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Abstract

  The  monograph  is  dedicated  to  exploring  combinatorial  point  configurations  derived 

from  mapping  a  set  of  combinatorial  configurations  into  Euclidean  space.  Various  methods 

for  this  mapping,  along  with  the  typology  and  properties  of  the  resultant  configurations,

are  presented.  In  addition,  the  study  revolves  around  combinatorial  polytopes  defined  as 

convex  hulls  of  combinatorial  point  configurations.  The  primary  focus  lies  in  examining 

multipermutation  and  partial  multipermutation  point  configurations  alongside  their  associated 

combinatorial  polytopes  known  as  multipermutohedra  and  partial  multipermutohedra.  Our 

theoretical  contributions  are  substantiated  through  the  proof  of  theorems  and  supporting 

auxiliary  statements.  Examples  and  illustrations  are  included  to  enhance  the  comprehension 

of  the  material.
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Introduction

The term configuration derives from the late Latin word "configuratio", meaning

shaping or arrangement. Thus, configuration refers to the outward appearance, shape, and

relative position of items or their constituent parts.

In mathematics, particularly in the research domain of projective geometry, configura-

tion typically denotes a specific arrangement of a set of points and lines on a plane or surfaces

in space [11, 21, 63]. In [17, 88], point configurations are treated as collections of points in

Euclidean space. The focus is on studying the arrangement and properties of these points in

the given space.

The modern classification of such configurations was provided by B. Grunbaum [21],

distinguishing their three main classes: topological, geometric, and combinatorial. Grun-

baum typology framework comprehensively provides typology configurations concerning their

underlying mathematical structures.

A configuration is topological if it represents an arrangement of pseudo lines within the

projective plane and their corresponding intersection points.

Geometric configurations are those in which the lines are considered in either Euclidean

or projective plane, and the points arise from the intersections of these lines. The primary

focus of research in geometric configurations theory revolves around two challenging problems.

The first is the selection and establishment of the existence of different classes of configurations.

The second is determining the count of non-isomorphic configurations within the respective

class.

A complete review of publications on geometric configurations can be found in [19].
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Introduction

Initially, the study of geometric configurations involved geometric methods, where the configu-

rations were built on a plane. However, V. Martinetti introduced a сombinatorial approach

to investigating geometric configurations [35]. Concurrently, the problem of determining the

existence and enumeration of configurations was addressed through a recursive approach,

building upon solutions for configurations with fewer points. This recursive methodology

proved valuable in tackling the challenges posed by varying-size configurations.

H. Schroter made an important observation that not all of V. Martinetti’s configurations

could be constructed geometrically on a plane. Consequently, H. Schroter shifted focus

away from the geometric aspect of configurations, emphasizing the combinatorial perspective

instead [69]. He introduced the concept of a configuration in terms of "elements" and "columns",

as opposed to "points" and "lines". In this new formulation, a configuration was represented

by a binary matrix, where the columns corresponded to straight lines, and the rows represented

their intersection points. The matrix determines the assignment of points to lines while its

elements indicate whether a given point lies on a specific line. An arbitrary binary matrix, not

necessarily square, is considered a configuration representing an equivalence class of matrices

obtained by permuting rows and columns [67].

Combinatorial configurations predominantly focus on geometric aspects while treating

points and lines as abstract sets within a combinatorial context. The study of combinatorial

configurations became a separate research domain in discrete mathematics with C. Berge as

its founder.

According to C. Berge, a combinatorial configuration is understood as mapping an

initial set of elements, which can be of any nature, onto a finite abstract resulting set with a

certain structure [6]. This mapping is subject to constraints that govern the relationships and

arrangement of elements. By studying these configurations, researchers explore the interactions

between constraints, structure, and mappings in combinatorics.

The combinatorial configurations are studied in publications [7,14,24–27,33,34,71,81,82],

where there is an assumption that the initial and resulting sets are finite. In [24,27,71], the

concept of a combinatorial configuration was further developed by relaxing the requirement

that the resulting set is finite, allowing it to be countable. As a result, the definition of

10



Introduction

combinatorial objects and combinatorial objects of a certain order was introduced. This made

it possible to significantly expand the range of real problems that can be formulated and

analyzed using such a concept.

Any combinatorial configuration can be associated with a certain point in Euclidean

space. Then, the set of combinatorial configurations corresponds to a finite point configuration,

which we call a combinatorial point configuration. It is obvious that there are an infinite

number of such mappings.

We will, therefore, require that the combinatorial point configuration have a special

structure. In this regard, we will use the concept of Euclidean combinatorial sets introduced

by Yu. Stoyan in the preprints [74, 75] and further studied in [53, 59, 60, 76–81]. In accordance

with Yu. Stoyan, elements of Euclidean combinatorial sets differ in constituent items or their

order. A mapping is proposed for such sets, called immersion into Euclidean space. As a result

of immersion, finite point configurations with specific properties are formed. This enables the

combinatorial polytope theory to study various classes of finite point configurations.

In combinatorics, the basic combinatorial configurations are permutations and partial

permutations. Evidently, permutation and partial permutation sets are Euclidean combinato-

rial. Therefore, the monograph focuses on the finite point configurations corresponding to

these sets. We singled out the classes permutation point configurations, multipermutation

point configurations, partial permutation point configurations, and partial multipermutation

point configurations then studied their properties.

The monograph is organized as follows.

The first chapter presents the basic definitions of sets, multisets, logical operations over

them and mappings. The concept of a finite point configuration, as a collection of singleton

sets in Euclidean space, is introduced. Methods are proposed for decomposing finite point

configurations into planes and surfaces. A serface-located set is defined, and special classes of

spherically-located and superspherically-located sets are singled out. The decomposition of

finite point configurations on various surfaces are carried out. The properties of combinatorial

polytopes as convex hulls of finite point configurations are described. Classes of multilevel

and vertex-located sets are identified. Methods for functional-analytical description of some

11
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classes of finite point configurations are offered.

In the second chapter, an in-depth exploration of the properties of different types of

finite point configurations is undertaken, focusing on vertex-located and surface-located sets.

An important class of polyhedral-surface sets is introduced, and its subclasses are singled out.

Moreover, we establish a relationship between finite point configurations and vertex-located,

surface-located, and polyhedral-surface sets. The chapter also delves into the properties of

multilevel sets and the corresponding multilevel polytopes, enabling the exploration of their

specific characteristics and geometrical properties. Furthermore, the properties of a finite

point configurations formed as a result of logical operations over them are investigated. This

chapter comprehensively studies the properties and relationships between different types of

finite point configurations, including vertex-located, surface-located, and polyhedral-surface

sets. It also sheds light on the behavior of configurations obtained under logical operations of

other suvh configurations.

The third chapter examines the concept of combinatorial configurations, as defined

by C.Berge. Combinatorial configurations are characterized as mappings that transform an

initial set of items of any nature onto a finite resulting set with a specific structure, subject to

a given set of constraints. Next, we explore sets of combinatorial configurations and introduce

their mapping into Euclidean space. In this way, finite point configurations are formed called

combinatorial point configurations. We have defined a mapping for a set of combinatorial

configurations such that the corresponding combinatorial point configuration has the properties

described in Chapter 2, particularly vertex-located or polyhedral-surface-located. It is justified

that so-called Euclidean combinatorial sets under specific mapping into Euclidean space have

this property.

A typology of combinatorial point configurations is proposed. In particular, permuta-

tion point configurations, multipermutation point configurations, partial permutation point

configurations, and partial multipermutation point configurations are introduced. Examples

are given to illustrate the combinatorial structure of such configurations. Combinatorial

point configurations generated by sets of all permutations and multipermutations, partial

permutations, partial multipermutations, and unbounded partial permutations are called

12
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entire ones.

Chapters 4 and 5 focus on an in-depth exploration of two main classes of combinatorial

point configurationsets: entire multipermutation and partial multipermutation point configura-

tions. The cardinality, symmetry and multilevelness of these sets are explored. We delve into

the concept of combinatorial polytopes as convex hulls of combinatorial point configurations.

The dimension of polytopes and criteria for identifying their vertices are analyzed, methods of

analytical description are proposed, and their equivalence in a certain sense is investigated.

The properties of vertex- and surface-located combinatorial point configurations are studied by

considering the spatial relationships between the vertices of polytopes and the circumscribed

surfaces around them. Relevant illustrations and explanations accompany the theoretical

material.

In conclusion, the main contributions of this monographic study are summarized.

Additionally, potential promising avenues for future developments are outlined.

When describing the main material, our approach involved using conventional and

specific terminology in accordance with the provided list of references. Furthermore, at the

outset of each chapter, we list the main sources that formed the basis of its content.

13





Chapter 1
Background of finite point configurations

In this chapter, we study finite sets of isolated points in n-dimensional Euclidean space

called finite point configurations (FPC) [17, 88]. When presenting the main material of the

monograph, definitions of set and multiset are used in accordance with the generally accepted

terminology. The classification of finite point configurations is carried out using the theory of

convex surfaces. In this case, the concepts of surface-located and vertex-located sets introduced

in [39, 40, 91] were used. The decomposition of finite point configurations is based on the

papers [1, 2, 17]. Approaches to the analytic description of finite point configurations are

proposed based on the so-called f-representations [39–42, 48, 50]. When considering convex

hulls of finite point configurations, the theoretical principles of polytopes [4, 20, 23, 65, 68, 106]

were applied.

1.1 Sets and multisets, order relations and mappings

A concept of a set is initial and has no definition. A set is believed to be a collection of

elements united by a common feature and considered a whole.

As a rule, capital letters of the Latin alphabet are used to designate sets, and the

corresponding small letters are used to denote their elements. For example, if a collection of

elements of a set X is characterized by a feature Ω, then the notation X = {x | Ω} is used,

and the feature Ω itself is called a characteristic property of X.

Depending on the number of elements in sets, finite, countable, and continuum cardi-

15



1.1 Sets and multisets, order relations and mappings

nality sets exist. For finite sets, the notation is used:

X = {x1, ..., xη}, (1.1)

and for counting ones:

X = {x1, ..., xη, ...}.

To specify the number of elements of a finite set X, we will use the notation |X|, i.e.

in the representation (1.1), η = |X|.

We introduce the notation Jn = {1, ..., n} for a set of the first n natural numbers, and

for finite sets, we will further use the notation X = {xi}i∈Jn .

Using the concept of a set is not convenient enough if a set is considered which elements

are different in themselves while coinciding in the chosen characteristic property. For example,

the sets A = {a, a, b, c, c} and A = {a, b, c} are equivalent, and |A| = 3. If the collection

contains the same elements and is required to consider their multiplicity, then we will use the

concept of a multiset.

By multiset, we mean a collection of elements

G = {g1, ..., gη} , (1.2)

not necessarily different with a common feature.

Various elements of a multiset G form a set called an underlying set

S (G) = {e1, ..., ek} . (1.3)

To specify a multiset, multiplicities of its elements have to be specified. Let ηi be a

multiplicity of ei (i ∈ Jk). A vector of multiplicities

[G] = (η1, η2, ..., ηk) ,
k∑

i=1
ηi = η

is called the primary specification of the multiset G.

16



1.1 Sets and multisets, order relations and mappings

On the other hand, the multiset G can be represented as

G = {eη1
1 , ..., e

ηk
k } . (1.4)

Thus, there are several ways to represent a multiset.

Further, we will use the notation {.} for unordered sequences of elements and [.] (or

⟨.⟩) for ordered sequences of elements; (.) will be utilized for vectors, i.e. ordered sequences of

real numbers.

Note that a multiset G coinciding with its underlying set S(G) is a set, i.e.

G = S (G) , [G] = (1η) .

Moreover, in order to emphasize that among the elements of G, our interest in distinct

ones, we will move to consideration of S(G).

In these notations: if G is a multiset of the form (1.4), that ⟨G⟩ is an ordered sequence

of its elements of the form ⟨g1, ..., gη⟩; (G) is a vector (g1, ..., gη) ∈ Rη.

Note that the transition operation from G to ⟨G⟩ is always defined, while the transition

from G to (G) is defined only for a numerical multiset G.

In this case, for numerical multisets, we will distinguish between the representations

⟨G⟩ and (G), assuming that they consist of elements of different natures allowing a one-to-one

mapping between them.

The following basic operations are defined on multisets: union, intersection, complement,

symmetric difference, arithmetic sum, direct product, etc.

A union of multisets A and B is the multiset C = A ∪ B consisting of all elements

present in at least one of these multisets, where the multiplicity of each element in C is equal

to the maximum multiplicity of elements in A and B. In other words, a pairwise comparison

of each element of the multisets A and B is performed, and an element with the highest

multiplicity is selected in each pair.

An intersection of multisets A and B is the multiset C = A ∩ B consisting of all

elements present in each of the multisets, and the multiplicity of each element in C is equal to

17



1.1 Sets and multisets, order relations and mappings

the minimum multiplicity of elements of A and B. In this case, elements of the multisets A

and B are pairwise compared, and the element with the smallest multiplicity is selected in

each pair. In this case, elements of multisets A and B is compared in pairs, and in each pair

the element with the smallest multiplicity is selected.

An arithmetic sum of multisets A and B is the multiset C = A
⊕
B consisting of all

elements present in at least one of these multisets, and the multiplicity of each element in C is

equal to the sum of its multiplicities in A and B.

Further, we will use the inverse operation of transition from ordered sequences and

vectors to a multiset of their coordinates. For this, we will use the notation {x}. For example,

if x is a vector of the form (x1, ..., xn), then a set of its coordinates is {x1, ..., xn}.

Similarly to sets, one can introduce various types of relations on multisets.

A binary relation R on a multiset G is called a nonstrict partial order relation if it

satisfies the following conditions:

• reflectivity: ∀x ∈ G : xRx;

• antisymmetry: ∀x, y ∈ G : xRy ∧ yRx ⇒ x = y;

• transitivity: ∀x, y, z ∈ G : xRy ∧ yRz ⇒ xRz.

A nonstrict partial order relation R, denoted by ≼, is called a linear order if the

condition ∀x, y ∈ G (xRy ∨ yRx), where a multiset G where the linear order relation is

introduced, is called linearly ordered.

An antireflective, antisymmetric, and transitive order relation is called strict and is

denoted by the symbol ≺. A set G on which a strict order is introduced (i.e. ∀x, y ∈ G

(x ≺ y ∨ y ≺ x)) is called strictly ordered.

Suppose that G is linearly ordered, i.e.

gi ⪯ gi+1, i ∈ Jη−1, (1.5)

then its underlying set S(G) will be strictly ordered, i.e.

(1.6)ei  ≺  ei+1,  i  ∈  Jk−1.

  18



1.1 Sets and multisets, order relations and mappings

If S(G) is a numerical set, i.e.

ei ∈ R1, i ∈ Jk,

then, since any two numbers x, y ∈ R1 are comparable and are in one of three relations x > y,

x < y, or x = y, the conditions (1.5), (1.6) are always met, and (1.5) becomes

gi ≤ gi+1, i ∈ Jη−1, (1.7)

and (1.6) becomes

ei < ei+1, i ∈ Jk−1.

The defining principle of the concept of combinatorial configurations and their clas-

sification is the use of different types of set mapping. Therefore, we give the following

definitions.

It is assumed that the mapping χ of the set B into the set A is given if each element

b ∈ B is matched by a unique element a ∈ A. The correspondence between a and b is written

as equality a = χ(b), and the mapping χ is denoted by χ : B → A.

In this case, the element a is an image of the element b under the mapping χ, and the

element b is a preimage of the element a denoted as b = χ−1(a).

Similarly, a set A is an image of a set B and is denoted by A = χ(B), and a set B is a

preimage of a set A and is denoted by B = χ−1(A).

A mapping χ : B → A is surjective if any element a ∈ A has at least one preimage

b ∈ B under this mapping. In other words, for each a ∈ A there exists b ∈ B such that

a = χ(b). If χ it is a surjective mapping, then χ(b) = a. For finite sets A and B, surjective

mapping χ : B → A means that |B| ≥ |A|.

A mapping χ : B → A is injective if for any b′, b′′ ∈ B, such that b′ ̸= b′′, holds

χ(b′) ̸= χ(b′′). If B and A are finite, then an injective mapping χ : B → A means that

|B| ≤ |A|.

A mapping χ : B → A is bijective if it is both surjective and injective. Therefore,
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1.2 Finite point configurations and their decompositions

a bijective mapping χ means that under the condition a = χ(b), for each a ∈ A, b ∈ B is

uniquely determined. In this case, a bijective mapping χ : B → A establishes a one-to-one

correspondence between the sets B and A. We have |B| = |A| if B and A are finite,

1.2 Finite point configurations and their decompositions

Let E be a finite set of isolated points in Rn. Denote:

E = {x1, ..., xnE
} ⊂ Rn. (1.8)

where nE is the cardinality of E.

Clearly, the set E is a finite point configuration.

Let xi = (xij)⊤
j∈Jn

, i ∈ JnE
. We introduce a set of values of coordinates of E-points:

Xj = {ej1, ..., ejkj
} = S({xij}i∈JnE

), j ∈ Jn, (1.9)

forming from them the n-dimensional finite lattice:

X =
n
⊗

j=1
Xj.

It is easy to see that the points of E are the grid nodes:

∀x ∈ E x ∈ X.

