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The pseudorapidity measurements at LHC, although in the central region only, allows us to perform
preliminary tests of the multiparticle production extrapolation formula inspired by the analysis of recent
cosmic ray data. Feynman scaling violation in the form proposed originally by Wdowczyk and Wolfendale
in the 1970s has been applied to the Pierre Auger Observatory and the Hi-Res group measurements. The
consistency of the average extensive air shower development with the hypothesis of protons being the
primary particles, as indicated by anisotropy observations, was found for a smooth rise of the scaling
violation parameter. We have shown that the longitudinal momenta of the produced particles determined
inclusively as rapidity (pseudorapidity) distributions measured by LHC experiments follow the same
universal high energy distribution scaled respectively. The high degree of Feynman scaling violation is
confirmed. The decrease of the very high energy interaction inelasticity suggested by the cosmic ray data
analysis is found to be consistent with LHC measurements up to 7 TeV.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The inclusive description of minimum bias LHC events is not
as spectacular as, for example, Higgs hunting, but it is essential
for other very important scientific endeavours. One of them is the
Ultra High-Energy Cosmic Ray (UHECR) problem and the answer
to the question of the existence of the Greizen–Zatsepin–Kuzmin
(GZK) cut-off [1]. The origin and nature of cosmic rays has been
studied for almost exactly 100 years. Great experimental effort has
been made recently by two groups: the Pierre Auger Observatory
[2] and the Hi-Res experiment [3]. There has been progress, but
the answers are still not decisive. The cosmic rays of energies of
about 1020 eV, if they are protons, should not reach us from cos-
mological distances. Our knowledge about the nature of UHECR is
based on the observation of giant Extensive Air Showers (EAS) –
cascades of secondary particles created in the atmosphere when
a single atomic nucleus (proton in the simplest case) enters from
above. It is expected that the EAS initiated by protons and iron
nuclei should differ. This difference is determined by the rate of
energy dissipation. Thus it depends strongly on the distribution of
secondaries produced in the forward direction and on the nature
of primary particle: its atomic mass. The long-lasting discussions
on the primary cosmic ray mass composition at the very end of
the cosmic ray energy spectrum, in the so-called “ankle” region
(E lab > 1018 eV), cannot be conclusive also because of the lack
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of the more exact knowledge of the very high energy interaction
physics, this makes the importance of the high energy proton frag-
mentation even greater for cosmic ray physicists, astronomers and
cosmologists.

Searching for regularities and a phenomenological description
of the multiparticle production model is as old as the modeling in
high-energy physics itself. Starting from the simple Fermi thermo-
dynamical model, to the first parton (quark) model by Feynman,
the model extrapolation to much higher, cosmic ray, energies was
one of the most important and most wanted model predictions.
It is usually in the form of a kind of scaling. The idea of lim-
ited fragmentation [4] applied to the quark-jet hadronization led
to introduction of the Feynman scaling variable xF and the uni-
versal fragmentation function f (xF , s) = f F (xF ) [5]. This brilliant
idea worked well for the first collider experiments up to

√
s ∼

60 GeV. However, when applied to cosmic ray EAS development,
it was questioned already at the “knee” energies of E lab ∼ 1015 eV.
The SPS (

√
s ∼ 200–900 GeV) experiments allow one to quantify

the scaling violation. The scale-breaking model of Wdowczyk and
Wolfendale was proposed to described the CR data in 1972 [6]. It
is, in a sense, a generalization of the Feynman scaling idea intro-
ducing one scaling violation parameter.

In Ref. [7] we showed that the light composition suggested by
the studies of the anisotropy and the average depth of the shower
maximum (Xmax) does not contradict other results, mainly the
measurements of the width of the Xmax distribution available at
that time, only if one assume strong Feynman scaling violation.
Since that time new results concerning the spread of the shower

http://dx.doi.org/10.1016/j.physletb.2011.07.061
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:t.wibig@gmail.com
http://dx.doi.org/10.1016/j.physletb.2011.07.061


T. Wibig / Physics Letters B 703 (2011) 146–150 147
Fig. 1. Pseudorapidity distributions shifted by �y = ln(
√

s/m) for ISR, SPS and Tevatron measurements (a), and distributions measured by LHC experiments at energies from
900 GeV to 7 TeV compared with the SPS

√
s = 546 GeV UA5 result (b).
maxima appeared [2,8] and were analyzed in [9]. The problem of
consistency of the average Xmax and r.m.s. of Xmax measured by
two big experiments is the additional point of importance in the
studies of high and very energy multiparticle production processes.

