Organometallic-erlotinib conjugates active against lung cancer cells and as emerging viruses entry inhibitors

Przemysław Biegański,^{a#} Monika Gazecka,^{b#} Rafał Nowak,^b Aleksander Gorski,^c Natalia Dutkiewicz,^c Daniel Fábio Kawano,^d Paweł Zmora,^{*b} and Konrad Kowalski^{*a}

^a University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland;

^b Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland;

^c Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas-SP, Brazil 200 Cândido Portinari Street, Campinas-SP, 13083-871 Brazil;

^d Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland

*# These authors contributed equally to this work

*Address correspondence to: konrad.kowalski@chemia.uni.lodz.pl and kondor15@wp.pl (Konrad Kowalski)

Authors of presented dataset: Przemysław Biegański^a and Konrad Kowalski^a

Dataset to Project NCN PRELUDIUM 20 UMO-2021/41/N/ST4/00059

Contents

Figure S1 ¹ H-NMR spectrum of 1 in CDCl ₃ (600 MHz)	S 7
Figure S2 ¹ H-NMR spectrum of 2 in CDCl ₃ (600 MHz)	S 8
Figure S3 ¹ H-NMR spectrum of 3 in DMSO-d ₆ (600 MHz)	S 9
Figure S4 ¹ H-NMR spectrum of 4 in DMSO-d ₆ (600 MHz)	S 10
Figure S5 ¹ H-NMR spectrum of 5 in DMSO-d ₆ (600 MHz)	S 11
Figure S6 ¹ H-NMR spectrum of 6 in DMSO-d ₆ (600 MHz)	S 12
Figure S7 ¹ H-NMR spectrum of 7 in DMSO-d ₆ (600 MHz)	S 13
Figure S8 ¹ H-NMR spectrum of 8 in DMSO-d ₆ (600 MHz)	S 14
Figure S9 ¹ H-NMR spectrum of 9 in DMSO-d ₆ (600 MHz)	S 15
Figure S10 ¹ H-NMR spectrum of 10 in DMSO-d ₆ (600 MHz)	S 16
Figure S11 ¹ H-NMR spectrum of 11 in DMSO-d ₆ (600 MHz)	S 17
Figure S12 ¹ H-NMR spectrum of 12 in CDCl ₃ (600 MHz)	S 18
Figure S13 ¹ H-NMR spectrum of 13 in DMSO-d ₆ (600 MHz)	S 19
Figure S14 ¹³ C-NMR spectrum of 1 in CDCl ₃ (150 MHz)	S 20
Figure S15 ¹³ C-NMR spectrum of 2 in CDCl ₃ (150 MHz)	S 21
Figure S16 ¹³ C-NMR spectrum of 3 in DMSO-d ₆ (150 MHz)	S 22
Figure S17 ¹³ C-NMR spectrum of 4 in DMSO-d ₆ (150 MHz)	S 23
Figure S18 ¹³ C-NMR spectrum of 5 in DMSO-d ₆ (150 MHz)	S 24

Figure S19 ¹³ C-NMR spectrum of 6 in DMSO-d ₆ (150 MHz)	S 25
Figure S20 ¹³ C-NMR spectrum of 7 in DMSO-d ₆ (150 MHz)	S 26
Figure S21 ¹³ C-NMR spectrum of 8 in DMSO-d ₆ (150 MHz)	S 27
Figure S22 ¹³ C-NMR spectrum of 9 in DMSO-d ₆ (150 MHz)	S 28
Figure S23 ¹³ C-NMR spectrum of 10 in DMSO-d ₆ (150 MHz)	S 29
Figure S24 ¹³ C-NMR spectrum of 11 in DMSO-d ₆ (150 MHz)	S 30
Figure S25 ¹³ C-NMR spectrum of 12 in DMSO-d ₆ (150 MHz)	S 31
Figure S26 HRMS spectrum of 1	S 32
Figure S27 HRMS spectrum of 2	S 33
Figure S28 HRMS spectrum of 3	S 34
Figure S29 HRMS spectrum of 4	S 35
Figure S30 HRMS spectrum of 5	S 36
Figure S31 HRMS spectrum of 6	S 37
Figure S32 HRMS spectrum of 7	S 38
Figure S33 HRMS spectrum of 8	S 39
Figure S34 HRMS spectrum of 9	S 40
Figure S35 HRMS spectrum of 10	S 41
Figure S36 HRMS spectrum of 11	S 42
Figure S37 HRMS spectrum of 12	S 43
Figure S38 HRMS spectrum of 13	S 44

