study period. 

In the cross-sectional cohort, each 
individual contributed at least several 
dozens of measurements. These rigorous 
data collection practices ensured statis-
tical robustness. Comprehensive details 
regarding the study cohorts, including 
the daily routines of patients and med-
ical staff, as well as the data collection 
procedures, have been documented in 
previous publications (Borysławski et al. 
2015; Chmielewski et al. 2015; 2016; 
2017; 2025).

Statistical Analysis
To calculate reliable estimates of central 
tendency and variability, we aggregated fre-
quently repeated measurements for each 
participant, including arithmetic means, 
medians, percentiles, and standard devi-
ations (SDs). This approach minimized 
variability and enhanced the reliability of 
the findings. The normality of data distri-
bution was tested with the Shapiro-Wilk 
test (Shapiro and Wilk 1965). The signifi-
cance level was set at 0.05. 

To examine whether a trend exists in 
body temperature with age, Page’s test 
(Page 1963) was employed. This test 
serves as an alternative to Friedman’s 
test and has greater statistical power. The 
null hypothesis in Page’s test, similar to 
Friedman’s test, assumes equality among 
the measures of central tendency across 
all analyzed groups. However, the alter-
native hypothesis in Page’s test differs 
from that in Friedman’s test. It posits 
that for the measures of central tendency 
in n studied groups—θ1, θ2, θ3, …, θn —the 
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following sequence of inequalities holds:  
θ1 ≤ θ2 ≤ θ3 ≤ … ≤ θn,  with at least one 
strict inequality. This implies the pres-
ence of an increasing trend in the meas-
ures of central tendency. In the present 
analysis, this would correspond to an 
increase in the median values of the 
studied variables across successive age 
groups: 45, 50, 55, 60, 65, and 70 years.

Ordinal regression was conducted us-
ing the Cumulative Link Model (CLM), 
which accounts for covariates and pro-
vides a  robust framework for modeling 
ordinal outcomes. All statistical anal-
yses were performed using R software 
(R Foundation for Statistical Computing, 
Vienna, Austria).

Results 

Longitudinal Cohort 
The normality of data distribution was 
confirmed by the Shapiro-Wilk test (p > 
0.05). In men, no significant change in 
body temperature was observed over the 
study period (Table 1, Fig. 1), as Page’s 
test did not reveal any significant in-
creasing or decreasing trend in body tem-
perature for men (test statistic = 4965.5; 
p  =  0.692). In contrast, for women, 
Page’s test identified as significant de-
creasing trend (test statistic = 5876; 
p < 0.05), indicating a significant decline 
in body temperature associated with ag-
ing (Table 2, Fig. 1).

Table 1. Basic descriptive statistics of age-related changes in body temperature in the longitudinal data for 
men who were examined for 25 years, starting from age 45 onwards

Age
Men

Min Q1 Median Q3 Max Mean ± SD

45 36.0 36.4 36.6 36.7 37.2 36.6 ± 0.2

50 36.2 36.5 36.6 36.6 37.0 36.6 ± 0.2

55 36.0 36.5 36.6 36.7 37.0 36.6 ± 0.2

60 36.3 36.5 36.6 36.7 37.0 36.6 ± 0.2

65 36.2 36.5 36.6 36.7 36.9 36.6 ± 0.2

70 36.0 36.4 36.6 36.7 37.2 36.6 ± 0.1

Table 2. Basic descriptive statistics of age-related changes in body temperature in the longitudinal data for 
women who were examined for 25 years, starting from age 45 onwards

Age
Women

Min Q1 Median Q3 Max Mean ± SD

45 35.8 36.4 36.5 36.6 37.0 36.5 ± 0.3

50 36.0 36.4 36.5 36.6 36.9 36.5 ± 0.2

55 36.0 36.5 36.6 36.6 36.9 36.6 ± 0.2

60 36.2 36.5 36.6 36.6 36.9 36.6 ± 0.2

65 36.2 36.5 36.6 36.7 37.0 36.6 ± 0.2

70 36.2 36.5 36.6 36.8 37.1 36.6 ± 0.2
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Fig. 1. Age-related trends in body temperature for men (panel A) and women (panel B) based on longitudinal 
data, stratified into six consecutive age categories. In the box-and-whisker plots, the bold line within 
each box represents the median, while the lower and upper edges denote the first and third quartiles, 
respectively. Whiskers extend to the most extreme values within 1.5 times the interquartile range from 
the quartiles, and values beyond this range are plotted as outlier points