Remark 1.1. Without loss of generality, we assume that kj ≥ 2, j ∈ Jn. Otherwise, some

coordinates of E-points can be fixed, and the dimension can be reduced.

Let us form a set of different coordinates of E-points by combining the sets (1.9) and

single outing the underlying set of the resulting multiset:

A = {e1, ..., ek} = S(
n
∪

j=1
Xj). (1.10)
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1.2 Finite point configurations and their decompositions

The set A will be called the generating set of E.

We note the following features of the discrete lattice An constructed on its basis:

• k ≥ max
j∈Jn

kj, which implies that k ≥ 2, |An| ≥ 2n;

• X ⊆ An, respectively, ∀x ∈ E x ∈ An.

Consider an issue of decomposition of a set E by surfaces and its decomposition into

pairwise disjoint subsets.

Let a function h(x) be defined on the set E. The problem of expanding E into the

family of surfaces given by the function h(x) is to find level surfaces of this function:

S i = {x ∈ Rn : h(x) = hi}, i ∈ Jmh(x) , (1.11)

such that

hi < hi+1, i ∈ Jmh(x)−1, (1.12)

E i = E ∩ S i ̸= ∅, i ∈ Jmh(x) , (1.13)

E =
mh(x)⋃
i=1

E i. (1.14)

This  means  that

∀  i  ≠  i′  E  i  ∩  E  i′  =  ∅,  (1.15)

wherefrom  it  is  seen  that  the  decomposition  (1.14)  of  E  into  pairwise  disjoint  subsets  (1.13)

is  constructed  with  the  number  of  components  that  depend  essentially  on  the  type  of  h(x).

Below  we  will  call  the  set  E  mh(x)-level  with  respect  to  the  function  h(x).

  This  raises  the  following  questions  to  be  considered:

•  what  properties  the  resulting  do  the  discrete  sets  {E  i}i∈Jmh(x)  
have  depending  on  the

  form  of  a  set  E  and  a  function  h(x);

•  how  to  find  feasible  points  of  these  sets;

•  how  to  specify  the  function  h(x)  to  decrease  or  increase  the  number  of  components  in

  the  decomposition.
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1.2 Finite point configurations and their decompositions

Depending on which function h(x) will be taken as the basis of the decomposition, the

formulas (1.13) and (1.14) will define the decomposition of E into parallel hyperplanes, nested

hyperspheres, ellipsoids, piecewise linear surfaces, etc.

Suppose h(x) is convex1 , and the convex set C1 = {x ∈ Rn : h(x) ≤ h1} contains

interior points, i.e. C1 is a convex body. Then the surface S1 = {x ∈ Rn : h(x) = h1} is the

boundary of the convex body C1 and is called a complete convex surface, and its arbitrary

subset, including itself, is a convex surface. Then, taking into account (1.12), we have

Ci = {x ∈ Rn : h(x) ≤ hi} , i ∈ Jmh(x) (1.16)

is a set of convex bodies. Respectively, (1.11) is a family of complete convex surfaces, and the

formulas (1.13) and (1.14) define a decomposition of E into these convex surfaces.

Introducing the notation fi(x) = h(x) − hi we can rewrite (1.11) as

S i = {x ∈ Rn : fi(x) = 0}, i ∈ Jmh(x) . (1.17)

Convex surfaces have the peculiarity that the Gaussian curvature and all the principal

curvatures of all their points are non-negative. If the function h(x) is strictly convex, then

the set of its non-differentiability points is at most countable. Accordingly, a set of points of

surfaces (1.17) with zero Gaussian curvature will also be at most countable, i.e. strictly convex

surfaces. Therefore, the formulas (1.13) and (1.14) define a decomposition of E into a family

of strictly convex surfaces. Finally, if h(x) is a strongly convex function, then the Gaussian

curvature of all points of surfaces (1.17) is positive, i.e. these surfaces are n− 1-convex.
1Let D ⊆ Rn be convex.

A function f (x) defined on D is called convex on D if for any x, y ∈ D and, for an arbitrary λ ∈ [0, 1], the
following inequality holds:

f (λx + (1 − λ) y) ≤ λf (x) + (1 − λ) f (y) .

If on D this inequality holds as strict, i.e. ∀λ ∈ (0, 1),

f (λx + (1 − λ) y) < λf (x) + (1 − λ) f (y) ,

function f (x) is called strictly convex.
If, in addition, there exists ρ > 0 such that ∀λ ∈ (0, 1), ∀ x, y ∈ D:

f (λx + (1 − λ) y) ≤ λf (x) + (1 − λ) f (y) − λ(1 − λ)ρ||x − y||2,

the function f (x) is strongly convex on D with a strict convexity parameter ρ.
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1.2 Finite point configurations and their decompositions

Respectively, (1.13), (1.14) will be expanded in a family of n− 1-convex surfaces.

We will mainly consider two types of decompositions of finite sets in families of convex

surfaces: a) in parallel hyperplanes; b) in strictly convex surfaces.

Let us consider a one-level set with respect to a function h(x). Let mh(x) = 1. Then,

omitting the index i in the formulas (1.16) and (1.17), we get

C = C1 = {x ∈ Rn : f1 (x) ≤ 0} = conv S, (1.18)

S = S1 = {x ∈ Rn : f1 (x) = 0} . (1.19)

If f1 (x) is a strictly convex function, the body (1.18) will be called a strictly convex

body. Its boundary is a strictly convex surface S coinciding with a set of extreme points of C.

Recall that a point x is called the extreme point of a set C if it cannot be represented as a

convex combination of any other two points of this set.

We introduce the following definitions.

Definition 1.1. A finite point configuration E is called a surface-located set (SLS), if there

exists a strictly convex surface S such that

E ⊆ S. (1.20)

In other words, E is a SLS if there exists f1 (x) such that

∀λ ∈ (0, 1) ∀x, y ∈ Rn f1 (λx+ (1 − λ) y) < λf1 (x) + (1 − λ) f1 (y) , (1.21)

the formula (1.19) defines a strictly convex surface, and the condition (1.20) is satisfied. SLS

can be classified depending on the shape of S.

Definition 1.2. A finite point configuration E is called a spherically-located set if there exists

a hypersphere of radius r centered at the point a = (ai)i∈Jn ∈ Rn:

Sr (a) =
{
x ∈ Rn :

n∑
i=1

(xi − ai)2 = r2
}

(1.22)
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1.2 Finite point configurations and their decompositions

such that

E ⊆ Sr (a) .

Thus, if the surface (1.19) has the shape

S = Sr (a) ,

the set (1.20) is spherically-located.

Similarly, we introduce two more classes of finite point configurations:

• a finite point configuration E of the shape (1.20) is called an ellipsoidally-located set if

(1.19) is an ellipsoid centered at a ∈ Rn:

S =
{
x ∈ Rn : (x− a)TA (x− a) = 1

}
, (1.23)

where A ≻ 0 is a positive definite matrix of order n;

• a finite point configuration E is called a superspherically-located set if the equation

defines the surface (1.19):

S =
{
x ∈ Rn :

n∑
i=1

(xi − ai)2α = r2α

}
, (1.24)

where α ∈ (0.5,∞), i.e. S is a supersphere [36] of radius r centered on a point a ∈ Rn

and deformation coefficient α.

The supersphere (1.24) is conveniently defined using the lp-norm2:

∥x− a∥2α = r.

The hypersphere (1.22) is a special case of the supersphere for α = 1 and can be defined

2∥x∥p = (
n∑

i=1
xp

i )1/p is a ℓp-norm p ≥ 1.
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1.2 Finite point configurations and their decompositions

using the Euclidean norm3:

∥x− a∥2 = r.

The equation

x⊤Ax+ b⊤x+ c = 0 (1.25)

defines the ellipsoid (1.23), where A ≻ 0, x, b ∈ Rn, c ∈ R1.

If only (1.21) is violated from the conditions (1.19)-(1.21), then E is located on the

surface S (surface-located, S-surface-located). At the same time, the convex body (1.18) can

be either bounded and unbounded (further referred to as Case 1.2.1), a subset of points of

S where the function f1(x) is non-differentiable, may be uncountable (further referred to as

Case 1.2.2).

Let us illustrate this with examples.

Case 1.2.1: if f1 (x) is linear, then (1.18) defines a half-space, i.e. unbounded domain.

In this case, we say that E is located on the hyperplane (1.19) or is plane-located.

Case 1.2.2: As an example of a bounded domain (1.18), we consider f1 (x) = ∥x− a∥1 −

14 or f ∗
1 (x) = ∥x− a∥∞ − 1 5. Because the f1 (x), f ∗

1 (x) - convex piece-wise linear functions,

i.e. are not strictly convex. In this case, we say that E is located on a polyhedral surface (a

piece-wise linear surface):

• in the first case, the surface is a surface of a hyperoctahedron:

S = {x ∈ Rn : ∥x− a∥1 = 1} ; (1.26)

• in the second case, the surface is a surface on a hypercube (see Sec. 5.9):

S = {x ∈ Rn : ∥x− a∥∞ = 1} . (1.27)

3∥x∥2 =
√

n∑
i=1

x2
i - ℓ2-norm (the Euclidean norm)

4∥x∥1 =
n∑

i=1
|xi| - ℓ1-norm (Manhattan distance, the Taxicab norm)

5∥x∥∞ = max
i

|xi| - ℓ∞-norm (maximum norm)
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1.2 Finite point configurations and their decompositions

Accordingly, the convex body (1.18) itself will be a polytope, which is a hyperoctahedron

in the case of (1.26), and it is a hypercube in the case of (1.27).

Suppose that h(x) is a strictly convex function such that the formulas (1.11) and

(1.12) yield the decomposition of E in a family of strictly convex surfaces, particularly the

decomposition (1.13)-(1.15) of E into surface-located sets of the form (1.13).

Ci = {x ∈ Rn : h(x) ≤ hi}, i ∈ Jmh(x) (1.28)

defines a sequence of strictly convex bodies nested inside each other:

Ci ⊂ Ci+1, i ∈ Jmh(x)−1.

Particularly, if h(x) = (x−x0)2, the formulas (1.11) and (1.12) define the decomposition

of E into a family of hyperspheres, resulting in the decomposition of E into spherically-located

sets. The set (1.28) is a finite sequence of nested balls.

Now we move to the case when the function h(x) is linear:

h(x) = n⊤x, where n⊤ ̸= 0, (1.29)

where 0 ∈ Rn is zero vector.

The function h(x) is determined by a vector n of a normal to the hyperplane (normal

vector):

H(n) = {x ∈ Rn : n⊤x = 0}. (1.30)

Thus, the formulas (1.11)-(1.15) can be rewritten in terms of n, using the notation m(n) for

the number of different values the function (1.29) taken on E, which implies that m(n) = mh(x)

satisfies the constraints:
E =

m(n)
∪

i=1
Ei(n),

∀ i ̸= i′ Ei(n) ∩ Ei′(n) = ∅;

Ei(n) = H i(n) ∩ E ̸= ∅,

(1.31)
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1.2 Finite point configurations and their decompositions

where

H i(n) = {x ∈ Rn : n⊤x = hi}, i ∈ Jm(n) . (1.32)

The formula (1.32) defines the decomposition of E into a family of hyperplanes parallel

to the hyperplane (1.30) (further referred to as a decomposition of E into parallel hyperplanes

toward the vector n. The finite point configuration E itself will be called m(n)-level toward

the vector n.

Further, to emphasize that we deal with a decomposition of E toward the normal vector

of the hyperplane H, we will use the notation nH . Respectively, m(nH) will be referred to as

the levelness of E towards the direction nH . Suppose (1.30) is a coordinate hyperplane xj = 0.

In that case, we will use the following notation:

H(nj) = {x ∈ Rn : xj = 0}, (1.33)

where

nj = (nij)i∈Jn : nij =


1, i = j,

0, i ̸= j

(i ∈ Jn)

The decomposition of E into hyperplanes parallel to the coordinate hyperplane (1.33)

is referred to as the decomposition of E along the coordinate xj , and the value m(nj) is called

the levelness of E along the coordinate xj (j ∈ Jn).

The maximum of m(nj) (j ∈ Jn) is denoted by

m′(E) = max
j∈Jn

m(nj) (1.34)

and is called the levelness of E along coordinates, and this set itself is called m′(E)-level along

coordinates.

Let us establish a connection between m′(E) and the cardinality k (see (1.10)) of the

generating set of E.

First, we form the decompositions of E along coordinates based on the formula (1.9)
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1.2 Finite point configurations and their decompositions

and the following obvious representations of this set:

E =
kj

∪
i=1
Eij, j ∈ Jn. (1.35)

where

H ij = H i(nj) = {x ∈ Rn : xj = eij}; (1.36)

Eij = H ij ∩ E ̸= ∅, i ∈ Jkj
, j ∈ Jn. (1.37)

This leads to m(nj) = kj (j ∈ Jn) and

m′(E) = max
j∈Jn

kj.

Note that m′(E) is bounded from above by the cardinality of a set A generating E,

and from below, according to Remark 1.1, by the value 2. Hence, 2 ≤ m′(E) ≤ k.

If a finite point configuration E is known to be generated by a set A = {e1, ..ek}, while

the representation (1.9), (1.10) is unknown, E can be represented as follows:

E =
k
∪

i=1
Eij, j ∈ Jn; (1.38)

H ij = H i(nj) = {x ∈ Rn : xj = ei}, i ∈ Jk, j ∈ Jn; (1.39)

Eij = H ij ∩ E. (1.40)

Moreover, some of the sets (1.40) may be empty, respectively, the representation (1.38)-

(1.40) will not be a decomposition of E into parallel hyperplanes in the case if the last of the

conditions (1.31) is violated.

To move to the decomposition of E, we introduce sets

Ij ⊆ Jk : Eij ̸= ∅, kj = |Ij|, j ∈ Jn. (1.41)
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1.3 Convex hulls of finite point configurations

Now, we can derive an E-decomposition along coordinates:

E = ∪
i∈Ij

Eij, j ∈ Jn, (1.42)

where Ij is given by (1.41).

Notice, that Xj = {ej1, ..., ejkj
} = {ei}j∈Ij , j ∈ Jn, i.e. the decompositions (1.39)-(1.42)

and (1.35)-(1.37) are identical.

Also, we introduce the notation for projections of the sets (1.40) onto hyperplanes:

E
′ij = PrHijEij, i ∈ Jk, j ∈ Jn. (1.43)

Note that the sets (1.40) are usually representable as a projection of the initial finite

point configuration E onto H ij:

E
′ij = PrHijE, i ∈ Jk, j ∈ Jn. (1.44)

In terms of projections (1.43), the condition (1.41) can be rewritten as

Ij ⊆ Jk : E ′ij ̸= ∅, kj = |Ij|, j ∈ Jn.

Accordingly, an indicator that (1.40)-(1.42) yields the decomposition of E along coor-

dinates is the condition:

E
′ij ̸= ∅, i ∈ Jk, j ∈ Jn, (1.45)

which, in turn, is equivalent to Eij ̸= ∅, i ∈ Jk, j ∈ Jn.

1.3 Convex hulls of finite point configurations

Introduce a set D ⊆ Rn. Its convex hull is a set of all convex combinations of points of

D, and its affine hull is a set of all affine linear combinations of its points. The convex and

affine hulls of D are denoted by conv D and aff D, respectively.
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1.3 Convex hulls of finite point configurations

Definition 1.3. A convex hull of a finite set D is called a polytope induced by D.

Based on this definition, the convex hull

P = conv E (1.46)

of a finite point configuration E is a polytope.

The dimension of a polytope P , dim P , is the dimension of its affine hull:

d = dim P = dim aff (P ) , (1.47)

i.e. it is the maximum number of linearly independent vectors in aff (P ).

A polytope satisfying the condition (1.47) is called a d- dimensional polytope (d-

polytope).

A polytope is called full-dimensional if its dimension coincides with the dimension of

Euclidean space where it is given. For example, the polytope P ⊂ R⋉ is full-dimensional if

and only if dim P = n.

Since by assumption, E is non-empty, P is also a non-empty set, so it has a support

hyperplane H, i.e. a hyperplane that has common points with P and such that the entire

polytope lies in one of the two half-spaces defined by the hyperplane H. The resulting

non-empty set F = P ∩H is called the face of the polytope P generated by the supporting

hyperplane H, and i = dim F is called the face dimension of the polytope. Faces of dimension

i are called i-faces. Depending on the value of i ∈ J0
d−1 = Jd−1 ∪{0}, the following terminology

is used for denoting i-faces of P : 0-faces are vertices of P , 1-faces are its edges, ..., d− 1-faces

are hyperfaces (facets).

Let Fi be a set of i-faces of P , and fi be their number (fi = |Fi|), i ∈ J0
d−1, H is a set

of supporting hyperplanes to P -facets. The values fi, i ∈ J0
d−1 are coordinates of a polytope

P ’s f-vector, f = (f0, f1, ..., fd−1).

A set of vertices of a polytope P is denoted by vert P or V (P ), a set of edges by
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1.3 Convex hulls of finite point configurations

edges P or E(P ), and a set of facets by facets P or F (P ), i.e.

vert P = F0, edges P = F1, facets P = F = Fd−1.

Respectively,

|vert P | = f0, |edges P | = f1, |F| = |H| = fd−1.