Figure S39 FTIR (KBr v [cm ⁻¹]) spectrum of 1	S 45
Figure S40 FTIR (KBr v [cm ⁻¹]) spectrum of 2	S 46
Figure S41 FTIR (KBr v [cm ⁻¹]) spectrum of 3	S 47
Figure S42 FTIR (KBr v [cm ⁻¹]) spectrum of 4	S 48
Figure S43 FTIR (KBr v [cm ⁻¹]) spectrum of 5	S 49
Figure S44 FTIR (KBr v [cm ⁻¹]) spectrum of 6	S 50
Figure S45 FTIR (KBr v [cm ⁻¹]) spectrum of 7	S 51
Figure S46 FTIR (KBr v [cm ⁻¹]) spectrum of 8	S 52
Figure S47 FTIR (KBr v [cm ⁻¹]) spectrum of 9	S 53
Figure S48 FTIR (KBr v [cm ⁻¹]) spectrum of 10	S 54
Figure S49 FTIR (KBr v [cm ⁻¹]) spectrum of 11	S 55
Figure S50 FTIR (KBr v [cm ⁻¹]) spectrum of 12	S 56
Table 1. Elemental analysis result of 1	S 57
Table 2. Elemental analysis result of 2	S 57
Table 3. Elemental analysis result of 3	S 57
Table 4. Elemental analysis result of 4	S 57
Table 5. Elemental analysis result of 5	S 58
Table 6. Elemental analysis result of 6	S 58
Table 7. Elemental analysis result of 8	S 58

Table 8. Elemental analysis result of 9	S 58
Table 9. Elemental analysis result of 10	S 59
Table 10. Elemental analysis result of 11	S 59
Table 11. Elemental analysis result of 12	S 59

Fig S1 ¹H-NMR spectrum of 1 in CDCl₃ (600 MHz)

Fig S2 ¹H-NMR spectrum of 2 in CDCl₃ (600 MHz)

Fig S3 ¹H-NMR spectrum of 3 in DMSO-d₆ (600 MHz)

Fig S4 ¹H-NMR spectrum of 4 in DMSO-d₆ (600 MHz)

Fig S5 ¹H-NMR spectrum of 5 in DMSO-d₆ (600 MHz)

Fig S6 ¹H-NMR spectrum of 6 in DMSO-d₆ (600 MHz)

Fig S7 ¹H-NMR spectrum of 7 in DMSO-d₆ (600 MHz)

Fig S8 ¹H-NMR spectrum of 8 in DMSO-d₆ (600 MHz)

Fig S9 ¹H-NMR spectrum of 9 in DMSO-d₆ (600 MHz)

Fig S10 ¹H-NMR spectrum of **10** in DMSO-d₆ (600 MHz)

Fig S11 ¹H-NMR spectrum of 11 in DMSO-d₆ (600 MHz)

Fig S12 ¹H-NMR spectrum of **12** in CDCl₃ (600 MHz)

Fig S13 ¹H-NMR spectrum of **13** in DMSO-d₆ (600 MHz)

Fig S14 ${}^{13}C{}^{1}H$ }-NMR spectrum of 1 in CDCl₃ (150 MHz)

Fig S15 ${}^{13}C{}^{1}H$ }-NMR spectrum of 2 in CDCl₃ (150 MHz)

Fig S16 ${}^{13}C{}^{1}H$ }-NMR spectrum of 3 in DMSO-d₆ (150 MHz)

Fig S17 ${}^{13}C{}^{1}H$ }-NMR spectrum of 4 in DMSO-d₆ (150 MHz)

Fig S18 ${}^{13}C{}^{1}H$ }-NMR spectrum of 5 in DMSO-d₆ (150 MHz)

Fig S19 ${}^{13}C{}^{1}H$ }-NMR spectrum of 6 in DMSO-d₆ (150 MHz)

Fig S20 $^{13}C{^{1}H}$ -NMR spectrum of 7 in DMSO-d₆ (150 MHz)

Fig S21 ${}^{13}C{}^{1}H$ }-NMR spectrum of 8 in DMSO-d₆ (150 MHz)

Fig S22 ${}^{13}C{}^{1}H$ }-NMR spectrum of 9 in DMSO-d₆ (150 MHz)

Fig S23 ${}^{13}C{}^{1}H$ }-NMR spectrum of 10 in DMSO-d₆ (150 MHz)

Fig S24 ${}^{13}C{}^{1}H$ }-NMR spectrum of 11 in DMSO-d₆ (150 MHz)

Fig S25 ${}^{13}C{}^{1}H$ }-NMR spectrum of 12 in DMSO-d₆ (150 MHz)

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 20 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 O: 0-2 CI: 0-1 Ru: 1-1 221214_SPB_00127A 48 (0.497) Cm (47:48)

Fig S26 HRMS spectrum of 1

Page 1

TOF MS ES+

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 128 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-30 H: 0-30 N: 0-3 O: 0-2 Na: 0-3 Ru: 1-1

Fig S27 HRMS spectrum of 2

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 168 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 1-7 O: 0-7 Fe: 0-1

Fig S28 HRMS spectrum of 3

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 168 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 1-7 O: 0-7 Fe: 0-1

Fig S29 HRMS spectrum of 4

Page 1

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 82 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-60 N: 0-6 O: 0-6 Ru: 1-1

Fig S30 HRMS spectrum of 5

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 181 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-60 N: 0-7 O: 0-8 Ru: 1-1

Fig S31 HRMS spectrum of 6

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 146 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 1-7 O: 0-5

230215_SPB_00139B 24 (0.330) Cm (24:30-2:9)