Cross-Sectional Cohort
The basic descriptive statistics for men 
and women in the cross-sectional cohort 
are summarized in Tables 3 and  4, respec-
tively. Age-related changes in measures 
of central tendency, along with standard 
deviations across consecutive lifespan 

categories, are presented in Fig.  2. The 
cross-sectional analysis revealed a  trend 
toward lower body temperatures in long-
live men and women, but it was statis-
tically non-significant (p > 0.05). The 
results of the CLM analysis for men and 
women are provided in Table 5.

Table 3. Basic descriptive statistics of survival-related changes in body temperature in the cross-sectional 
data for men who were examined for several years until their death

Lifespan 
category

Men

Min Q1 Median Q3 Max Mean ± SD

Short 36.3 36.4 36.7 36.8 36.9 36.6 ± 0.2
Medium 36.0 36.5 36.6 36.6 36.8 36.5 ± 0.2
Long 36.2 36.5 36.5 36.6 37.0 36.5 ± 0.2
Very long 36.0 36.4 36.6 36.6 36.7 36.5 ± 0.2

Table 4. Basic descriptive statistics of survival-related changes in body temperature in the cross-sectional 
data for women who were examined for several years until their death

Lifespan 
category

Women

Min Q1 Median Q3 Max Mean ± SD

Short 36.0 36.5 36.6 36.8 36.9 36.6 ± 0.2
Medium 36.3 36.5 36.6 36.7 37.0 36.6 ± 0.2
Long 36.0 36.5 36.5 36.6 37.0 36.5 ± 0.2
Very long 36.0 36.5 36.6 36.7 36.8 36.5 ± 0.2
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Fig. 2. Survival-related trends in body temperature for men (panel A) and women (panel B) based on 

cross-sectional data, stratified into four lifespan categories. In the box-and-whisker plots, the bold line 
within each box represents the median, while the lower and upper edges denote the first and third quar-
tiles, respectively. Whiskers extend to the most extreme values within 1.5 times the interquartile range 
from the quartiles, and values beyond this range are plotted as outlier points

Table 5. Cumulative Link Model (CLM) outcomes in both sexes

Sex Estimate Standard 
Error z-value Pr (>|z|) Odds Ratio 2.5% 97.5%

Men –1.892 1.086 –1.742 0.0815 0.1508 0.0172 1.236

Women –1.486 0.948 –1.568 0.1169 0.2262 0.0344 1.442

Discussion

This study builds on previous research 
investigating the relationship between 
resting body temperature and longevity 
(Chmielewski et al. 2015; 2025) by ana-
lyzing historical data from long-term res-
idents of the same mental health center. 
The findings offer novel insights into the 
association between body temperature 
and long-term survival. Specifically, the 
analysis revealed sex-specific differences 
in long-term trends, warranting further 
investigation into the link between lower 
body temperature and increased longevity. 

The longitudinal analysis showed 
that body temperature declined with 
advancing age in women, while no sig-
nificant age-related trend was observed 
in men. Similarly, the cross-sectional 

data, which categorized individuals by 
lifespan, revealed a downward trend, with 
older individuals tending to have lower 
body temperatures compared to those 
with shorter lifespans. Although this 
difference did not reach statistical signif-
icance, it suggests a potential trend wor-
thy of further exploration. For instance, 
it was claimed that because women gen-
erally have a  higher body temperature 
than men—and yet consistently outlive 
them—it is unlikely that core body tem-
perature affects longevity (see Introduc-
tion). However, studies have shown that 
women have only a slightly higher body 
temperature than men (approximately 
0.5 °C, largely attributable to tempera-
ture fluctuations during the menstrual 
cycle, which diminish after menopause), 
and our analysis clearly demonstrated 
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that during the study period—between 
the ages of 45 and 70—a  statistically 
significant reduction in body tempera-
ture occurred in women but not in men. 
Thus, since only women experienced 
a significant reduction in body tempera-
ture while living longer, the notion that 
core body temperature does not affect 
human longevity becomes less tenable.