For a set of vertices of a polytope P we will use the notation V , We will use the notation

V for a set of vertices of a polytope P and the notation v[.] for its elements, i.e.

V = vert P = {vi}i∈JnV
,

where nV = |V | = f0. Similarly, we will use the notation F[.] for P -facets and H[.] for their

corresponding support hyperplanes:

F = {Fi}i∈Jfd−1
, H = {Hi}i∈Jfd−1

.

Let us introduce the so-called V - and H-representations of a polytope P .

The V -representation (defining in a parametric form) of a polytope P is defining it as

a convex hull of its vertex set:

P = conv V. (1.48)

Note that the representations (1.46) and the V -representation (1.48) are special cases

of P -representations of the form:

P = conv E ′,

where E : V ⊆ E ′ ⊆ E,

(1.49)

for E ′ = V and E ′ = E, respectively.

A distinctive feature of the V -representation in the family (1.49) is that it is minimal

in the sense that the elimination of any element from V and the subsequent formation of a

31



1.3 Convex hulls of finite point configurations

convex hull leads to a formation of a polytope, different from P :

∀ v ∈ V P ⊃ P ′ = conv(P\{v}).

Accordingly, it is minimal in terms of the number of points in a set generating P , i.e.

in the number of elements in the V -representation of the polytope. The case when the family

(1.49) includes a single representation of P that is only possible if

E = V = vert P, (1.50)

in other words, |nE| = |nV |, will be considered specifically.

Definition 1.4. A finite point configuration E is called a vertex-located set (VLS) if it

coincides with a set of vertices of its convex hull:

E = vert conv E. (1.51)

Given (1.46), the condition (1.51) can be rewritten as an expression (1.50), which will

be used further as a vertex locality condition for E.

If E is not a VLS, then the condition E = E\V ̸= ∅ is satisfied, i.e. it contains interior

points of the polytope P or its faces.

Checking the condition (1.50), and then in case of its failure, deriving conditions

(necessary and sufficient) of whether an arbitrary x ∈ E is a vertex P is the problem of

constructing V -representations of a polytope P given in the form (1.46). A solution to this

problem for a VLS is trivial. Indeed, membership of E is a necessary and sufficient condition

for a point x to be a vertex of P . However, for an arbitrary E, checking the fulfillment of the

condition (1.50), extracting the set E from E, and, accordingly, the problem of constructing a

V -representation can be challenging.

This problem for a VLS is solved if its elements give themselves. In addition, these

sets possess many specific features that will be studied below. Any non-vertex-located set E

allows the decomposition of (1.14), (1.15) into vertex-located subsets.
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1.3 Convex hulls of finite point configurations

Now we move to the consideration of the H-representation (H-presentation, the analytic

form ) of a polytope P , which is its representation by a linear system of constraints:

A′x ≤ a′
0, A

′′x = a′′
0,

x ∈ Rn, A′ = (a′
ij) ∈ Rn′×n, A′′ = (a′′

ij) ∈ Rn′′×n,

a′
0 = (a′

i0) ∈ Rn′
, a′′

0 = (a′′
i0) ∈ Rn′′

.

(1.52)

The problem of constructing an H-representation of a polytope P consists in finding

the numbers n′, n′′, matrices A′, A′′ and vectors a′
0, a

′′
0 such that (1.52) defines P .

Let A′ = (a′
ij)i∈Jn′ ,j∈Jn , a′

0 = (a′
i0)⊤

i∈Jn′ ; A
′′ = (a′′

ij)⊤
i∈Jn′′ , j∈Jn

, a′′
0 = (a′′

i0)i∈Jn′′ . (1.52) in a

vector form:

a′
ix ≤ a′

i0, i ∈ Jn′ , a′′
i x = a′′

i0, i ∈ Jn′′ , (1.53)

where a′
i = (a′

ij)j∈Jn′ , a
′′
i = (a′

ij)j∈Jn′′ , (1.54)

where

a′
i = (a′

ij)j∈Jn′ , a
′′
i = (a′

ij)j∈Jn′′ .

Remark 1.2. The rank of the matrix A′′ is

ρ = rank A′′. (1.55)

The value (1.55) allows estimating the dimension of P from below:

dim P ≥ n− ρ. (1.56)

If, in addition, an interior point P of the affine subspace a′′
i x = a′′

i0, i ∈ Jn′′ , this

(1.57)

inequality  turns  into  equality,  i.e.  if

∃x0  ∈  E  :  A′x0  =  a′
0,  A

′′x0  <  a′′
0  ⇒

dim  P  =  n  −  ρ.
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1.3 Convex hulls of finite point configurations

Each equation in an H-representation of a polytope P defines a hyperplane, and the

inequality defines a half-space and its bounding hyperplane, which may or may not be the

support hyperplane of its facet. Moreover, each facet of P is represented by a certain constraint

from the H-representation. Accordingly, n′ + n′′ ≥ |F| = fd−1 is valid.

Consider the case when

n′ + n′′ = |F|, (1.58)

i.e. this inequality is satisfied as equality.

An H-representation of a polytope P minimal in terms of the number of constraints is

called an irredundant H-representation of P .

The system of constraints (1.52) is an irredundant H-representation of P if eliminating

any constraint from it leads to a relaxation of P . Thus, the H-representation (1.53), (1.54) of

a polytope P is irredundant if

∀ i′ ∈ Jn′ P ⊂ P ′
i′ = {x ∈ Rn : a′

ix ≤ a′
i0}i∈Jn′ \{i′};

∀ i′′ ∈ Jn′′ P ⊂ P ′′
i′′ = {x ∈ Rn : a′′

i x ≤ a′′
i0}i∈Jn′′ \{i′′}.

(1.59)

If the condition (1.59) is violated, the H-representation (1.52) is said to be redundant.

Note that the sets P ′
i′ , P ′′

i′′ (i′ ∈ Jn′ , i′′ ∈ Jn′′) in (1.59) can be either bounded or

unbounded. In the first case, we will apply the term "relaxation polytope" to them.

Definition 1.5. A polytope P ′ is called a relaxation of a polytope P if P ′ ⊃ P and every

H-representation of P ′ is a proper subsystem of an irredundant H-representation of P ′.

The problem of constructing an irredundant H-representation of a polytope is to find

a linear system of constraints(1.52), (1.59). When this problem has been solved, then, due to

each equation (1.52) defines a support hyperplane associated with a hyperface of P . At the

same time, each inequality defines a certain such hyperplane, then the system of equations of

these support hyperplanes (further referred to as a system of hyperfaces’ equations) of P is

extracted directly from the H representation:

H : A′x = a′
0, A

′′x = a′′
0.
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1.3 Convex hulls of finite point configurations

Accordingly, we have the relation (1.58) for the number of facets P .

If the H-representation (1.53) and (1.54) is irredundant, then, by Remark 1.2, the value

ρ will satisfy the equality:

ρ = n′′. (1.60)

Accordingly, the bound (1.56) and condition (1.57) become

dim P ≥ n− ρ,

dim P = n′,

i.e. the dimension of P coincides with the number of inequalities n′ in its irredundant

H-representation.

Remark 1.3. Constructing a V -representation from anH-representation is a vertex enumeration

problem. Conversely, constructing an H-representation from a V -representation of a polytope

is a problem of listing hyperfaces. Based on the relationship between vertices and facets of a

polytope, these two problems are equivalent [12].

Each vertex x of P can be associated with a set of incident/adjacent facets and edges

of the polytope (adjacent edges). The first set includes all facets at the intersection of which

x is formed. The second set contains all P -edges with x as one endpoint and adjacent to x

point as another endpoint. Each vertex x ∈ V of the polytope P is associated with a set of

vertices adjacent to it called a neighbourhood of x:

N (x) = NP (x) = {y ∈ V : y ↔ x} , (1.61)

They are connected with x by an edge (x, y) ∈ edges P . Further, the notation N (x) will be

used when considering a neighborhood of one polytope and N[.] (x) when considering several

polytopes, where [.] is a polytope notation.

The number of vertices P adjacent to x ∈ V is denoted by R (x):

R (x) = |N (x)| .
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1.3 Convex hulls of finite point configurations

For x ∈ vertP , R (x) is a vertex degree.

If all vertices of a polytope have the same number of adjacent vertices

∀x ∈ V : R = R(x),

they are called regular, and the value R is the regularity degree of P -vertices.

Single-outing classes of polytopes with regular vertices, the formulation of conditions

for selecting a neighborhood N(x) from V for x ∈ V for a polytope P , and the adjacency

criterion for P -vertices are studied in polyhedral combinatorics and graph theory where graphs

of polytopes are explored.

Here we note a single feature of polytopes with regular vertices. The formula |edgesP | =
|V |R

2 or f1 = f0R
2 can find the number of its edges.

One of the well-known types of polytopes is simple polytopes, characterized by the

regularity degree of their vertices coinciding with their dimension, i.e.

R = dim P.

Simple polytopes include simplices, hypercubes, etc. An interesting peculiarity is that

their faces of arbitrary dimension are also simple polytopes.

Another class of polytopes is simplicial polytopes, which faces are simplices. Among

them are hyperoctahedrons, simplices, etc.

An important problem in the combinatorial theory of polytopes is the problem of

classifying and enumerating polytopes with a given face structure [4, 65, 68, 106], in particular,

polytopes with a given f-vector.

One can single out subclasses of so-called combinatorically equivalent polytopes in this

class. We introduce the following definitions.

A graph H(P ) of a polytope P with a set of vertices V (P ) and edges E(P ) is a graph

formed by vertices and edges P , i.e. H(P ) = (V (P ), E(P )).

Graphs H(P ) and H(P ′) are isomorphic if there exists a bijection V (P ) ϕ→V (P ′)

between sets of vertices of polytopes P, P ′ such that any two vertices of the graph H(P ) are
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1.3 Convex hulls of finite point configurations

adjacent if and only if the corresponding two vertices of the graph H(P ′) are adjacent:

∀v1, v2 ∈ V (P ) : v1 ↔ v2 ⇔

v
′

1 = ϕ (v1) , v
′

2 = ϕ (v2) : v′

1, v
′

2 ∈ V (P ′), v′

1 ↔ v
′

2.

(1.62)

Polytopes are combinatorically equivalent if the corresponding graphs of polytopes are

isomorphic.

To each polytope P for which the origin is an interior point, a dual polytope P∆ (a

polar polytope) can be associated whose f-vector coincides with the f-vector of the polytope

P up to reverse reordering of the coordinates. If f = (fi)i∈J0
d−1

is the f-vector of P , then

f∆ = (fd−i+1)i∈J0
d−1

will be the f-vector of its dual polytope P∆. In particular, |FP | = |VP ∆ |

and |VP | = |FP ∆ |.

For example, a hypercube and a hyperoctahedron of the same dimension are dual, while

a simplex is dual to itself. A distinctive feature of simple polytopes is that their duals are

simplicial, and vice versa. The hypercube and hyperoctahedron illustrate this property since a

hypercube is a simple polytope, while a hyperoctahedron is simplicial.

Suppose V -, H-representations are found for the polytope P . In that case, we can

discuss constructing a decomposition of the set of its vertices into parallel hyperplanes toward

normal vectors to its facets.

Definition 1.6. [1] A polytope P is called a m′′(P )-level polytope if for any facet F1 ∈ F

and the corresponding supporting hyperplane H1 ∈ H, there exists a family of (m′′(P ) − 1)

hyperplanes {Hi}i∈Jm′′(P )−1\{1} parallel to H1, such that all vertices of V lie on the hyperplanes

{Hi}i∈Jm′′(P ).

In terms of an m(n)-level set toward the vector n, this definition says that, in the

decomposition of a set V toward normal vectors to P -facets, levelness does not exceed m′′(P ).

It reaches the upper bound toward a normal vector of a certain facet. That is, if the number

m(nF ) of V decomposition levels toward normal vectors of its facets F needs to be found for

∀F ∈ F, then m′′(P ) is the maximum of all these values:

m′′(P ) = max
H∈H

m(nF ), (1.63)
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1.3 Convex hulls of finite point configurations

where, for each F , the vector nF is found from the condition:

HF = {x ∈ Rn : n⊤
Fx = bF } ∈ H, HF = {x ∈ Rn : n⊤

Fx = bF } ∈ H, F ∈ F, bF ∈ R1. (1.64)

The value m′′(P ) is bounded from below:

m′′(P ) ≥ 2, (1.65)

because ∀F ∈ F E ∩HF , E\ E ∩HF ̸= ∅.

Polytopes for which the inequality (1.65) turns into equality m′′(P ) = 2 form a wide

class of two-level polytopes (2-level polytopes), whose applications are known in polyhedral

combinatorics, combinatorial optimization, communication complexity, statistics, etc. [1, 2, 8,

16,17,17].

Among two-level polytopes are hypercubes and hyperoctahedrons, polytopes of inde-

pendent sets of perfect graphs (stable/independent set polytopes of perfect graphs), Hansen

polytopes, Hanner polytopes, Birkhoff polytopes, order polytopes of finite posets, etc. A

new subfamily of two-level polytopes has been discovered recently in matroid theory among

the base polytopes of two-level matroids [17,17]. Each class of two-level polytopes and their

corresponding vertices sets are associated with a certain optimization problem. For example,

the problem of finding the maximum independent set in a graph can be formulated as an

optimization problem on a vertex set of a two-level polytope of an independent set of this

graph. In contrast, the same problem on the polytope will be its relaxation.

Multilevel polytopes possess various outstanding properties. One of them is that each

two-level polytope P is combinatorically equivalent to a certain (0 − 1)-polytope P ′, i.e.

polytope whose vertices are (0 − 1)-vectors [111]:

∃P ′ ⊂ Rn : P ∼= P 0, vertP ′ ⊆ Bn.

For example, an n-dimensional cube is combinatorically equivalent to a hypercube

PBn = [0, 1]n, and an octahedron is combinatorically equivalent to the following (0 − 1)-
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1.4 Functional representations of finite point configurations

fj(x) = 0, j ∈ Jm′ , (1.67)

fj(x) ≤ 0, j ∈ Jm\Jm′ . (1.68)

are called an analytic representation (f-representation) of E.

The equations (1.67) is called a strict part of the f-representation, the inequalities (1.68)

is an unstrict part, and the number of constraints is the representation order. Particularly, m

is the order of the f-representation (1.67), (1.68), while m′, m′′ = m−m′ are the orders of its

strict and unstrict parts, respectively.

Individual constraints of the f-representation (1.67), (1.68) are its components, and it

itself is called an m-component functional representation of the set E.

Geometrically, an f-representation (1.67), (1.68) represents a finite point configuration

E as an intersection of m′-surfaces:

Sj = {x ∈ Rn : fj(x) = 0}, j ∈ Jm′ , (1.69)
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polytope:

P  =  conv{(1,  0,  0),  (0,  1,  0),  (0,  0,  1),  (1,  1,  0),  (1,  0,  1),  (0,  1,  1)}.

1.4  Functional  representations  of  finite  point

          configurations

Let  E  be  a  finite  point  configuration  in  Rn,  which  is  not  singleton  and

F  =  {fj(x)}j∈Jm  (1.66)

is  a  family  of  functions  defined  on  E  and  continuous  on  convE  ⊆  D.  As  a  rule,  we  will  assume 

D  =  Rn.

Definition  1.7.  A  representation  of  a  set  E  by  functional  dependencies



1.4 Functional representations of finite point configurations

subject to the inequality constraints (1.68) that form a discrete set E:

Cj = {x ∈ Rn : fj+m′(x) ≤ 0}, j ∈ Jm′′ . (1.70)

In terms of (1.69), (1.70), the fact that (1.67), (1.68) is a functional representation of

E can be represented as follows:

E =
(

∩
j∈Jm′

Sj

)⋂(
∩

i∈Jm′′
Cj

)
.

Let us classify functional representations depending on the type of functions involved,

the order of its strict and unstrict parts, and the functional representation as a whole.

By the form of functions (1.66) and (1.68), functional representations of a set E can be

linear and non-linear, continuous, differentiable, smooth, convex, polynomial, trigonometric,

etc. Further classification of the representations can be introduced for these classes. For

example, (1.67) and (1.68) is a polynomial f-representation of E if all functions in the family

F are polynomials. Introducing the notion of degrees of an f-representation as the highest

degree of these polynomials, one can single out linear, quadratic, cubic, biquadratic, and

polynomial representations of higher degrees f-representations.

The general problem of constructing a functional representation of a finite point

configuration E is to find a constraint system (1.67) and (1.68) analytically describing E. It

is easy to see that E has unlimited number of functional representations, so this problem is

always solvable. Indeed, to construct one of these representations, it suffices to form n different

interpolation polynomials over points of E, imposing additional constraints on the linear

independence of their gradients at these points. As a result of such a construction, the surfaces

defined by these interpolation polynomials may also also have other common points, except

for E. They can be cut off by constraints of type (1.68). For example, each "extra" point x0

can be cut off by a constraint of the form (x − x0)2 ≥ r2
0, where r0 > 0 is the radius of the

x0-neighborhood with no E-points. It results in a formation of a polynomial f-representation

of E of the degree |E| − 1. Thus, the problem of the existence of an f-representation of an

arbitrary FPC E turns out to be theoretically solvable along with the problem of deriving its

40



1.4 Functional representations of finite point configurations

polynomial functional representation. Moreover, the issue of the existence and subsequent

construction of polynomial representations of lower degrees can be addressed. Accordingly,

the original problem of constructing a functional representation of E can be concretized with

the problem of constructing a cubic, quadratic, linear, and other f-representations.