The rapidity (pseudorapidity) distributions were measured by
the LHC experiments: ALICE [10], CMS [11,12] and ATLAS [13] (the
last for p⊥ > 0.5 GeV only) in the central rapidity region |η| � 2.5
for c.m.s. energies of 900 GeV, 2.3 TeV and 7 TeV. The narrow range
of a rapidity (pseudorapidity) at first sight does not allow one to
study important characteristics of very forward particle production.
To study the fragmentation region new measurements, especially
by much forward detectors (LHCf), are welcome. But, as will be
shown below, the existing data can be used to test the scaling vi-
olation picture found in the UHECR physics domain.

2. Rapidity distribution

Rapidity distributions measured in LHC experiments cover the
central region where the produced particles are dynamically sepa-
rated from the valence quarks of the colliding hadrons. The central
rapidity density ρ(0) = 1/σ (dσ/dy)|y=0 is the variable describing
the particle production there. The original Feynman scaling pre-
serves the value of the central rapidity density. The plateau in
rapidity is a characteristic feature of the independent jet fragmen-
tation model as well as statistical models with limited transverse
momentum phase space. Unfortunately, it is has been known long,
that such a simple picture does not work.

The phenomenological fit of the ρ(0) rise made more than
twenty years ago in Ref. [14] is still valid. The 900 GeV LHC mea-
surements match well the SPS UA5 result. The systematic discrep-
ancy seen by the CMS detector [11] does not change this general
opinion.

2.1. Feynman scaling

Feynman scaling [5] can be expressed introducing one universal
function f F of the variable x = p‖/pmax which describes the invari-
ant momentum (longitudinal p‖) distribution of particles created
in the high-energy inelastic (and non-single diffractive) interaction

E√
s/2

1

σ

d3σ

dx d2 p⊥
= f (x, p⊥, s) = f F (x, p⊥) (1)

where
√

s is the interaction c.m.s. energy, E , p‖ and p⊥ are en-
ergy, and longitudinal and transverse momenta of outgoing parti-
cles (pmax ≈ √

s/2), respectively. Change of variable from Feynman
x to rapidity y gives
1

σ

d3σ

dy d2 p⊥
= f F

(
x(y), p⊥

)
(2)

where x(y) =
√

p2⊥ + m2/(
√

s/2) sinh(y). Using the approximate

relation
√

p2⊥ + m2 sinh(y) ≈ p⊥ sinh(η) and introducing the very
convenient variable: pseudorapidity η = − ln tan(Θ/2) we have

1

σ

d3σ

dηd2 p⊥
= f F

(
2p⊥√

s
sinh(η), p⊥

)
. (3)

The integration over all p⊥ is obvious when p⊥ and p‖ are uncor-
related and the p⊥ distribution does not depend on the interaction
energy s.

1

σ

dσ

dη
= F F

(
2〈p⊥〉√

s
sinh(η)

)
. (4)

The factor 〈p⊥〉 is a constant related to the transverse momentum
scale.

We are interested in the extreme forward part of the (pseudo)
rapidity distribution – the projectile fragmentation region. It
is convenient to move the longitudinal momentum distribution
to the anti-laboratory frame (η → η′) where the projectile is
at rest prior to the collision. This is done shifting the c.m.s.
(pseudo)rapidity distribution by �y = ln(

√
s/m)

sinh
(
η′) = sinh(η − �y) = sinh

(
η − ln(

√
s/m)

)

≈ eη−ln(
√

s/m)/2 = eη

2

m√
s

≈ m√
s

sinh(η). (5)

After such transformation a direct comparison of particle produc-
tion at different values of interaction c.m.s. energy is possible

1

σ

dσ

dη′ ≈ F F

(
2〈p⊥〉

m
sinh

(
η′)) = Fη

(
η′). (6)

This form of Feynman scaling was tested e.g. in Ref. [14] and it was
found that it is valid only very approximately. We can see this in
Fig. 1a, where previous millennium data are plotted as a function
of the anti-laboratory pseudorapidity. The recent data from CMS
[11,12] and ALICE [10] are shown in Fig. 1b.