This serves as an example of the chal-
lenges in redefining classical models and 
views on aging in light of emerging ex-
perimental evidence (Chmielewski 2017; 
2020). One classical theory on the evo-
lution of aging is the Disposable Soma 
Theory of Aging (DSTA), formulated 
by Thomas Kirkwood (1977), which pos-
its that aging evolved as a byproduct of 
natural selection due to an evolutionary 
trade-off between resources allocated to 
somatic maintenance and sexual repro-
duction—that is, the more an organism 
invests in sexual reproduction, the less 
is available for somatic maintenance, 
and vice versa (Kirkwood and Holliday 
1979; Kirkwood and Rose 1991; Drenos 
and  Kirkwood 2005). This influential, 
mathematically rigorous, and elegant the-
ory holds that our bodies can be considered 
as disposable ‘containers’ for our genes 
and that, beyond an ‘essential lifespan’ 
(roughly between 35 and 45 years), they 
begin to deteriorate because evolution did 
not expect them to function indefinitely or 
much longer than this critical period, e.g., 
due to the selection shadow (Chmielewski 
2017; 2019). 

Although alternative models have 
been proposed (Maklakov and Chapman 
2019; Speakman 2020; Carlsson et al. 
2021; Gems 2022; Lemaître et al. 2024; 
Mitchell et al. 2024), including mark-
edly different perspectives (Longo et al. 
2005; Longo  and  Anderson 2022), the 
DSTA remains one of the more robust 

and influential frameworks in current 
biogerontology (Jasienska 2009; Ham-
mers et al. 2013; Ziomkiewicz et al. 
2016; Jasienska et al. 2017; Collins et 
al. 2023). Indeed, the DSTA can help 
elucidate our findings: despite investing 
more in sexual reproduction, women 
still live longer than men. Furthermore, 
the higher core body temperature that 
women experience during their fertile 
period (e.g., due to hormonal changes 
during the menstrual cycle) may repre-
sent one example of the biological costs 
of reproduction that women incur. Taken 
together, these findings suggest that low-
er lifetime steady-state body tempera-
ture may be associated with increased 
longevity. This finding is in agreement 
with previous studies (Rikke and John-
son 2004; Waalen and Buxbaum 2011; 
Simonsick et al. 2016; Palani et al. 2023 
Chmielewski et al. 2025). 

We hypothesize that a lower body tem-
perature may reflect a reduced basal met-
abolic rate (BMR), which is a  condition 
that has been associated with decreased 
production of reactive oxygen species 
(ROS) and a  consequent reduction in 
cumulative molecular and cellular dam-
age. In animal models, lower metabolic 
rates have been correlated with extended 
lifespans, positing that slower metabolic 
rates may help to mitigate the deleterious 
effects of oxidative stress. Additionally, 
the possibility exists that lower body tem-
perature is indicative not only of reduced 
metabolic activity but also of a more fa-
vorable inflammatory profile, as elevated 
body temperature may signal the presence 
of chronic systemic inflammation, sub-
clinical diseases, latent infections, or au-
toimmune processes—conditions that are 
known to contribute to age-related mor-
bidity and mortality (Chmielewski 2018; 
Chmielewski and Strzelec 2018). Our ob-
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servation that short-lived individuals tend 
to have higher temperatures suggests that 
elevated body temperature could indicate 
an underlying, suboptimal inflammatory 
state. This may predispose aging individu-
als to earlier mortality. Conversely, a lower 
body temperature in long-lived individuals 
could denote a more robust immune sys-
tem or an absence of deleterious inflamma-
tory activity, thereby supporting longevity. 

The sex-specific divergence observed 
in our study enriches the discussion. 
Women not only displayed a  significant 
decline in body temperature with advanc-
ing age, but they also, as other studies have 
shown, tend to have slightly higher base-
line temperatures than men, yet wom-
en consistently outlive men (McGann 
et al. 1993; Chmielewski 2015; 2016; 
2022; 2024; Keil et al. 2015; Chmielews-
ki and Borysławski 2016; Baum et  al. 
2021; Öngel et al. 2021; Chmielewski 
et al. 2023). The dichotomy between the 
temperature trends observed in men and 
women raises intriguing questions about 
the underlying physiological mechanisms 
at play. It is possible that hormonal dif-
ferences, variations in body composition, 
or disparities in the prevalence of auto-
immune conditions contribute to these 
sex-specific patterns. For  instance, the 
higher propensity for autoimmune disor-
ders among women might initially elevate 
body temperature (Dolgin 2024). Howev-
er, as adaptive mechanisms evolve, a sub-
sequent decline might reflect a rebalanc-
ing that ultimately favors longevity. In 
contrast, the absence of a  similar trend 
in men could indicate that other compen-
satory mechanisms, such as differences 
in metabolic regulation or thermogenic 
responses, come into play.