Note that the linear functional representation (1.67), (1.68) precisely coincides with

the linear equality system (1.52) and defines a polytope. Since a set E is not singleton, its

functional representations are always nonlinear. Therefore, the question is raised on the

existence of quadratic representations as polynomial representations of E of minimal degree.

Let us classify functional representations depending on the ratio of parametersm,m′, m′′.

We introduce into consideration several types of functional representations.

Definition 1.8. The constraint system (1.67) and (1.68) is called:

• a strict f-representation of E if it contains only the strict part:

m′ = m, m′′ = 0; (1.71)

• an unstrict f-representation of E if it has only an unstrict part:

m′ = 0, m′′ = m;

• the general f-representation if there are strict and unstrict parts in it:

m′ (m−m′) > 0.

For example, a functional representation

fi(x) = x2
i − xi = 0, i ∈ Jn (1.72)

is strict with and m = m′ = n. It defines the set Bn = {0, 1}n of n-dimensional binary vectors.

Geometrically, (1.72) represents Bn as an intersection of pairs of n parallel hyperplanes.
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1.4 Functional representations of finite point configurations

This set can be defined in another way:

f1(x) = (x− a)2 − n

4 = 0, a = 1
2

∈ Rn;

fi+1(x) = xi − 1 ≤ 0, fi+n+1(x) = −xi ≤ 0, i ∈ Jn

(1.73)

(here and below a = (a, ..., a)⊤ is a vector of the corresponding dimension, a ∈ R1). This

representation has parameters m′ = 1, m′′ = 2n, m = 2n + 1, i.e. this is the general f-

representation. Geometrically, it defines Bn as an intersection of a unit hypercube and a

hypersphere circumscribed about it.

Note that both of the above functional representations are quadratic.

Let us generalize the concept of an irredundant H-representation of a polytope to

a functional representation of a set. A system of constraints (1.67) and (1.68) is called an

irredundant f-representation of the set E if the exclusion of any of its constraints results in a

superset of E:

∀ j ∈ Jm′ E\Sj ⊃ E;

∀ i ∈ Jm′′ E\Ci ⊃ E.

For irredundant strict representations, we introduce the following terminologies:

• a two-component strict functional representation of E is called a tangent f-representation

if it coincides with a set of tangent points of the surfaces S1 and S2;

• a n-component irredundant strict functional representation is called an intersecting

f-representation.

Example 1.1. Let us consider functional representations (1.72) and (1.73) of the set Bn.

They are irredundant f-representations since eliminating any component from them leads to

the specification of its superset.

Following the above classification of strict irredundant representations, (1.72) is an

intersecting f-representation.

An example of a tangent representation of the set Bn is

S1 :
n∑

i=1

(
xi − 1

2

)2
= n

4 ; S2 :
n∑

i=1

(
xi − 1

2

)4
= n

16 , (1.74)
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1.4 Functional representations of finite point configurations

representing the binary set as an intersection of the hypersphere S1 and supersphere S2 with

a deformation coefficient of 2.

Let us demonstrate that one-component functional representations can define finite

point configurations. For illustration, we take an example of a functional representation (1.72)

by convolving all its components:

f1(x) =
n∑

i=1
(x2

i − xi)2 = 0. (1.75)

The equation (1.75) also defines the set Bn. It is non-convex, unlike the f-representation

(1.72)-(1.74). This demonstrates that the minimum order m of a convex f-representation of a

discrete set is two, and convex tangent representations are minimal f-representations by the

number of components. Similarly, for an arbitrary finite set for which an m-component irre-

dundant strict f-representation is known, various irredundant strict functional representations

of order m ∈ [1,m− 1] can be found similarly by convolutions of its various components.

If a set E ⊂ Rn is described analytically in some lifted space Rn′
, n′ > n [3], we say

about the existence of an extended functional representation of a set E. Lifting into a higher

dimension space can be convenient when forming f-representations of a certain set, such as

quadratic ones. If the extended functional representation is built, then projection into the

original space allows finding an f-representation of this set.
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Chapter  2
Finite  and  combinatorial  point  configurations

  This  chapter  discusses  the  properties  of  various  classes  of  finite  point  configurations.

The  class  of  polyhedral-surface  sets  and  their  special  subclasses  are  defined  in  accordance  with 

the  publications  [39,  40,  42].

  For  arbitrary  finite  point  configurations,  the  relationship  with  vertex-located  sets  is 

studied  in  accordance  with  [3].

  The  concept  of  a  multilevel  set  is  introduced  as  a  generalization  of  a  multilevel  polytope 

[1,  17].  The  properties  of  multilevel  sets  and  corresponding  polytopes  are  investigated.  The 

existence  of  a  bijection  between  two-level  sets,  two-level  polytopes  [2,  8,  16,  17],  and  two-level

(0  −  1)-sets  [111]  is  established.

  When  studying  finite  point  configurations  obtained  by  logical  operations  on  other  such 

configurations,  the  terminologies  and  theoretical  background  from  [20,  23,  112]  are  used.

2.1  Properties  of  finite  point  configurations

  Let  us  establish  a  connection  between  vertex-located  and  surface-located  sets.  The 

following  theorem  holds.

Theorem  2.1.  An  arbitrary  finite  surface-located  set  is  vertex-located.

  The  proof  is  based  on  the  fact  that  all  points  of  a  strictly  convex  surface  S  and,

accordingly,  of  a  set  E  ⊂  S  are  extreme,  while  the  vertex  set  of  a  polytope  P  =  convE

coincides  with  the  set  of  its  extreme  points.
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2.1 Properties of finite point configurations

Corollary 2.1. Finite spherically-, ellipsoidally-, and superspherically-located sets are vertex-

located.

Remark 2.1. Establishing vertex locality of discrete sets is, normally, rather complicated as

it requires proof of inclusions vert P ⊆ E and vert P ⊇ E. Theorem 2.1 offers a simpler way

for the proof based on utilizing the concept of a strictly convex surface S circumscribed about

E. Moreover, the vertex locality of the set E follows directly from the existence of a strictly

convex function that defines the circumscribed surface S.

Let a function f (x) be given on a finite point configuration E.

Definition 2.1. An extension of the function f (x) from E onto E ′ ⊃ E is a function F (x)

defined on E ′ and coincided with f (x) on E, i.e.

∀ x ∈ E F (x) = f (x) . (2.1)

The condition (2.1) will be further written as

F (x) =
E
f (x) . (2.2)

The extension of a function from E to the entire space Rn will be further referred to as

an extension of the function from the set E.

A function F (x) is called a convex (strictly/strongly convex) extension of f(x) from

E onto E ′ if the set E ′ is convex and F (x) is convex (strictly convex/strongly convex) on E ′.

Theorem 2.2. If E is a vertex-located set and E ′ ⊇ E is a compact convex set, then for any

function f : E → R1 and for any ρ > 0, there exists a strongly convex function F : E ′ → R1

with parameter at least ρ such that the condition (2.2) is satisfied.

Theorem 2.2 establishes the existence of a strongly convex extension of an arbitrary

function from an arbitrary vertex-located set to a convex compact set containing E.

Theorem 2.3. An arbitrary vertex-located set is surface-located.
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  The  proof  of  Theorem  2.3  is  based  on  applying  Theorem  2.2  and  constructing  a  strictly 

convex  extension  of  a  piecewise  linear  function  defining  the  surface  of  the  polytope  P  .

  Thus,  Theorems  2.1  and  2.3  establish  a  one-to-one  correspondence  between  vertex-

located  and  finite  surface-located  sets.

Remark  2.2.  Without  loss  of  generality,  the  function  f1  (x)  in  (1.21)  can  be  seen  as  differen-

tiable  because  otherwise,  it  can  always  be  replaced  by  its  strictly  convex  extension.

Theorem  2.4.  An  arbitrary  finite  surface-located  set  E  can  be  represented  as  the  intersection 

of  a  strictly  convex  surface  S ′  and  a  polytope  P  ′,  i.e.  there  exists  such  surface  S ′  and  polytope 

P  ′:

E  =  P  ′  ∩  S ′.  (2.3)

  The  proof  of  this  theorem  is  based  on  the  fact  that  if  the  set  E  is  S-surface-located 

while  P  is  its  convex  hull,  then  the  strictly  convex  body  C  bounded  by  the  surface  S  contains 

the  polytope  P  .  Moreover,  the  common  points  of  S  and  P  exactly  form  the  set  E.  Therefore,

there  exists  the  following  representation  of  E:

E  =  P  ∩  S,  (2.4)

where  P  is  the  polytope  (1.46)  and  the  surface  S  satisfies  the  conditions  (1.19)  and  (1.21).

Respectively,  by  choosing  S ′  =  S,  P  ′  =  P  ,  we  come  to  (2.3).

For  sets  (2.3),  we  introduce  a  special  terminology.

Definition  2.2.  A  finite  point  configuration  E  is  called  a  polyhedral-surface  set  if  it  is 

representable  as  the  intersection  of  a  polytope  and  a  strictly  convex  surface.

  In  this  case,  the  functional  representation  of  E  of  the  form  (2.3),  which  includes  an 

H-representation  of  the  polytope  P  ′  and  the  equation  of  a  circumscribed  strictly  convex  surface 

S ′,  is  called  a  polyhedral-surface  f-representation  of  E.

Remark  2.3.  Further,  polyhedral-surface  representations  of  sets  will  be  constructed  in  the 

form  (2.4),  where  P  is  given  by  the  H-representation  (1.52)  and  the  strictly  convex  surface

S  is  given  by  the  equation  f1(x)  =  0.  Note  that  the  representation  (2.3)  can  also  be  valid
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for an arbitrary surface-located set if P ′ is taken instead of P or its relaxation polytope. S ′

is also not required to be necessarily strictly convex. For example, it can be a polyhedral

or even a non-convex surface. However, a functional representation of E constructed on the

basis of (2.3) and consisting of the H-representation of P ′ and the equation of S ′ will be a

polyhedral-surfaced representation of E only if the surface S ′ is strictly convex. Thus, we can

assume that S ′ = S and consider the representation of E in the form (2.3), i.e.:

E = P ′ ∩ S. (2.5)

We single out a class of surface-polyhedral sets consisting of finite point configurations

representable in the form (2.4). Depending on the type of a strictly convex surface, its various

subclasses can be introduced.

In particular, a finite point configuration E represented in the form (2.5) is a polyhedral-

spherical set, if S is a hypersphere. Likewise, if S is an ellipsoid, E is called a polyhedral-ellipsoidal

set; if S is a supersphere, E is a polyhedral-superspherical set. Thus, we have singled out

the classes of polyhedral-ellipsoidal and polyhedral-superspherical sets along with the sub-

class of polyhedral-spherical sets formed in their intersection. Functional representations of

these sets are called polyhedral-superspherical, polyhedral-ellipsoidal, and polyhedral-spherical

f-representations, respectively.

For instance, the constraints (1.73) form a polyhedral-spherical representation of the

set Bn. It can be generalized to polyhedral-superspherical case. Namely, a polyhedral-

superspherical representation of Bn can be formed as follows:

f1(x) =
n∑

i=1

∣∣∣∣xi − 1
2

∣∣∣∣k − n

2k
= 0;

fi+1(x)  =  xi  −  1  ≤  0,  fi+n+1(x)  =  −xi  ≤  0,  i  ∈  Jn,

where  k  >  1  is  a  constant.

  In  terms  of  polyhedral-surface  sets,  Theorem  2.4  can  be  reformulated  in  the  following

way.

Theorem  2.5.  An  arbitrary  finite  surface-located  set  is  a  polyhedral-surface  set.
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Thus,  all  finite  spherically-located  sets  are  polyhedral-spherical.

  Further,  the  following  terminology  will  be  used  for  the  characterization  of  the  vertex-

located  set  E:

•  "polyhedral-surface  set",  if  an  analytic  description  of  P  and  S  is  known;

•  "surface-located  set",  if  we  only  know  the  equation  of  a  strictly  convex  surface  S.

  For  each  polyhedral-surface  set  E,  one  can  write  a  functional  representation  of  the

order  m  =  m′  +  m′′  +  1  having  the  form  of  (1.52)  and

f1(x)  =  0  (2.6)

being  a  polyhedral-surface  representation  of  E.  Its  type  is  determined  by  the  class  of  f1(x).

For  instance,  if  f1(x)  is  polynomial,  then  the  entire  polyhedral-surface  representation  (1.52),

(2.6)  is  a  polynomial  strictly  convex  functional  representation  of  E  of  the  same  degree  as  the

  polynomial  f1(x).  Polyhedral-spherical  and  polyhedral-ellipsoidal  representations  are  examples

  of  strictly  convex  quadratic  functional  representations.  In  contrast,  a  polyhedral-superspherical

  representation  with  α  =  2  is  an  example  of  such  a  biquadratic  representation.

  As  mentioned  above,  f-representations  of  sets  can  be  redundant.  Let  us  examine  the

  polyhedral-surface  representation  (1.52)  and  (2.6)  on  redundancy.  Since,  by  assumption,  E  is

  not  a  singleton,  the  constraint  (2.6)  is  essential  since  its  elimination  leads  to  consideration  of

  the  polytope  P  .  Using  an  irredundant  H-representation  of  P  as  a  linear  part  of  the  polyhedral-

  surface  representation  is  a  necessary  but  insufficient  condition  for  its  non-redundancy.  Indeed,  if 

(1.52)  contains  at  least  one  constraint  whose  elimination  leads  to  the  formation  of  a  relaxation

  polytope  P  ′  ⊃  P  such  that  (2.5)  holds,  then  the  representation  (1.52),  (2.6)  is  a  redundant

  f-representation  of  E.

  However,  some  finite  point  configurations  allow  establishing  that  the  constraint  system 

(1.52)  and  (2.6)  define  their  irredundant  polyhedral-surface  functional  representation.

Theorem  2.6.  If  E  is  a  polyhedral-surface  set  and  not  a  singleton,  while  its  convex  hull  P

is  a  simple  polytope,  then  every  irredundant  H-representation  of  polytope  P  and  the  equation

(2.6)  form  an  irredundant  functional  representation  of  E.
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2.1 Properties of finite point configurations

The proof of this theorem is based on the impossibility of constructing a relaxation

polytope P ′ for a simple polytope P such that (2.5) holds.

Further typology of polyhedral-surface and vertex-located sets will be done by types of

strictly convex surfaces and polytopes.

Finite point configurations can be formed as the intersection of polytopes with surfaces

that are not necessarily strictly convex.

Let us formulate a generalization of the concept of a polyhedral-surface set. First, we

introduce the required terminology.

The surface S given by (1.19) is called circumscribed about a set M ⊂ Rn, and the set

M is called inscribed in the surface S if the intersection of M and S forms a finite set

E = M ∩ S (2.7)

and for the points of M , one of the following conditions is satisfied:

∀ x ∈ M f1(x) ≤ 0 (2.8)

or

∀ x ∈ M f1(x) ≥ 0.

Further, we suppose that f1(x) satisfies the condition (2.8).

Let M be a polytope. If it is inscribed in the surface S, this means the set (2.7) is

S-surface-located if the condition (1.21) holds. If M is inscribed into S, this surface can be

non-smooth convex like (1.26) or (1.27), non-convex, such as

S =
{
x ∈ Rn :

n∏
i=1

xi = 1
}

etc. The main requirement remains that, likewise polyhedral-surface sets, a finite point

configuration has to be formed as the intersection of S with M .

If in (2.7), the set M is a surface, then there exists a function f2 (x) defining this
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2.2 Multilevel finite point configurations and multilevel polytopes

surface:

M = {x ∈ Rn : f2 (x) = 0} . (2.9)

Then, by analogy with (2.8), we can always assume that E is formed at the intersection of the

surfaces S, M and at the intersection of spatial bodies:

C1 = {x: f1 (x) ≤ 0} ,

C2 = {x: f2 (x) ≤ 0}

providing that f2(x) satisfies the following condition:

∀x ∈ S f2 (x) ≥ 0.

Finally, two more E-representations are valid, namely, as the intersection of a surface

with a spatial body:

E = C1 ∩M, E = S ∩ C2.

It is easy to see that an FPC E inscribed in a surface is vertex-located. Then, there

exists a strictly convex surface S ′ such that E is polyhedral-surface set with a functional

representation involving the equation of the surface S ′.

2.2 Multilevel finite point configurations and multilevel

polytopes

There are convex polyhedral-surface representations for arbitrary vertex-located sets.

On the other hand, according to Theorem 2.2, for any function defined on a vertex-located

set, one can construct a convex (strictly/strongly convex) extension from the set. These

peculiarities make it possible to use properties of the sets, their convex hulls, circumscribed

strictly convex surfaces, and convex functions in constructing convex relaxations and solving

other problems on these sets.

This is not always possible for an arbitrary finite point configuration. For example,
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2.2 Multilevel finite point configurations and multilevel polytopes

for a non-vertex-located FPC E that has points inside the polytope convE, there are no

convex functional representations and convex extensions from them for functions given on

E. Therefore, let us establish the connection of an arbitrary finite point configuration with

vertex-located sets. We offer two ways to accomplish this.