It is known that Feynman scaling is violated at least by the
continuous increase of the central rapidity density, as is easily seen
in Fig. 1.
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Fig. 2. Pseudorapidity distributions shifted and transformed respectively adjusting αF for ISR, SPS and Tevatron measurements (a), and distributions measured by LHC
experiments at energies from 900 GeV to 7 TeV compared with SPS

√
s = 546 GeV UA5 result (b).
2.2. Feynman scaling violation

The original Feynman scaling implied that the inelasticity of
proton–proton interaction, defined as the fraction of incoming en-
ergy carried by newly created particle, is universal, the same for
all interaction energies. The first observations suggested an attrac-
tive value of 0.5. The rise of some characteristics of the interactions
(such as, e.g., average p⊥ or central rapidity density as mentioned
above) makes the assumption about the constancy of the inelastic-
ity not well justified. Introducing the multiplicative factor propor-
tional to the observed rise of the rapidity plateau to the right-hand
side of Eq. (6) we can try to recover a form of scaling. Apply-
ing this procedure the simplicity of the original Feynman idea is
lost and the next correction for the rise of the average transverse
momentum could be introduced here as well. We have used in
the present work the average transverse momentum rise of the
form 〈p⊥〉 = 0.413 − 0.017 ln(s)+ 0.00143 ln2(s) shown in Fig. 4 of
Ref. [12]. The additional inelasticity control parameter is an index
in a power law multiplicative factor. These two modifications lead,
according to Eq. (4), to only a slightly more complicated scaling
formula

1

σ

dσ

dη
=

(
s

s0

)αF

F F

(
2〈p⊥〉√

s
sinh(η)

)
. (7)

We have used the UA5 data measured at
√

s0 = 546 GeV c.m.s.
energy [14] as a datum. The very accurate measured NSD pseudo-
rapidity distribution have been used as a definition of the universal
F F function. We adjusted the αF parameter value to minimize the
discrepancy between Eq. (7) scaling prediction and the distribu-
tions of pseudorapidity measured at different energies: from ISR
to 7 TeV of LHC. The results are given in Fig. 2.

Values of αF increase from ∼ 0.05 found for ISR 53 GeV to
∼ 0.11 at LHC 7 TeV. The increase is statistically not very signif-
icant, at least for the overall inelasticity, which will be discussed
later. The accuracy of the data scaling according to Eq. (7) can be
estimated with the help of statistical tests. The χ2 values for the
ISR and SPS are about χ2/NDF ≈ 40/20. The systematic uncertain-
ties of the Tevatron and LHC results makes the χ2/NDF smaller but
the overall tendency seen in Fig. 2 strongly suggests that the pro-
posed modification of Feynman scaling is not the right solution for
the extrapolation of interaction properties to very high interaction
energies.
2.3. Wdowczyk and Wolfendale scaling

It was shown in Ref. [7] that the almost forty years old mod-
ification known as Wdowczyk and Wolfendale (WW) scaling [6]
could be still satisfactoring used to scale the interaction properties
to the ultra high (> 1019 eV) cosmic ray energies.

The original idea of the WW scaling

f (x, p⊥, s) = (s/s0)
α f W W

(
x(s/s0)

α, p⊥
)

(8)

is an extension of the Feynman fragmentation formula of Eq. (1)
(the limit for α = 0) with the possibility of getting the ‘thermody-
namical limit’ of n ∼ s1/4 with α = 0.25.

The WW model in its version of the mid 1980s has been suc-
cessfully used for EAS studies around ‘the knee’. Its extension
introducing partial inelasticities (energy fraction carried by spe-
cific types of particles), and the transverse momentum rise with
interaction energy dependencies, as discussed above, gave a bet-
ter description of the production of different kinds of secondaries.
As a result of this improvement the first power-law factor in-
dex was released and gave an extra model parameter. This more
flexible formula was applied, e.g., in Ref. [14] where the agree-
ment of the WW model predictions and the UA5 measured ra-
pidity distributions was shown. It should be mentioned that the
original Wdowczyk and Wolfendale model gave a complete de-
scription of the multiparticle production process to be used mainly
in EAS studies, so it contains such details as partial inelasticities,
transverse momenta, semiinclusive properties etc. The fit shown in
Ref. [14] is the effective, average description of inclusive data of
rapidity (pseudorapidity) only.

In the present work we explore WW scaling of the form

1

σ

dσ

dη
=

(
s

s0

)α′

F W W

( 〈p⊥〉
〈p0⊥〉 sinh(η)

(
s

s0

)α−1/2)
, (9)

where 〈p0⊥〉 is the average transverse momentum at the datum
interaction energy (

√
s0 = 546 GeV).

We have adjusted first both α and α′ parameters independently
to get the best scaling performance. The results are given in Fig. 3.