480.2355 100-% 481.2381 482.2412 467.3347 470.7202 473.3630 480.1716 498.2949 491.3674 495.2487 496.2363 476.8363 484.3383_486.7159 ----- m/z 470.0 472.5 475.0 477.5 482.5 487.5 495.0 497.5 467.5 480.0 485.0 490.0 492.5 Minimum: -1.5 90.0 Maximum: 5.0 5.0 Mass Calc. Mass mDa PPM i-FIT Norm Conf(%) Formula DBE 480.2359 -0.4 -0.8 480.2355 13.5 948.6 n/a n/a C24 H30 N7 O4

Fig S32 HRMS spectrum of 7

Page 1

TOF MS ES+ 2.18e+006

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 70 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 1-7 O: 0-5 Fe: 0-1 230215_SPB_00141A 19 (0.287) Cm (19:28-43:54)

Fig S33 HRMS spectrum of 8

Page 1

TOF MS ES+

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 284 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-45 H: 0-45 N: 0-9 O: 0-12 CI: 2-2 Re: 1-2

Fig S34 HRMS spectrum of 9

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 340 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 0-9 O: 0-11 CI: 0-2 Re: 2-2

230215_SPB_00145A 17 (0.197) Cm (13:17-3:7)

Fig S35 HRMS spectrum of 10

Page 1

TOF MS ES+

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 359 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 1-7 O: 0-7 Fe: 0-1

Fig S36 HRMS spectrum of 11

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 168 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 1-6 O: 0-7 221214_SPB_00074 12 (0.143) Cm (11:12-5:6)

Fig S37 HRMS spectrum of 12

Page 1

1: TOF MS ES+

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 90.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Odd and Even Electron Ions

59 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 2-6 O: 0-8 Mn: 1-1

Fig S38 HRMS spectrum of 13

Fig S39 FTIR (KBr v $[cm^{-1}]$) spectrum of 1

Fig S40 FTIR (KBr v $[cm^{-1}]$) spectrum of 2

Fig S41 FTIR (KBr v $[cm^{-1}]$) spectrum of 3

Fig S42 FTIR (KBr v $[cm^{-1}]$) spectrum of 4

Fig S43 FTIR (KBr v $[cm^{-1}]$) spectrum of 5

Fig S44 FTIR (KBr v $[cm^{-1}]$) spectrum of 6

Fig S45 FTIR (KBr v $[cm^{-1}]$) spectrum of 7

Fig S46 FTIR (KBr v [cm⁻¹]) spectrum of 8

Fig S47 FTIR (KBr v [cm⁻¹]) spectrum of 9

Fig S48 FTIR (KBr v $[cm^{-1}]$) spectrum of 10

Fig S49 FTIR (KBr v $[cm^{-1}]$) spectrum of 11

Fig S50 FTIR (KBr v $[cm^{-1}]$) spectrum of 12

Table 1. Elemental analysis result of 1

C ₁₄ H ₁₅ OClRu	Theoretical value [%]	Sample [%]
С	50.08	50.03
Н	4.50	4.68

Table 2. Elemental analysis result of 2

C ₁₄ H ₁₅ N ₃ ORu	Theoretical value [%]	Sample [%]
С	49.12	49.13
Н	4.42	4.24
N	12.27	12.06

Table 3. Elemental analysis result of **3**

C34H34N6O5Fe	Theoretical value [%]	Sample [%]
С	61.64	61.64
Н	5.17	5.24
Ν	12.69	12.65

Table 4. Elemental analysis result of 4

C34H34N6O5Fe	Theoretical value [%]	Sample [%]
С	61.64	61.45
Н	5.17	5.12
Ν	12.69	12.50

Table 5. Elemental analysis result of **5**

C36H38N6O5Ru	Theoretical value [%]	Sample [%]
С	58.76	58.53
Н	5.21	5.13
Ν	11.42	11.27

Table 6. Elemental analysis result of 6

C36H38N6O5Ru	Theoretical value [%]	Sample [%]
С	58.76	58.71
Н	5.21	5.11
Ν	11.42	11.40

Table 7. Elemental analysis result of 8

C35H37N7O5Fe	Theoretical value [%]	Sample [%]
С	60.79	60.68
Н	5.39	5.25
Ν	14.18	14.00

Table 8. Elemental analysis result of 9

C38H37N9O11Cl2Re2	Theoretical value [%]	Sample [%]
С	36.84	36.77
Н	3.01	3.11
Ν	10.17	10.02

Table 9. Elemental analysis result of 10

C ₃₉ H ₃₉ N ₉ O ₁₁ Cl ₂ Re ₂	Theoretical value [%]	Sample [%]
С	37.38	37.40
Н	3.14	3.09
Ν	10.06	10.01

Table 10. Elemental analysis result of **11**

C31H32N6O5	Theoretical value [%]	Sample [%]
С	65.48	65.17
Н	5.67	5.42
Ν	14.78	14.65

Table 11. Elemental analysis result of 12

C ₂₄ H ₂₅ N ₅ O ₄	Theoretical value [%]	Sample [%]
С	64.42	62.14
Н	5.63	5.91
Ν	15.65	15.39