The first one consists of selecting a strictly convex function h(x) and constructing

the decomposition of E into a family of strictly convex surfaces (1.11), (1.12). The sets

(1.13) formed due to the decomposition are surface-located and, consequently, vertex-located

according to Theorem 2.3. Thus, the transition from the set E to its vertex-located subsets is

done.

The second way is based on lifting into Euclidean space Rn′ (n′ > n), which dimension

depends on the number of coordinates’ values taken by E points, i.e. on the levelness m′(E) of

E along coordinates and on the number ki of unique values of the coordinate xi in the formula

(1.9) (i ∈ Jn).

Note that if E is not vertex-located, then the number m′(E) is greater than two because

∃ i ∈ Jn : ki > 2. (2.10)

Moreover, for an arbitrary non-vertex-located set, there exists an extended polyhedral-

surface representation.

Indeed, by the construction of sets {Xj}j∈Jn in (1.9), the coordinates of every point

x ∈ E take a finite number of different values from these sets, namely,

∀ x = (x1, ..., xn) ∈ E xi ∈ Xi = {eij}j∈Jki
, i ∈ Jn,

and as discrete variables, they are representable by binary variables:

xi =
ki∑

j=1
eij · yij, i ∈ Jn, (2.11)
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2.2 Multilevel finite point configurations and multilevel polytopes

where yij ∈ {0, 1}, j ∈ Jki
, i ∈ Jn,

ki∑
j=1

yij = 1, i ∈ Jn. (2.12)

The resulting discrete set

Y = {yij ∈ {0, 1} : yij satisfies the conditions (2.11), (2.12)}x∈E

is vertex-located as a subset of the vertex-located binary set. Respectively, it allows the

polyhedral-spherical representation (1.73).

Substituting (2.11) in the linear constraint system (1.52), we obtain

n∑
j=1

a′
ijxj =

n∑
j=1

a′
ij

kj∑
j′=1

ej′j · yj′j =
n∑

j=1

kj∑
j′=1

(a′
ijej′j)yj′j ≤ a′

i0, i ∈ Jn′ ,

n∑
j=1

a′′
ijxj =

n∑
j=1

a′′
ij

kj∑
j′=1

ej′j · yj′j =
n∑

j=1

kj∑
j′=1

(a′′
ijej′j)yj′j, i ∈ Jn′′ .

(2.13)

Complementing (2.13) with the equations (2.12) and two-sided constraints:

0 ≤ yij ≤ 1, j ∈ Jki
, i ∈ Jn, (2.14)

we get an H-representation of the polytope P ′ = conv Y .

Now, complementing it by the equation:

n∑
j=1

kj∑
i=1

(
yij − 1

2

)2
= n′

4 (2.15)

of the hypersphere circumscribed about Y , we come to a polyhedral-spherical representation

(2.12)-(2.15) of the set Y , which is an extended functional representation of E in Rn′ , where

n′ =
n∑

j=1
kj ≥ 2n according to Remark 1.1 and condition (2.10).

Let us connect the decomposition of a finite point configuration E into parallel hyper-

planes with the H-representation of its convex hull, choosing normal vectors to the polytope

P -facets as the direction vectors for the decomposition.
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2.2 Multilevel finite point configurations and multilevel polytopes

Since an arbitrary facet F ∈ F is associated with a support hyperplane HF ∈ H:

∃nHF
, bHF

: HF = {x ∈ Rn : n⊤
HF
x = bHF

},

then, when a certain F ⊆ F is chosen, we will consider the decomposition by (1.31), (1.32)

toward the vector nHF
into hyperplanes parallel to the facet F . At the same time, E is called

m(nHF
)-level toward nHF

.

So, for example, if polytope P has facets parallel to the coordinate hyperplanes, then

the formulas (1.35)-(1.39) define decompositions of E toward normal vectors of these facets.

Respectively, kj is the levelness of E along coordinates or towards normal vectors to coordinate

hyperplanes (j ∈ Jn).

From the number of E levels toward normal vectors to all P -facets, we can determine

the number

m(E) = max
F ∈F

m(nHF
), (2.16)

which is called the levelness of E, while E is called a m(E)-level set.

If E is an FPC and P is its convex hull, then comparison of the levelness m(E) of E

with the levelness (1.63) of the polytope P yields the estimate:

m(E) ≥ m′′(P ). (2.17)

If E is vertex-located, then since V = E and the value m′′(P ) specifies the levelness of

the vertex set toward normal vectors to all P -facets. Respectively, (2.17) holds as equality:

m(E) = m′′(P ). (2.18)

Now, we consider in detail the class of two-level sets and the corresponding polytopes.

For a two-level E,

m(E) = 2. (2.19)
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2.2 Multilevel finite point configurations and multilevel polytopes

In this case, the formulas (1.65), (2.17), and (2.19) together yield:

m(E) = m′′(P ) = 2,

thus E and the polytope P are both two-level, and the condition (2.18) is also satisfied.

By analogy with a vertex set of two-level polytopes, a peculiarity of two-level sets is

that they are two-level toward a normal vector of each facet of P , i.e.

∀ F ∈ F m(nHF
) = 2.

Therefore for two-level sets, the decomposition (1.31) becomes: for an arbitrary F ∈ F,

E = E1(nF ) ∪ E2(nF ),

E1(nF ) ∩ E2(nF ) = ∅,

Ej(nF ) = Hj(nF ) ∩ E ̸= ∅, j = 1, 2.

For any facet F , we can always assume that H1(nF ) = HF . Respectively,

E1(nF ) = E ∩HF , E
2(nF ) = E\E1(nF ).

As it turns out, the two-levelness of a discrete set is sufficient for it to be surface-located,

hence, vertex-located. This fact is established in the theorem below.

Theorem 2.7. Every two-level finite point configuration is a surface-located set.

Proof. Let E be a two-level FPC. Selecting its facet F ∈ F, by (1.64), we have

∃ bF ∈ R1 : HF = {x ∈ Rn : n⊤
Fx = bF } ∈ F.

In addition to the value bF the function h(x) = n⊤
Hx takes one more value on E.

Let us denote it as b′
F and the corresponding parallel hyperplane as H ′

F . Now, we have:
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2.2 Multilevel finite point configurations and multilevel polytopes

∀F ∈ F ∃bF , b
′
F , bF ̸= b′

F ,

HF = {x ∈ Rn : n⊤
Fx = bF }, H ′

F = {x ∈ Rn : n⊤
Fx = b′

F },

E1(nF ) ⊂ HF ;E2(nF ) ⊂ H ′
F ,

in particular,

∀ x ∈ E n⊤
Fx ∈ {bF , b

′
F }, F ∈ F. (2.20)

Let us introduce the notation

aF = bF + b′
F

2 , δF = |bF − b′
F |

2

and rewrite (2.20) as

|n⊤
Fx− aF | = δF , F ∈ F. (2.21)

By normalizing the equation (2.21), we get

|n′T
F x− a′

F |k = 1, F ∈ F, (2.22)

where n′T
F = nF

||nF || , a
′
F = aF

||nF || .

Having fixed a certain k ∈ R1
>0, we add all the equations (2.22) getting:

f1(x, k) =
∑
F ∈F

|n′T
F x− a′

F |k − |F | = 0. (2.23)

Consider the family of surfaces given by the equation (2.23):

Sk = {x ∈ Rn : f1(x, k) − |F | = 0}, k ∈ R1
>0 (2.24)

The function f1(x, k) is non-convex for k ∈ (0, 1) and convex for k ≥ 1, in particular, it

is strictly convex for k > 1 and strongly convex for k ≥ 2.

Let k > 1. By construction, the point x0 formed at the intersection of any n hyperfaces

from the family n⊤
Fx  =  aF  ,  F  ∈  F,  whose  normal  vectors  are  linearly  independent,  is  an
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2.2 Multilevel finite point configurations and multilevel polytopes

interior point of the spatial body Ck = {x ∈ Rn : f1(x, k) − |F | ≤ 0}, k ∈ Rn
>0. This means

the body is strictly convex, while the surface (2.24) is strictly convex. Therefore, for any

k ∈ (1,∞), E is Sk-surface-located set.

Note that the surfaces of the family (2.24) are bounded. In particular, S1 is a polyhedral

surface, S2 is an ellipsoid, S∞ = lim
k→∞

Sk = P is a polytope.

Corollary 2.2. Every two-level finite point configuration is a vertex-located set.

This corollary says that a two-level FPC coincides with the vertex set of its convex hull,

which is a two-level polytope. On the other hand, all two-level polytopes are combinatorically

equivalent to a certain 0 − 1-polytope. This means that in the study of two-levels FPCs,

without loss of generality, we can assume that they are all subsets of the binary set, i.e. they

are 0 − 1 sets. This allows certifying that the number of facets of a d-dimensional two-level

polytope varies within the range [d+ 1, 2d].

Remark 2.4. The family of surfaces (2.24) was constructed based on utilizing an irredundant

H-representation of the polytope P , which is supposed to be known. Complementing it

with the equation f1(x, k) − |F | = 0, k ∈ (1,∞), we obtain a family of polyhedral-surface

representations of the two-level set E, which can further be examined for irredundancy.

The equation of the surface Sk can also be complemented with an H-representation of

the polytope P obtained from the constraints (2.22) by weakening the equal sign as follows:

P = {x ∈ Rn : |n′T
F x− a′

F |k ≤ 1, F ∈ F}.

Selecting a subfamily of surfaces Sk, k = 2k′, k′ ∈ N from the family (2.24) allows

deriving a family of polynomial polyhedral-surface representations of E.

Corollary 2.3. An arbitrary two-level finite point configuration is ellipsoidally-located set.

Indeed, as the circumscribed ellipsoid, one can choose the surface

(2.25)S2  =  {x  ∈  Rn  :  f1(x,  2)  =  0}
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2.3 Operations on finite point configurations

from the family (2.24). Its equation is

∑
F ∈F

(n′⊤
F x− a′

F )2 = |F |.

Let us rewrite it in the form:

x⊤
(∑

F ∈F
n

′

Fn
′⊤
F

)
x− 2

(∑
F ∈F

a′
Fn

′⊤
F

)
x+

∑
F ∈F

a
′2
F = |F |. (2.26)

and represent it in the form (1.25). We rewrite the formula (2.25) as (1.23):

x⊤Ax+ b⊤x+ c = 0,

where

A =
∑
F ∈F

n
′

Fn
′⊤
F , B = 2

∑
F ∈F

a′
Fn

′⊤
F , c =

∑
F ∈F

a
′2
F − |F |.

The matrix A is positive definite. Hence, S2 is an ellipsoid circumscribed about E.

2.3 Operations on finite point configurations

Let us explore properties of some operations on FPCs leading to the formation of new

FPCs. E вида (1.8) как результат некоторых теоретико-множественных операций над

этими множествами.

Let E be a finite point configuration of the form (1.8) obtained by logical operations

on these sets.

Let us partite the number n into L numbers n1, ..., nL ∈ Jn, i.e. n =
L∑

l=1
nl, and

introduce

El ⊂ Rnl

, l ∈ JL, (2.27)

such  that  1  ≤  nEl  =  |El|  <  ∞,  l  ∈  JL.

  Let  an  element  of  El  be  denoted  as  xl,  in  particular,  in  the  coordinate  form,  xl  =

(xil)i∈J
nl  (l  ∈  JL).
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2.3 Operations on finite point configurations

In formula (2.27), the superscript specifies the index of the corresponding set. We

will use similar indexing for its convex hulls, faces in their H-representation, circumscribed

surfaces, etc. For example, the notation

P l = conv El, l ∈ JL (2.28)

defines a family of polytopes associated with (2.27).

For a fixed l ∈ JL, the system of linear constraints describing P l is

A′lx ≤ a′l
0 , A

′′lx = a′′l
0 ,

where

xl ∈ Rnl
, A′l = (a′l

ij) ∈ Rn′l×n, A′′l = (a′′l
ij ) ∈ Rn′′l×n,

a′l
0 = (a′l

i0) ∈ Rn′l
, a′′l

0 = (a′′l
i0) ∈ Rn′′l

is the H-representation of P l; Fl and Hl are the sets of its facets and the corresponding

supporting hyperplanes. Also, V l = vert P l is a set of vertices of P l (l ∈ JL). The degree

of a vertex xl ∈ V l of the polytope P l is denoted by Rl(xl). If all vertices of P l are regular,

then Rl denotes the regularity degree for P l-vertices. Let also Al be the generating set of El;

m(El),m′(El) be the levelness of El as a whole and along coordinates, respectively; m′′(P l) be

the levelness of the polytope P l. The dimension of the polytope P l is denoted by dl = dim P l,

and its f-vector is f(P l) = (f0(P l), ..., fdl−1(P l)), l ∈ JL.

In some cases, sets El, l ∈ J l, may possess specific properties underlying single outing

the following classes:

• El, l ∈ Jl are vertex-located sets:

El = V l, l ∈ JL; (2.29)
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2.3 Operations on finite point configurations

• for l ∈ Jl, El lie on the surface Sl given by the corresponding equations

∃f l(xl) : Rnl → R1 : f l(xl) =
El

0, l ∈ JL. (2.30)

So, we have

El ⊆ Sl, (2.31)

Sl = {x ∈ Rnl : f l(xl) = 0}, l ∈ JL; (2.32)

• El, l ∈ Jl are inscribed in the surfaces (2.32) implying that the conditions (2.31) are

met:

El = P l ∩ Sl, (2.33)

f l(xl) ≤
P l

0, l ∈ JL; (2.34)

• El, l ∈ Jl are surface-located sets, which implies the fulfillment of three conditions (2.31),

(2.32), as well as

f l(xl), l ∈ JL are strictly convex functions. (2.35)

This involves inclusion (2.31), and also ∀l ∈ JL ∃ al ∈ Rnl
, rl ∈ R1

• El, l ∈ Jl are spherically-located sets. For the minimal hypersphere circumscribed about

El, we will use the notation Srmin,l(amin,l), l ∈ JL;

• El, l ∈ Jl are ellipsoidal-located sets. This means the inclusion (2.31) holds along with

∃x0l ∈ Rnl

, ∃ C l ∈ Rnl×nl

, C l ≻ 0 :

Sl = {xl ∈ Rnl : (xl − x0l)⊤C l(xl − x0l) = 0}, l ∈ JL.

Next, explore properties of the set E formed due to logical operations on El, l ∈ Jl.
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2.3 Operations on finite point configurations

In addition, we will study the properties of the polytope P = conv E and polytopes (2.28)

participating in constructing P . In this case, for the f-vector of the polytope, we will use the

notation f(P ) = (f0(P ), f1(P ), ..., fd−1(P )).

Let us consider the basic logical operations on finite point configurations and derive

their main properties.

2.3.1 Subsets of finite point configurations

Let L = 1, i.e. n1 = n and

E ⊂ E1. (2.36)

As proper subset of E1, the set E has the following features:

1. |E| < |E1|;

2. P ⊆ P 1, i.e. P 1 either coincides with P or is its relaxation;

3. dim P ≤ dim P 1;

4. V ⊆ V 1. Moreover, V = V 1 if the operation (2.36) does not affect the vertices; otherwise,

V ⊂ V 1. The latter particularly concerns the vertex-located set E1;

5. A ⊆ A1, m′(E) ≤ m′(E1);

6. a) if E1 lies on the surface S1, then E also lies on it; b) if E1 is inscribed in the

surface S1, then E is also inscribed in it; c) if E1 is S1-surface-located, then E is also

surface-located (for example, if E is a sphericaly-located set, then the same is true for

E1, while rmin ≤ rmin,1);

7. if E1 is vertex-located, then E is also vertex-located. Moreover, for P , the strict inclusion

P ⊂ P 1 is satisfied.

The subset (2.36) has extended properties comparing E-ones.

Example 2.1. Consider the sets E = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

and E1 = J3
3 . They are depicted in Figures 2.1 and 2.2, and their convex hulls, being the
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2.3 Operations on finite point configurations

regular hexagons P and cube P 1 are shown in Figures 2.3 and 2.4. One can see that E1 is not

vertex-located set, while its proper subset E is vertex-located.

The levelness of the sets E and E1 coincides, namely:

m(E) = m(E1) = m′(E) = m′(E1) = 3.

The generating sets are also identical:

A = A1 = {1, 2, 3}.

Both E and E1 are centrally symmetric about the point O′ = (2, 2, 2).

Let us list some new properties of E compared to E1. In addition to vertex locality,

the set E lies in the hyperplane (see Figure 2.3). It is spherically-located (see Figure 2.5),

while the original set E1 did not have these features, as seen from Figure 2.4.

Figure 2.1: The set E Figure 2.2: The set E1

2.3.2 Intersection of finite point configurations

Let L = 2, and the sets E1 and E2 be such that

n = n1 = n2, (2.37)
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Figure 2.3: The set E and
corresponding polytope P

Figure 2.4: The set E1 and
corresponding polytope P

Figure 2.5: The set E and
hypersphere S√

14(0)

while E is

E = E1 ∩ E2.

Suppose E is a proper subset of E1 and E2:

E ⊂ E1, E ⊂ E2. (2.38)

Then  we  have

1. |E|  <  min{|E1|,  |E2|}.

2. P  ⊆  P  1,  P  ⊆  P  2.

3. dim  P  ≤  min{dim  P  1,  dim  P  2}.