The interplay between body mass in-
dex (BMI), systemic inflammation, and 
body temperature should not be over-

looked. Prior research has documented 
a positive association between higher BMI 
and increased body temperature, as well as 
between elevated temperature and high-
er mortality rates (Waalen and Buxbaum 
2011; Simonsick et al. 2016; Chmielewski 
et al. 2025). It is plausible that individuals 
with a  lower BMI, who may also experi-
ence reduced systemic inflammation, are 
more likely to exhibit a lower steady-state 
temperature and, consequently, a  longer 
lifespan. This hypothesis is further bol-
stered by the observation that higher white 
blood cell counts—often reflective of ongo-
ing inflammatory processes—are associat-
ed with poorer health outcomes in older 
adults (Ruggiero et al. 2007; Nilsson et al. 
2014; Chmielewski 2018; Chmielewski 
et al. 2016; Chmielewski and Strzelec 
2018). The converging lines of evidence 
thus suggest that a low basal temperature 
might be more than a passive marker of 
metabolic rate; it could also be a surrogate 
for an overall anti-inflammatory state that 
is conducive to healthy aging.

Notwithstanding the implications of 
these findings, several limitations must 
be acknowledged. First, the reliance on 
historical data from a  specific institu-
tionalized population raises questions 
about the generalizability of the results to 
the broader aging population, as clinical 
data may be affected by confounding var-
iables (Chmielewski et al. 2015; 2016; 
2025). Second, the cross-sectional com-
ponent, while suggestive of a  relation-
ship between temperature and longevity, 
is inherently limited by its observational 
nature and the potential for confounding 
variables—such as undiagnosed subclin-
ical conditions or lifestyle factors—that 
may not have been fully accounted for. 

Despite these constraints, our study 
contributes to a growing body of literature 
that challenges traditional interpretations 
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of age-related thermoregulatory decline. 
Rather than viewing lower body tempera-
ture simply as a result of diminished ther-
moregulatory function in the elderly, our 
findings raise the possibility that a lower 
steady-state temperature may be an adap-
tive trait reflecting a finely tuned balance 
between metabolic efficiency, immune 
function, and systemic inflammation. 
This interpretation suggests that effective 
interventions targeting the underlying 
mechanisms of aging could one day offer 
novel strategies for promoting longevity 
(Chmielewski et al. 2024; Li et al. 2024; 
Mahoney et al. 2024).

Future investigations should aim to 
clarify these relationships by employing 
prospective, population-based designs 
with rigorous standardization of temper-
ature measurements. Such studies would 
benefit from the inclusion of a comprehen-
sive set of biomarkers, including detailed 
assessments of metabolic rate, inflamma-
tory mediators, and immune function, 
in order to disentangle the complex in-
terdependencies underlying the observed 
associations. Furthermore, exploring the 
molecular and genetic determinants of 
thermoregulation across different popula-
tions could provide insight into why some 
individuals exhibit lower baseline temper-
atures and enjoy a survival advantage. 

In conclusion, this study offers pre-
liminary evidence suggesting that lower 
lifetime steady-state body temperature 
could be a  biomarker of longevity. The 
observed trends, suggesting that long-
lived individuals tend to have lower body 
temperature, support the hypothesis 
that a lower metabolic rate and reduced 
systemic inflammation are beneficial 
for survival. However, the sex-specific 
differences and the lack of statistically 
significant differences between lifespan 
categories caution against oversimplifica-

tion and highlight the complexity of the 
relationship between body temperature 
and longevity. Our findings also empha-
size the need for further research to clari-
fy the causal pathways and potential clin-
ical implications of these associations. 
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