The values of α and α′ obtained in this way are shown in
Fig. 4a. Thin horizontal lines show results from Ref. [14] (solid for
α and dashed for α′ , respectively). The thick solid broken line is
the result for α in our UHECR analysis [7]. It is seen that the pre-
dictions from Ref. [7] and the LHC data are consistent. Although
the large uncertainties, which are the result of the limited rapid-
ity range as well as possible systematics, do not allow one any
stronger conclusions.
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Fig. 3. Wdowczyk and Wolfendale scaling with both parameters α and α′ adjusted to each experimental data set.

Fig. 4. W&W scaling parameters predictions for α (solid symbols and solid lines: thin, horizontal – [14], thick, broken – [7]) and for α′ (open symbols and dashed line)
adjusted to the data (a), and values of α taken from the UHECR analysis [7] and only α′ used as a free parameter of the fit (b).

Fig. 5. Wdowczyk and Wolfendale scaling results with α set to the UHECR analysis data and α′ adjusted to each experimental data set, shown as in Fig. 3.
We can, however, use the UHECR data analysis predictions for
the values of α and test if the results of the fit, with such reduced
free parameter space, remains in agreement with the WW scaling.
It can be seen in Fig. 5 that the data description is not much worse
than the one presented in Fig. 3. The constancy of the α′ suggested
by WW original papers and seen in Fig. 4a, still holds as presented
in Fig. 4b.

3. Inelasticity

In Ref. [7] a quite unexpectedly high energy behaviour of the
interaction inelasticity coefficient was found. It was obtained as a
result of the experimental suggestion that the composition of the
UHECR is quite light and contains a significant proton fraction. The
WW model with strong Feynman scaling violation leads to a con-
tinuous decrease of the energy fraction released to the secondaries
produced in very high energy interactions. Eq. (9) gives the inelas-
ticity energy dependence

K (s) = K0

(
s

s0

)(α′−α)

, (10)

while for the modified Feynman scaling formula (7) it is



150 T. Wibig / Physics Letters B 703 (2011) 146–150
Fig. 6. Inelasticity calculated with WW scaling assumption (filled symbols – circles
for both α and α′ adjusted (Fig. 3) and squares for UHECR inspired α (Fig. 5), open
symbols are for the modified Feynman scaling with αF parameter). Solid line shows
the UHECR data analysis prediction from Ref. [7]. Dashed line is the inelasticity fit
from Ref. [14]. The ‘canonical’ value 0.5 – normalization point at energy of 1014 eV
– is shown by short dashed line.

K (s) = K0

(
s

s0

)αF

. (11)

In Fig. 6 we show the results of our analysis. The open symbols
show the fast rise of the inelasticity for the modified Feynman
scaling formula. Even if the αF follow the lower energy, smaller
value, in the UHECR domain saturation is expected. The filled sym-
bols were obtained for WW scaling. The solid line gives the pre-
dictions from Ref. [7] obtained using UHECR data. The dashed line
is the fit from Ref. [14] of the WW scaling parameters to SPS data.
The value of 0.5 is also shown. We normalize the prediction of
both models to this value at an energy of 1014 eV.

4. Summary

It has been shown that the minimum bias pseudorapidity dis-
tributions measured by the LHC experiments can be very well de-
scribed by the scale-breaking Wdowczyk and Wolfendale formula.

The scaling violation observed for energies up to the SPS
√

s =
900 GeV and 1800 GeV in Tevatron was upheld recently in the
analysis of new UHECR data.
The phenomenological model of Wdowczyk and Wolfendale in-
troduces two model parameters. The value of one of them: α,
was originally found to be equal to 0.13 using interpolation of the
xF = p‖/pmax distributions between

√
s ≈ 10 GeV and ISR ener-

gies. Later interpolations including SPS data gave the value of 0.18
and finally the effective value of 0.25 was found in Ref. [14]. The
increase of the central rapidity density reported also in Ref. [14]
suggests α = 2 × 0.105 = 0.21. This value gives the Extensive Air
Showers development maximum position Xmax for proton initiated
showers not far from that measured [2,3] as is shown in Ref. [7].

The UHECR data suggests a further smooth rise of the scale-
breaking parameter. The first measurements at LHC up to 7 TeV
c.m.s. energy agree with the trend observed at lower energies and
seem to smoothly bridge the accelerator results and these on very
high energy interaction of cosmic ray protons. The limited range of
measured pseudorapidities does not allow us for a stronger state-
ment. The more forward particle production data is highly wel-
come.

The rising inelasticity predicted by the (modified) Feynman
scaling is obviously in contradiction to the Wdowczyk and Wolfen-
dale scaling that has been shown to describe cosmic ray data.
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