4. V  ⊆  V  1,  V  ⊆  V  2.

5. A  =  A1  ∩  A2,  whence  it  follows  that  m′(E)  ≤  min{m′(E1),  m′(E2)}.

6.  If  E1  or  E2  is  vertex-located  set,  then  E  is  also  vertex-located.  In  this  case,  due  to

(2.38),  P  ⊂  P  1,  P  ⊂  P  2  holds,  i.e.  both  polytopes  P  1  and  P  2  are  relaxation  polytopes

of  P  .

7. If  E1  and  E2  are  centrally  symmetric  about  the  origin  O′,  then  E  also  has  a  center  of

symmetry  at  O′.

8. If  P  1  and  P  2  are  centrally  symmetric  about  O′,  then  P  is  also  centrally  symmetric.
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9. A set E will belong to the surface S if E1 or E2 lies on this surface.

If E1 and E2 lie on the surfaces S1 and S2 respectively, and

S1 ̸= S2, (2.39)

then E lies on both of these surfaces:

E ⊂ S1 ∩ S2, (2.40)

and inscribed in them in the second:

E = S1 ∩ P 1, E = S2 ∩ P 2.

If, in addition to (2.40), the condition (2.35) holds, i.e. E1 and E2 are surface-located

sets, then E is also a surface-located set:

E = S1 ∩ P, E = S2 ∩ P.

Moreover, there exists a family

S(α), α ∈ [0, 1] (2.41)

of strictly convex surfaces circumscribed about E such that

S = S(α) = {x ∈ Rn : f(x, α) = αf 1(x) + (1 − α)f 2(x) = 0}. (2.42)

When S1 and S2 are hyperspheres, then, by (2.39), a set E is spherically-located, lies

in the hyperplane β defined by the intersection S1 and S2. In this case, formula (2.42) defines

a family of hyperspheres centred on the line connecting the points amin,1, amin,2, the centers

of the hyperspheres Smin,1, Smin,2. The center Smin lies at the intersection of this line and

the hyperplane, moreover, amin ∈ [amin,1, amin,2]. Accordingly, the radii of the circumscribed

64



2.3 Operations on finite point configurations

hyperspheres of the minimum radius satisfy the relation rmin ≤ min{rmin,1, rmin,2}.

When S1 and S2 are ellipsoids, the set E is ellipsoidally-located like E1 and E2. In

this case, the formulas (2.41) and (2.42) define a family of ellipsoids, among which one can

choose the ellipsoid of the minimum volume. In addition, E belongs to the intersection of the

ellipsoids S1 and S2.

Remark 2.5. The surface S ′ = S1 ∩ S2 possesses specific properties. If S1 and S2 are

hyperspheres, then S ′ is an n − 2-sphere. If the surfaces are ellipsoids, then S ′ is an n − 2-

ellipsoid. This allows considering the orthogonal projection of the set E onto the plane β,

where the set formed in the projection will also be a spherically-located or ellipsoidally-located

set, respectively.

2.3.3 Intersection of finite point configurations and surfaces

Let L = 1 and a finite point configuration formed at the intersection of E1 with the

surface S br considered, i.e.

E = E1 ∩ S, (2.43)

where S is the surface (1.19).

Without loss of generality, we can assume that ∃ x ∈ E1 : x /∈ S, i.e. E ⊂ E1 and all

the properties listed above in this section are applicable to E.

Properties of E depend both on the set E1 and by a function f1(x) given by (1.19).

Let us outline some properties of cuts of finite point configurations by hyperplanes and their

intersections with strictly convex surfaces.

Let the function f1(x) defining the surface S of the form (1.19) be linear, i.e.

∃ c ∈ Rn, c0 ∈ R1 : f1(x) = c⊤x+ c0.

Then, the set E given by (2.43) is formed at the intersection of E1 with the hyperplane

H : c⊤x+ c0 = 0. The set has the following properties:

1. dimP < dimP 1;
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2.3 Operations on finite point configurations

2. the H-representation of the polytope P is the following system of constraints:

P = {x ∈ Rn : A′1x ≤ a′1
0 , A

′′1x = a′′1
0 , c

⊤x+ c0 = 0}. (2.44)

Moreover, the H-representation (2.44) can be redundant, regardless of whether the

redundant or irredundant H-representation of P ′ is taken for its construction;

3. if E1 is a spherically-located set, then E is also spherically-located. The parameters of

Smin can be determined from the equation of the hyperplane H, and the parameters of

Smin,1:

− amin,1 is the projection of amin onto S,

− rmin,1 = ((rmin)2 − h2)1/2,

h = |amin,1 − amin| = |c⊤amin,1 + c0|
|c|

is the distance from amin,1 to H.

2.3.4 Intersection of finite point configurations and strictly convex

surfaces

Proposition 2.1. If the surface (1.19) is strictly convex, then E of the form (2.43) is a

vertex-located set.

This property allows decomposing an arbitrary FPC into vertex-located ones.

Proposition 2.2. Suppose h(x) is a strictly convex function. In that case, the formulas

(1.11)-(1.14) define the decomposition of a finite point configuration E into the family of

strictly convex surfaces given by h(x) and the E-decomposition into vertex-located sets.

From Proposition 2.3.4, it follows that if the surface S given by (1.19) is a hypersphere,

then E of the form (2.43) is spherically-located set. If E is an ellipsoid, then E is an

ellipsoidally-located set.
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2.3.5 Union of finite point configurations

Let L = 2, the conditions (2.37) and (2.38) be satisfied, and finite point configuration

E be formed as follows:

E = E1 ∪ E2.

Then the following properties hold.

1. |E| ≥ max{|E1|, |E2|}.

2. P ⊇ P 1, P ⊇ P 2;

3. dim P ≥ max{dim P 1, dim P 2}.

4. V ⊆ V 1 ∪ V 2.

5. A = S(A1 ∪ A2), m′(E) ≥ max{m′1(E1),m′2(E2)}.

6. if  FPCs  E1  and  E2  are  vertex-located  sets,  then  at  least  one  of  the  conditions 

P  ⊃  P  1,  P  ⊃  P  2  is  satisfied.  Accordingly,  P  is  a  relaxation  polytope  for  at  least

one  of  them.

7. if  FPCs  E1  and  E2  are  centrally  symmetric  sets  about  the  origin  O′,  then  E  also  has  a 

center  of  symmetry  at  O′.

8. if  P  1  and  P  2  are  centrally  symmetric  polytopes  about  the  origin  O′,  then  P  is  also  a 

centrally  symmetric  polytope  about  this  point.

  When  union  two  finite  point  configurations,  properties  appear  that  are  not  characteristic 

of  any  of  the  constituent  sets.  We  illustrate  this  with  an  example.  Let

E1  =  {(0,  0,  0),  (1,  0,  0),  (0,  2,  0),  (0,  0,  3)},  E2  =  −B3(1).

  The  convex  hull  of  E1  is  the  three-dimensional  simplex  P  1  depicted  in  Figure  2.6.  Re-

garding  levelness,  E1  and  the  corresponding  polytope  P  1  are  two-level,  i.e.

m(E1)  =  m′(E1)  =  m′′(P  1)  =  2.  Similarly,  the  set  E2  and  the  corresponding  polytope 

P  2  are  two-level.
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The union of finite point configurations E1 and E2 is the set

E = {(0, 0, 0), (1, 0, 0), (0, 2, 0), (0, 0, 3), (−1, 0, 0), (0,−2, 0), (0, 0,−3},

shown in Figure 2.7.

The convex hull of this set is the octahedron shown in Figure 2.8. Since

(0, 0, 0) ∈ int P , the set E is not located at vertices of P . Therefore, it is not surface-

located set. At the same time, it acquires the property of being centrally symmetric about the

origin and symmetric about each coordinate hyperplane. Given this symmetry, to determine

the number m(E) it suffices to construct a facet through the points (1, 0, 0), (0, 2, 0), (0, 0, 3),

H : h(x) = x1

1 + x2

2 + x3

3 = 1, and then determine the levelness mh(x) = 3 of E toward the

normal vector of the facet h(x), hence, m(E) = 3. Levelness along coordinates also increases

when moving from considering E1, E2 to E, yielding m′(E) = 3. In order to determine

the levelness of the polytope P it suffices to consider the set of vertices V = E\{(0, 0, 0)},

where the function h(x) takes only two values. This implies that the polytope P is two-level.

An ellipsoid can be circumscribed about it, which is easy to find given the symmetry of

the polytope. Its equation is x2
1 + x2

2
4 + x2

3
9 = 1. This demonstrates the possibility of the

E-decomposition into two vertex-located sets, the ellipsoidally-located set V and the point

{(0, 0, 0)}.

Figure 2.6: The set E1 and
corresponding  polytope  P  Figure  2.7:  The  set  E  Figure  2.8:  The  polytope  P

Remark  2.6.  The  same  properties  of  the  difference  E1\E2  and  the  symmetric  difference

E1  △  E2  can  be  formulated  similarly.  We  only  note  that  these  two  operations  make  it  possible
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2.3 Operations on finite point configurations

to form vertex-located sets from non-vertex-located sets. It can underlie decompositions of E

into vertex-located sets.

2.3.6 Minkowski sum and difference of finite point configurations

Let L = 2, the condition (2.37) be satisfied, and the set E be formed by the rule:

E = E1 ⊕ E2, (2.45)

E = {x ∈ Rn : x = x1 + x2, x1 ∈ E1, x2 ∈ E2},

where ⊕ is Minkowski sum operation.

Let us list some properties of the finite point configuration (2.45) and corresponding

polytope P = conv E:

1. |E| ≤ |E1| · |E2|;

2. dim P ≥ max{dim P 1, dim P 2};

3. the generating set of E can be found by the rule:

A = S({e ∈ R1 : e = e1 + e2, el ∈ Al, l ∈ J2}),

wherefrom the bound follows that m′(E) ≤ m′(E1) ·m′(E2);

4. if the FPCs E1 and E2 are centrally symmetric about O1 and O2, correspondingly,

then E has the center of symmetry at the origin O1 + O2. The same applies to the

corresponding polytopes P , P 1 and P 2;

5. if the FPCs E1 and E2 have parallel axes of symmetry γl : a⊤x = al
0, l = 1, 2, then the

line γ : a⊤x = a1
0 + a2

0 is the axis of symmetry of E. The same applies to the polytope

P , which has the axis of symmetry if the polytopes P 1 and P 2 have the same parallel

axes of symmetry.

Example 2.2. Let E1 = {(1, 2), (2, 1)} аnd E2 = {(−1,−1), (−1, 1), (1,−1), (1, 1)}.
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2.3 Operations on finite point configurations

These sets are shown in Figures 2.9 and 2.10. As one can see, they are centrally

symmetric. Particularly, E1 is symmetric about the bisector of the first coordinate angle, and

the line γ1 : x1 + x2 = 3, while E2 is symmetric about the coordinate axes and the bisectors of

the first and second coordinate angles. As a result, E of the form (2.45) is

E = {(0, 1), (1, 0), (0, 3), (1, 2), (2, 1), (3, 0), (2, 3), (3, 2)} (2.46)

and is centrally symmetriс. Its symmetry axes are the bisector x1 − x2 = 0 of the first

coordinate angle and the line γ is parallel to the bisector of the second coordinate angle (see

Figure 2.11). It is also seen that m′(E1) = m′(E2) = 2, m′(E) = m′(E1) +m′(E2) = 4.

Figure 2.9: The set E1 and
polytope P 1

Figure 2.10: The set E2 and
polytope P 2

Figure 2.11: The set E and
polytope P

Remark 2.7. Similarly, one can formulate some properties of the Minkowski difference

E = E1 ∗
⊖ E2, (2.47)

We can rewrite (2.47) as

E1 ∗
⊖ E2 = E1 ⊕ (−E2),

where −E2 = {−x : x ∈ E2}.

So, for the sets E1 and E2 given in Example 2.2, the Minkowski difference (2.47) is the

same as the Minkowski sum (2.46) (see Figure 2.11) because, in this case, E2 = −E2.
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2.3.7 Hadamard product of finite point configurations

Let L = 2 and the condition (2.37) be satisfied, while the finite point configuration E

be constructed as the Hadamard product of the sets E1 and E2, i.e.

E = E1 ◦ E2, (2.48)

E = {x ∈ Rn : x = (xi)i∈Jn , xi = x1
ix

2
i , i ∈ Jn, ∀x1 = (x1

i )i∈Jn ∈ E1, x2 = (x1
i )i∈Jn ∈ E2}.

Some properties of E and of the corresponding polytope P are

1. |E| ≤ |E1| · |E2|;

2. dim P ≥ max{dim P 1, dim P 2};

3. For E, the generating set A is

A = S({e ∈ R1 : e = e1 · e2, el ∈ Al, l ∈ J2}),

wherefrom we have the bound m′(E) ≤ m′(E1) · m′(E2) on the levelness of E along

coordinates;

4. If E1 or E2 is symmetric about a certain coordinate hyperplane, then the finite point

configuration (2.48) is also symmetric about this hyperplane.

5. If E1 or E2 are centrally symmetric sets, then E is also centrally symmetric. Similarly,

the polytope P is centrally symmetric if the polytopes P 1 or P 2 are centrally symmetric.

Remark 2.8. Let the following condition be satisfied for E1:

E1 = −E1, (2.49)

i.e. this set is centrally symmetric. Then, for every set E2, the Hadamard product (2.48) has

the addition property:

E = E1 ◦ E2′
,

E2′ = {x ∈ Rn : xi = |yi|, i ∈ Jn}y∈E2 .

(2.50)
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The formula (2.50) says that, under condition (2.49), the second component in the

Hadamar product (2.48) belongs to the orthant Rn
+. At the same time, E is formed as the

Hadamard product of the sets E2′ and E1+ = E1 ∩ Rn
+ with subsequent reflection of the

formed domain about all coordinate hyperplanes.

Example 2.3. Let E1 be the vertex set of the rectangle P 1 shown in Figure 2.12, and E2

be the vertex set of the triangle P 1 shown in Figure 2.13. Their Hadamard product is not a

vertex-located set E, but the set is symmetric about the coordinate axes (see Figure 2.14). Its

convex hull is the octagon P shown in Figure 2.14.

Figure 2.12: The set E1 and
the polytope P 1

Figure 2.13: The set E2 and
the polytope P 2

Figure 2.14: The set E and
the polytope P

Example  2.4.  Let  E  be  formed  from  the  binary  set  E1  =  B3  and  the  set  E2  such  that  E 

coincides  with  the  one  in  Example  2.1.  The  result  of  applying  the  formula  (2.48)  and  the

set’s  convex  hull  are  shown  in  Figure  2.15.  In  this  case,  E2  ⊂  R3
+,  hence,  E2  =  E2′  in  the 

formula  (2.50).  The  set  E  contains  |E|  =  34  elements,  including  six  elements  of  E2,  eighteen 

of  its  projections  onto  the  coordinate  hyperplanes,  nine  of  its  projections  onto  the  coordinate

axes,  and  one  of  the  projections  onto  the  origin.  This  set  is  not  centrally  symmetric,  has 

no  hyperplane  of  symmetry,  and  is  not  vertex-located,  while  the  sets  E1  and  E2  possess  all 

these  properties.  The  generating  set  of  E  is  A  =  J  03  .  For  E1  and  E2,  we  have  A1  =  {0,  1}

and  A2  =  J3,  respectively.  The  levelness  of  E  along  coordinates  is  m′(E1)  =  2,  m′(E2)  =  3,

m′(E)  =  4  >  max{m′(E1),  m′(E2)}.

Example  2.5.  Let  the  set  (2.48)  is  constructed  from  the  set  E1  =  {−1,  1}3  and  the  set

E2  given  in  the  previous  example.  Since  these  sets  satisfy  the  condition  (2.49),  the  formed
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set E and its convex hull P have the center of symmetry at the origin (see Figure 2.15).

Also, the coordinate hyperplanes are its hyperplanes of symmetry. The generating set is A =

−A2 ∪ A2 = {−3,−2,−1, 1, 2, 3}. The levelness along coordinates is m′(E1) = 2, m′(E1) = 3,

m′(E) = 6 = m′(E1) ·m′(E2). In Example 2.1, it was shown that E2 is spherically-located set,

and its elements are equidistant from the origin. The property of spherical locality is preserved

for E. The hypersphere circumscribed about this set is given by the equation x2
1 +x2

2 +x2
3 = 14.

Accordingly, E is also a vertex-located set.

Figure 2.15: The set
E and the polytope P
(Example 2.4)

Figure 2.16: The set
E and the polytope P
(Example 2.5)

Examples 2.4 and 2.5 demonstrate that for spherically located centrally symmetric

sets, applying Hadamard product operation can produce both vertex-located and non-vertex-

located sets, centrally symmetric and non-centrally symmetric sets, spherically-located and

non-spherically-located sets. Let E be the Cartesian product of the sets El, l ∈ JL formed by

(2.27):

E =
L
⊗
l=1

El, (2.51)

E = {x = (x1, ..., xL) ∈ Rn : xl ∈ El, l ∈ JL},

x = (x1, ..., xL) = (x11, ..., xn11, ..., x1L, ..., xnLL)⊤.

Let us list some properties of the Cartesian product of the FPCs El, l ∈ JL.
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The cardinality of E

|E| =
L∏

l=1
|El|.

Polytope P is the Cartesian product of the polytopes P l, l ∈ JL given by (2.28):

P =
L
⊗
l=1

P l. (2.52)

The dimension of P

dim P =
L∑

l=1
dim P l.

It is clear that

dim P < n ⇔ ∃ l ∈ JL : dim P l < nl, (2.53)

i.e. E lies on a hyperplane if and only if at least one of the sets given by (2.27) lies on a

certain hyperplane.

The full-dimensionality criterion for P

The polytope P in (2.52) is full-dimensional if and only if all the polytopes (2.28) are

full-dimensional.

Irredundant H-representation of P

Proposition 2.3. The irredundant H-representation of the polytope P has the form of a

linear constraint system (1.52), where:

• n′ =
L∑

l=1
n

′l is the number of inequality constraints, n′′ =
L∑

l=1
n

′′l is the number of equality

constraints;
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• the matrix A′ has the dimension n′ × n and block type such that A′ = (A′
ll′)l,l′∈JL

, where

A′
ll = A

′l ∈ Rn
′l×nl

, l ∈ JL; A′
ll′ = 0 ∈ Rn

′l×nl′
, l, l′ ∈ JL, l ̸= l′;

• the constraint matrix A′′ has the dimension n′′ × n and block type such that A′′ =

(A′′
ll′)l,l′∈JL

, where

A′′
ll = A

′′l ∈ Rn
′′l×nl

, l ∈ JL; A′′
ll′ = 0 ∈ Rn

′′l×nl′′
, l, l′ ∈ JL, l ̸= l′;

• the right parts’ vectors a′
0, a′′

0 are

a′
0 = (a′1

0 , ..., a
′L
0 ) ∈ Rn′

, a′′
0 = (a′′1

0 , ..., a
′′L
0 ) ∈ Rn′′

.

Corollary 2.4. The set F of facets of the polytope P is the union of the set of facets F′l of

the polyhedral domains:

P
′l = {x ∈ Rn : A′lxl ≤ a

′l
0 , A

′′lxl = a
′′l
0 }, l ∈ JL.

Thus, we have

F =
L
∪

l=1
F′l,

and since there is a one-to-one correspondence between the sets of facets P l and P ′l, l ∈ JL,

the following holds for the number of P -facets:

|F| =
L∑

l=1
|Fl|.

In terms of f-vectors, it is expressed as

fd−1(P ) =
L∑

l=1
fdl−1(P l).
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Surface locality of E

For all the sets (2.27) for which (2.31) holds, meaning that there are known surfaces of

the form (2.32) where the sets lie, we perform lifting from Rnl into Euclidean space Rn. To

accomplish this, we consider that each point of E is the Cartesian product of certain points of

the sets (2.27):

∀x ∈ E, ∃ xl ∈ El, l ∈ JL : x =
L
⊗
l=1
xl. (2.54)

Then we introduce functions:

∀x ∈ Rn f
′l(x) = f

′l(x1, ..., xl, ..., xL) = f l(xl), l ∈ JL.

Finally, let us introduce cylindrical surfaces:

S
′l = {x ∈ Rn : f ′l(x) = 0}, l ∈ JL. (2.55)

Proposition 2.4. If at least one of the sets (2.27) lies on a surface, then the entire set (2.27)

lies on a certain surface.

Indeed, if there exists l ∈ JL such that El ⊆ Sl, then E ⊆ S
′l, i.e. E lies on the

corresponding surface from the family (2.55).

Remark 2.9. If several sets in the collection (2.27) lie on surfaces, i.e. ∃I ⊆ JL, such that

El ⊆ Sl, l ∈ I, |I| > 1, then |I| surfaces containing E (S ′l, l ∈ I) can be found in the same

way. In addition, such surfaces can also be formed by various combinations (for example,

multiplication by scalars and subsequent summation) of the equations:

f
′l(x) = 0, l ∈ I. (2.56)

Proposition 2.5. If the conditions (2.31) and (2.33) are satisfied for the sets (2.27), i.e. all

the sets are inscribed in the surfaces (2.32), then there exists a circumscribed surface about E.
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Proof. In this case, equations (2.56) that are satisfied at all the points of E have the form:

f
′l(x) = 0, l ∈ JL.

Let us introduce the surface S by the equation:

f(x) =
L∑

l=1
λlf

′l(x) = 0, (2.57)

λ = (λl)l∈JL
∈ RL

>0, |λ| = 1. (2.58)

By construction and due to (2.34), from the formula (2.57) it follows that at each point

x ∈ E, the function (2.57) satisfies the inequality f(x) ≤ 0 turning into equality f(x) = 0 on

E. This means that, for the set E, the condition to be inscribed into the surface S given by

(2.57) is satisfied.

Now, we show that if the sets (2.27) are surface-located, then E also inherits this

property.

Theorem 2.8. If the conditions (2.31), (2.32), and (2.35) are satisfied for the sets (2.27),

their Cartesian product (2.51) is a surface-located set.

Proof. Consider the surface S given by the equation (2.57) and circumscribed about E. Let

us show that it is strictly convex, i.e.

∀α ∈ (0, 1) ,∀x′, x′′ ∈ Rn

f (αx′ + (1 − α)x′′) < αf (x′) + (1 − α) f (x′′) .
(2.59)

Likewise (2.54), from coordinates of the vectors x′, x′′ ∈ Rn, we single out the subvectors

x
′l ∈ Rnl

, l ∈ JL : x′ =
L
⊗
l=1
x

′l;

x
′′l ∈ Rnl

, l ∈ JL : x′′ =
L
⊗
l=1
x

′′l.

(2.60)

Substituting (2.57) into the left-hand side of (2.59) and, taking into account (2.35),
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(2.58), and (2.60), we obtain

f (αx′ + (1 − α)x′′) =
L∑

l=1
λlf

′l(αx′ + (1 − α)x′′) =

=
L∑

l=1
λlf

l(αx′l + (1 − α)x′′l) <
L∑

l=1
λl(αf l(x′l) + (1 − α) f l(x′′l)) =

=α
L∑

l=1
λlf

l(x′l) + (1 − α)
L∑

l=1
λlf

l(x′′l) = αf (x′) + (1 − α) f (x′′)).

Thus, the condition (2.59) is satisfied for every E ′, E ′′, which was to be proved.

Corollary 2.5. If the sets (2.27) are ellipsoidally-located, then their Cartesian product is also

ellipsoidally-located.

Indeed, the substitution (2.36) into the equation (2.57) yields:

f(x) =
L∑

l=1
λl(xl − x0l)⊤C l(xl − x0l) = 0.

As one can see, this is a quadratic surface. On the other hand, according to Theorem 2.8,

it is a strictly convex one. Hence, it is an ellipsoid, which was to be proved.

The spherical locality of E

Theorem 2.9. The set (2.51) is spherically-located if and only if the sets (2.27) are spherically-

located.

Proof. Necessity. For a fixed l ∈ JL, consider the hypersphere Sr(a) circumscribed about

E and, together with the set E, project it onto the subspace {x ∈ Rn : xi = 0, i ∈

{1, ..., nl−1
0 − 1, nl

0 + 1, ..., n}, where nl
0 =

l∑
i=1

nl, thus carrying out projection into the space

Rnl . As a result, we obtain an nl − 1-sphere whose equation is satisfied by all points of El. It

implies the spherical locality of El.

Expanding the results onto l ∈ JL, we conclude that all the sets (2.27) are spherically-

located.

Sufficiency. Suppose that all the sets (2.27) are spherically-located. Let us construct

the surface S given by the equation (2.57) with the coefficients (2.58) and obtain f(x) =
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2.3 Operations on finite point configurations

L∑
l=1

λl((xl − x0l)2 − rl2) = 0. Clearly, this equation defines a family of ellipsoids. We select

a hypersphere in the family by setting equal coefficients in (2.58) and getting the equation

f(x) = 1
L

L∑
l=1

((xl − al)2 − rl2) = 0, which can also be represented as

L∑
l=1

(xl − al)2 =
L∑

l=1
rl2,

i.e. by the equation of a hypersphere centred at the point:

a =
L
⊗
l=1
al. (2.61)

Thus, E is spherically-located, and its circumscribed hypersphere (that can be not

unique) has the parameters (2.61),

r = (
L∑

l=1
rl2)1/2.

Remark 2.10. If the condition (2.53) is also satisfied, then the hypersphere Sr(a) is not

uniquely. In the family of hyperspheres circumscribed about E, the hypersphere Smin has the

following parameters:

amin =
L
⊗
l=1

amin,l; rmin = (
L∑

l=1
(rmin,l)2)1/2.

Vertex locality of E

Theorem 2.10. The set (2.51) is vertex-located if and only if all the sets (2.27) are vertex-

located.

In other words, E satisfies the condition (1.50) if and only if the sets (2.27) satisfy the

condition (2.29).
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Vertex criterion of P

x = (x1, ..., xL) ∈ V ⇔ xl ∈ V l, l ∈ JL.

Number of vertices of P

|V | =
L∏

l=1
|V l|

or in terms of f-vectors

f0(P ) =
L∏

l=1
f0(P l).

This formula directly follows from the fact that, for the vertex set of P , the expression

V =
L
⊗
i=1

V l

similar to (2.51) holds.

Vertex adjacency criterion of P

Theorem 2.11. Two vertices x =
L
⊗
i=1

xl and y =
L
⊗
i=1

yl of the polytope P are adjacent if and

only if

∃l∗ ∈ JL : yl∗ ∈ NPl
(xl∗); yl = xl, l ∈ JL\{l∗}.

This also directly follows from the fact that P is the Cartesian product of the polytopes

(2.28).

Number of adjacent vertices of P

∀x ∈ V R(x) =
L∑

i=1
Rl(xl).

Corollary 2.6. (from Theorem 2.11) If all vertices of the polytopes (2.28) are regular, then
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the vertices of P are also regular, and the degree of their regularity is

R =
L∑

l=1
Rl.

Hyperplanes of symmetry of E and P

Proposition 2.6. If for some l ∈ JL, cl⊤xl = cl
0 is the hyperplane of symmetry of the set El

or polytope P l, then the hyperplane c⊤x = cl
0, where

ci =


c1

i−nl−1,0 , if i ∈ Jnl,0\Jnl−1,0 ,

0, if i /∈ Jnl,0\Jnl−1,0

is the hyperplane of symmetry of the set E of the form (2.51) or the polytope P of the form

(2.52), respectively.

Central symmetry of E and P

Proposition 2.7. The set E of the form (2.51) is centrally symmetric about the point

x0 =
L
⊗
i=1

x0l (2.62)

if and only if the sets (2.27) are centrally symmetric and x0l ∈ Rnl is the center of symmetry

of El (l ∈ JL).

Proposition 2.8. The polytope P given by (2.52) is centrally symmetric about the point x0

given by (2.62) if and only if the polytopes (2.28) are centrally symmetric about the points

x0l ∈ Rnl, l ∈ JL, the centers of symmetry of polytopes P l (l ∈ JL).

E-levelness

m(E) = max
l∈JL

m(El).
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E-levelness along coordinates

m′(E) = max
l∈JL

m′(El).

P -levelness

m′′(P ) = max
l∈JL

m′′(P l).

In particular, if none of the sets (2.27) is a singleton, i.e.

1 < |El| < ∞, l ∈ JL, (2.63)

then the below statement holds.

Proposition 2.9. The Cartesian product of the sets (2.27) and (2.63) is

• two-level, and the polytope (2.52) is two-level if and only if the sets (2.27) are two-level:

m(E) = m′′(P ) = 2 ⇔ m(El) = 2, l ∈ JL;

• two-level set along coordinates if and only if all the sets (2.27) are two-level along

coordinates:

m′(E) = 2 ⇔ m′(El) = 2, l ∈ JL.

Simplicity criterion of P

Proposition 2.10. The polytope P of the form (2.52) is simple if and only if all the polytopes

(2.28) are simple:

R = d ⇔ Rl = dl, l ∈ JL.
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2.3.8 Direct sum of finite point configurations

Let the sets El, l ∈ JL in (2.27) be such that the origins 0 ∈ P l, l ∈ JL belong to the

corresponding polytope (2.28). The set E is the direct sum of the sets (2.27):

E =
L
⊕
l=1

El. (2.64)

The set can be represented as

E =
L
∪

l=1
E

′l,

where

E
′l = {x = (x1, ..., xL) ∈ Rn : xl ∈ El, xl′ = 0 ∈ Rnl

, l′ ̸= l}, l ∈ JL.

The cardinality of E

|E| =
L∑

l=1
|El|.

The polytope P is the convex hull of the direct sum of the polytopes (2.28):

P = conv
L
⊕
l=1

P l. (2.65)

The dimension of P

dim P =
L∑

l=1
dim P l,

i.e. for the dimension of the polytope (2.65) the same formula as for the Cartesian product

holds.
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2.3 Operations on finite point configurations

Full-dimensionality criterion of P

The polytope P given by (2.65) is full-dimensional if and only if the polytopes (2.28)

are full-dimensional.

Relaxation of H-representations of P

The irredundant H-representation of the Cartesian product (2.27) given in Proposi-

tion 2.3 can serve as a relaxation of the H-representation of the polytope (2.65) of the direct

sum of the corresponding sets.

Irredundant H-representation of P

An irredundant H-representation of the polytope P can be found by combining its

constraints, namely. adding their left- and right-hand sides. It results in the H-representation

of the form (1.52), where:

n′′ =
∑
l<l′

n
′′ln

′′l′ , n′ =
∑
l<l′

(n′l + n
′′l)(n′l + n

′′l) − n′′.

For the number of facets of P the formula:

|F| =
∑
l<l′

|Fl| · |Fl′ |

is valid and can be rewritten in terms of f-vectors as

fd−1(P ) =
∑
l<l′

fdl−1(P l)fdl′ −1(P l′).

Surface locality of E

Suppose that some sets (2.27) satisfy the condition (2.31), i.e. it is known on which

surfaces these sets are located:

∃I ⊆ JL : El ∈ Sl, l ∈ I.
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2.3 Operations on finite point configurations

Let us lift into the space Rn and construct the surfaces (2.55). Then, the points of the

set E formed by (2.64) will lie on the surfaces

E ∈ S
′l, l ∈ I.

Proposition 2.11. If the sets (2.27) are inscribed into certain surfaces, then the set E of the

form (2.64) is also inscribed into a certain surface.

Proof. Let the sets (2.27) satisfy the conditions (2.31) and (2.33) and are inscribed into the

surfaces (2.32).

The functions (2.30) which define these circumscribed surfaces can be represented as

follows:

f l(xl) = hl(xl) − hl(0) = 0, l ∈ JL. (2.66)

We distinguish two groups of the functions: if hl(xl) takes a nonzero value at the origin

(Group 1, and if this value is null (Group 2), i.e.

Group 1: l ∈ I ′ ⊆ JL hl(0) ̸= 0,

Group 2: l ∈ JL\I ′ hl(0) = 0.

Here, without loss of generality, we can assume that

hl(0) = 1, l ∈ I ′.

Lifting into Rn according to the above rule, we perform the transition hl(xl) → h
′l(x)

from the function hl(xl) to a new function h′l(x) defined in Rn (l ∈ JL).

Constructing the surface S, we consider two cases:

• if I ′ ̸= ∅, then S is given by the equation

f(x) =
L∑

l=1
h

′l(x) − 1 = 0; (2.67)

where λ satisfies (2.58);
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• if I ′ = ∅, then S is defined as follows:

f(x) =
L∑

l=1
h

′l(x) = 0. (2.68)

  It  is  easy  to  see  that  every  point  of  E  satisfies  the  equation  f  (x)  =  0  since  an  arbitrary 

point  x  ∈  E  has  L  −  1  groups  of  zero  coordinates  and  one  group  of  coordinates  corresponding

to  xl  that  belongs  to  a  certain  El.  Thus,  E  lies  on  the  constructed  surface  S,  and  for  every 

point  x  ∈  P  the  inequality  f  (x)  ≤  0  is  satisfied  due  to  (2.33)  and  the  method  of  constructing

f  (x).  As  a  result,  S  will  be  the  surface  circumscribed  about  E.

  In  conclusion,  we  show  that  if  the  sets  (2.27)  are  surface-located,  then  E  also  inherits 

the  same  property.

Theorem  2.12.  If  the  sets  formed  by  (2.27)  satisfy  the  conditions  (2.31),  (2.32),  and  (2.35),

then  their  direct  sum  (2.64)  is  a  surface-located  set.

  The  proof  is  similar  to  the  proof  of  Theorem  2.8,  where  either  the  function  (2.67)  or 

(2.68)  is  chosen  as  f  (x)  depending  on  whether  the  condition  holds:

I ′  ≠  ∅.  (2.69)

  As  it  turns  out,  such  a  construction  of  the  function  f  (x)  ensures  its  strict  convexity.

Corollary  2.7.  If  the  sets  formed  by  (2.27)  are  ellisoidally-located,  then  the  set  (2.64)  is

ellipsoidally-located.

Ellipsoidal  and  spherical  locality  of  E

Proposition  2.12.  If  the  sets  (2.27)  are  spherically-located,  then  their  direct  sum  is  ellipsoidally-

located  set.

Proof.  Indeed,  suppose  that  all  the  sets  (2.27)  are  spherically-located.  Let  us  show  that  there 

exists  an  ellipsoid  circumscribed  about  the  set  (2.64).

The  functions  f  l(xl)  =  (xl  −  x0l)2  −  rl2  defining  hyperspheres  circumscribed  about  sets

(2.27)  can  be  represented  in  the  form  (2.66),
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• ∀l ∈ I ′ hl(xl) = 1
al2−rl2 (xl2 − xlTal);

• ∀l /∈ I ′ hl(xl) = (xl2 − xlTal),

respectively, and single out Group 1 and Group 2 in them.

Let us construct the equation (2.67) if the condition (2.69) is met or the equation (2.68)

otherwise. In the first case, the surface given by this equation, generally, is an ellipsoid.

Consider these two cases and derive the equations of the resulting quadratic surfaces:

1. if

∃ α ∈ R1 : ∀l ∈ I ′ al2 − rl2 = α, (2.70)

then we have

∀l ∈ I ′, hl(xl) = 1
α

(xl2 − xlTal) =
El

1, h′l(xl) = α · hl(xl) = xl2 − xlTal =
El
α.

We define the function

f(x) =
L∑

l=1
h

′l(x) − α = 0.

The equation of the surface S will be

f(x) =
L∑

l=1
(xl2 − xlTal) − α = 0,

rewritable as

L∑
l=1

(xl2 − xlTal + al2) = α +
L∑

l=1
al2

or

(x− a)2 = a2 + α,

where x is the vector (2.54) and a is the vector (2.61). Thus, E is a spherically-located
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set, and its circumscribed hypersphere has the center at a and the radius
√
a2 + α;

2. if (2.70) is violated, then we build the surface

∑
l∈I′

1
al2 − rl2 (xl2 − xlTal) +

∑
l /∈I′

(xl2 − xlTal) = 1,

which is an ellipsoid centered at the point a. To determine its semiaxes, we represent

this equation in the canonical form:

∑
l∈I′

1
al2 − rl2 (xl2 − xlTal + al2) +

∑
l /∈I′

(xl2 − xlTal + al2) =

= 1 +
∑
l∈I′

al2

al2 − rl2 +
∑
l /∈I′

al2.

Wherefrom,
L∑

l=1

(xl2 − al)2

bl2 = 1,

where

bl2 =


B(al2 − rl2), if l /∈ I ′,

B, if l /∈ I ′
(l ∈ JL);

B = 1 +
∑
l∈I′

al2

al2 − rl2 +
∑
l /∈I′

al2.

Vertex locality of E

Theorem 2.13. The set (2.64) is vertex-located if and only if all the sets given by (2.27) are

vertex-located.

For proof, we can use Theorem 2.12 and the connection between vertex-located and

surface-located sets established in Theorem 2.1.
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Vertex criterion of P

x = (x1, ..., xL) ∈ V ⇔ ∃ l∗ ∈ JL xl∗ ∈ V l∗ .

Number of vertices of P

|V | =
L∑

l=1
|V l|

rewritable in terms f-vectors as

f0(P ) =
L∏

l=1
f0(P l).

Symmetry hyperplanes of E, P

The direct sum (2.64) of the sets (2.27) satisfies Proposition 2.6.

Central symmetry of E, P

Likewise, the Cartesian product of the sets (2.27), for the set (2.64) and corresponding

polytope P , Proposition 2.7 is valid and establishes the central symmetry of E and P , given

that the sets (2.27) and/or polytopes (2.28) are centrally symmetric.

E-levelness along coordinates

m′(E) = max
l∈JL

m′(El).

Levelness along coordinates for the direct sum of sets is identical to their Cartesian

product. In particular, if the condition (2.63) is satisfied, then the criterion for two-levelness

along coordinates for the set (2.64) is the following.

Proposition 2.13. The direct sum of the sets (2.27) and (2.63) is a two-level set along

coordinates if and only if all these sets are two-level along coordinates:

m′(E) = 2 ⇔ m′(El) = 2, l ∈ JL.
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Chapter 3
Combinatorial point configurations

In the realm of discrete mathematics, specifically within the domains of combinatorial

analysis and combinatorial optimization, a pivotal focus is dedicated to the formalization of

fundamental concepts such as combinatorial sets and combinatorial objects, as well as singling

outing distinctive classes of discrete structures. Within this context, a fundamental issue is

establishing a precise definition for combinatorial configurations. This introductory discussion

concisely examines the current state of research in this area.

This chapter highlights the combinatorial point configuration class. For its formal

definition, the concept of Euclidean combinatorial configurations (e-configurations) is intro-

duced as a result of a bijective mapping of combinatorial configurations into Euclidean space.

Combinatorial configurations are considered in the sense of C. Berge [6], and their classification

and properties are given in accordance with [6, 14, 24,26,27,34,71,81,82]. The description of

e-configurations is based on the works [97], taking into account the properties of finite point

configurations reflected in the previous chapters. The concept of e-configuration is inextricably

linked with the definition of Euclidean combinatorial sets and their bijective mapping into

Euclidean space [74, 75]. These mappings generate various classes of combinatorial point

configurations that can be seen as the corresponding sets of e-configurations. This fact is

illustrated by various classes of permutation and multipermutation point configurations, partial

permutation and multipermutation point configurations and unbounded permutation point

configurations in accordance with the studies [40,76,79,106].
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3.1 Combinatorial configurations and their collections

Further, we use the notion of a combinatorial configuration in the sense of C. Berge [6].

A configuration is understood as mapping an initial set of elements, which can be of an

arbitrary nature, onto a finite abstract resulting set possessing a specific structure. This

mapping is subject to constraints that determine the positions of the elements and their

mutual relations. When studying such configurations, the relationship between constraints,

structure, and mappings is taken into account based on the combinatorial properties of the

resulting set.

Based on the classification proposed by C. Berge [6], combinatorial analysis involves

solving several key problems such as

• Study of known configurations, involving the analysis and study of existing configurations

to understand their properties, characteristics and relationships.

• Formation of new configuration classes with predefined properties allows exploring such

classes using various construction methods or transformation techniques.

• Enumerative combinatorics dealing with determining the number of configurations within

a given class or under certain restrictions. Enumerative combinatorics provides methods

and tools for efficient configuration counting.

• Approximate formulas for the number of configurations when obtaining exact formulas

is difficult or infeasible. Such an approximation provides valuable information about the

composition and behavior of configuration classes.

• Generation of configurations focuses on systematically generating or listing all configu-

rations within a given class or satisfying specific constraints. Efficient algorithms and

techniques are developed to enumerate configurations comprehensively.

• Optimization on multiple configurations involves optimizing certain properties or objec-

tives over a set of configurations. For example, finding a configuration that maximizes

or minimizes a specific parameter or optimizing a configuration for a given problem.
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These problems are fundamental in combinatorial analysis, contributing to the un-

derstanding, exploring, and applying configurations in various fields of mathematics and

beyond.

We formalize the notion of a combinatorial configuration in terms of mappings of sets.

Definition 3.1. By a combinatorial configuration, we mean a mapping χ of some B of

arbitrary nature items into a finite abstract set A = {a1, ..., ak} of a certain structure under a

given family of constraints Ω, i.e.

χ : B → A. (3.1)

The sets B and A are called the initial and resulting sets, respectively. Although

formally, there are no constraints on the cardinality of the set B, in fact, a finite set B =

{b1, ..., bn} is usually under consideration.

It is worth noting that relaxing the finiteness condition of the resulting set A does not

alter the core essence of the combinatorial configuration concept. Nevertheless, this adjustment

naturally influences the cardinality of the resulting set, its key characteristics, and broadens

the scope of research problems. On this basis, L. Gulyanitskyy introduced the concept of a

combinatorial objects [24,25] adding the assumption that the set A can be countable.

Mapping (3.1) determines the structure of the resulting set A and specifies an ordered

sequence π of elements from A:

π =

 b1 . . . bn

aj1 . . . ajn

 = [aj1aj2 ...ajn ], (3.2)

where  {j1,  ...,  jn}  ∈  Jk.

Further,  for  the  configuration  π  of  the  form  (3.2),  we  will  use  the  notation

π  =  [aj1 ,  aj2 ,  ...,  ajn  ]  .

Thus,  every  combinatorial  configuration  is  entirely  defined  by  the  quaternion:

"mapping  -  initial  set  -  resulting  set  -  constraints"  ,  i.e.
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⟨χ,B,A,Ω⟩ .

In many instances, the original set B can be amalgamated by simply renumbering its

elements, and this reordering information can be leveraged to construct various combinatorial

configurations. To facilitate this process, we establish a bijection between the initial set B

and the set Jn, representing the indices of its elements. Consequently, the mapping (3.1) can

be reformulated as follows:

ψ : Jn → A. (3.3)

Combinatorial configuration does not change under such a mapping, i.e.

π =

 b1 . . . bn

aj1 . . . ajn

 =

 1 . . . n

aj1 . . . ajn

 = [aj1 , aj2 , ..., ajn ]. (3.4)

The set Jn is called the numbering set, and the structuring of the set A is understood

as its strict ordering, i.e.

ai ≺ ai+1, i ∈ Jk−1.

In this case, elements of the numbering set Jn indicate the positions of the elements of

the set A, and the combinatorial configuration itself can be represented by the triad:

⟨ψ,A,Λ⟩ ,

where A is the strictly ordered resulting set, ψ is a mapping of the form (3.3), Λ is a certain

collection of constraints on the mapping ψ.

By considering the properties of mappings (3.3) and the interconnection between the

cardinalities of the initial numbering and resulting sets, we can identify the primary categories

of combinatorial configurations and sets of combinatorial configurations that correspond to

well-established combinatorial structures.

Let Λ be a bijective mapping and n = k. Then mapping ψ defines a permutation

configuration and forms a set of permutation configurations, which in combinatorics is called

a set of permutations without repetitions.
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  Let  Λ  be  an  injective  mapping  and  n  <  k.  Then  mapping  ψ  defines  a  partial  permutation 

configuration  and  forms  a  set  of  permutation  configurations  called  a  set  of  partial  permutations 

without  repetitions  in  combinatorics.

  Let  Λ  =  ∅,  that  is,  there  are  no  constraints  on  the  mapping  (3.3).  Then  we  obtain  a 

set  of  permutations  with  unbounded  repetitions.

  In  the  subsequent  sections,  we  will  explore  sets  of  combinatorial  configurations  that 

align  with  established  combinatorial  structures,  including  sets  of  permutations  and  partial 

permutations  with  repetitions,  along  with  their  respective  subsets.  Throughout  our  discussion,

we  will  introduce  the  requisite  definitions  and  rules  for  the  formation  of  the  constraints  family

Λ  in  the  context  of  mapping  (3.3).

3.2  Euclidean  combinatorial  configurations

  For  any  combinatorial  configuration  ⟨ψ,  A,  Λ⟩,  one  can  define  a  bijective  mapping  φ

into  Euclidean  space  RN  :

φ  :  ⟨ψ,  A,  Λ⟩  →  RN  .  (3.5)

  As  a  result  of  such  a  mapping,  to  the  point  π  =  [aj1 ,  aj2 ,  ...,  ajN  ]  formed  by  (3.4),  the 

point  x  =  (x1,  ...,  xN  )  ∈  RN  corresponds,  i.e.

x  =  φ(π).

Definition  3.2.  The  image  of  combinatorial  configuration

⟨ψ,  A,  Λ⟩  (3.6)

under  bijective  mapping  φ  formed  by  (3.5)  will  be  called  an  Euclidean  combinatorial  configuration,

and  abbreviations  e-configuration  and  ECC  will  be  used.

  By  employing  the  term  "Euclidean",  we  underscore  that  the  mapping  (3.5)  yields  a 

point  in  Euclidean  space  RN  ,  and  the  dimension  of  an  ECC  is  determined  by  the  dimension

N  of  this  space.
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Let us consider the set Π of combinatorial configurations ⟨ψ,A,Λ⟩ induced by feasible

mappings ψ subject to certain constraints Λ.

Under a bijective mapping φ formed by (3.5), we introduce the set

E = φ (Π) ⊂ RN , (3.7)

which is image of a set Π under the mapping φ, i.e. a set of the corresponding Euclidean

combinatorial configurations.

Definition 3.3. A set E of Euclidean combinatorial configurations formed by (3.7) will be

called a combinatorial point configuration (CPC).

So, the mapping (3.7) determines an image E of the set Π into Euclidean space RN ,

and, depending on the mapping φ, allows the forming various CPCs.

Taking into account bijectivity of the mapping φ, we can specify a preimage Π of a set

E as

Π = φ−1(E). (3.8)

For an e-configuration x = (x1, ..., xN) ∈ E and a combinatorial configuration π =

(π1, ..., πN) ∈ Π, we can write:

x = φ(π), π = φ−1(x).

A multitude of mappings φ as defined in (3.5) are available for each dimension N. It is

essential to designate the specific type of such mapping based on the particular tasks at hand.

Given the combinatorial analysis problems enumerated earlier, our emphasis will be on opti-

mizing combinatorial configurations. Hence, the distinctive properties of combinatorial point

configurations generated through the bijective mapping φ and their associated combinatorial

polytopes hold significant relevance. Primarily, our focus lies in the decompositions of FPCs

into hyperplanes and surfaces, vertex- and surface-located sets including spherical-located and

ellipsoidally-lovated ones.

Taking into account the above, we define the mapping φ as follows. Let us consider

the formation of combinatorial configurations ⟨ψ,A,Λ⟩. Each combinatorial configuration
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3.2 Euclidean combinatorial configurations

corresponds to an ordered sample of items from the set A = {a1, ..., ak}.

We single out a class of combinatorial configurations consisting of ordered N -samples

for the fixed N = n. Let G = {e1, ..., ek} be a finite set of k real numbers. We perform a

bijection ξ between the sets A and G, G = ξ(A), as follows:

ei = ai, i ∈ Jk. (3.9)

Thus one can write

⟨ψ,G,Λ⟩ = ⟨ψ, ξ(A),Λ⟩. (3.10)

Each element π = [aj1 , aj2 , ..., ajn ] of the combinatorial configuration ⟨ψ,A,Λ⟩ is associ-

ated with the following point of n-dimension Euclidean space

x = (x1, ..., xn) ∈ Rn, (3.11)

where

xi = ξ(aji
), i ∈ Jn. (3.12)

Thus, we have established a one-to-one correspondence between the combinatorial

configuration π = [aj1 , ..., ajn ] and the point x = (ej1 , ..., ejn) ∈ Rn.

As a result, we have formed a bijective mapping

φ : ⟨ψ,A,Λ⟩ → (x1, ..., xn) ∈ Rn. (3.13)

In Definition 3.2, we introduced an e-configration (3.6) by the formulas (3.11) and

(3.12).

Applying the mapping (3.13) to all combinatorial configurations forming Π, we obtain

a CPC E given by the formula (3.7).

Every point x = (x1, ..., xn) ∈ E is representable as

x = (ej1 , ..., ejn), (3.14)
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3.2 Euclidean combinatorial configurations

where eji
∈ G ∀ji ∈ Jn, i ∈ Jn, and jp ̸= jq, ∀p, q ∈ Jn, p ̸= q.

The mapping process utilizing the rules (3.10)-(3.14) is called an immersion of the set

Π into Euclidean space Rn. The dimension of the resulting CPC (further referred to as E), is

contingent upon the dimension of the space into which the immersion is performed. Following

the approach described for constructing the mapping (3.13), this dimension aligns with the

cardinality of the numbering set Jn.

It is worth highlighting that Yu. Stoyan introduced a category of combinatorial sets

where distinctions arise from the constituent elements or their arrangement [75]. These sets

are referred to as "Euclidean combinatorial sets" or e-sets. Their images in Euclidean space

are termed "special combinatorial sets" or s-sets, as per Stoyan’s work [75].

In this case, if P is an e-set, and E is a s-set obtained by mapping ϕ : P → E , then:

∃ ϕ : E = ϕ(P) ⊂ Rn, P = ϕ−1(E). (3.15)

It is easy to see that Π is an e-set. Indeed, for a pair of configurations π, π′ ∈ Π such

that for arbitrary

π = [aj1 , aj2 , ..., ajn ] , π′ =
[
aj′

1
, ..., aj′

n

]
,

it is true

π ̸= π′ ⇔ [j1, j2, ..., jn] ̸= [j′
1, j

′
2, ..., j

′
n],

which ensures the difference between the combinations {aji
}i∈Jn , {aj′

i
}i∈Jn of these two config-

urations or the order of their constituent elements. Then E = φ (Π) is an s-set utilizing the

following notations:

ϕ = φ, P = Π, E = E.

In terms of the method of construction, an e-set Π coincides with the set of combinatorial

configurations that we describe through the mapping φ : Π → E. Moreover, the combinatorial

point configuration E as the image of the set Π is an s-set. In this context, the notions of

a special combinatorial set and a combinatorial point configuration are equivalent. Hence,

the examination of the classes of Euclidean combinatorial sets that are investigated and the
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3.3 Typology of combinatorial point configurations

methods by which they are mapped into Euclidean space becomes of paramount importance.

The category of combinatorial point configurations is notably extensive. It hinges on

the initial selection of a set of combinatorial configurations, denoted as Π. When forming

the corresponding CPC E, one can specify numerous mappings φ (Π) ⊂ Rn for any natural n.

Therefore, we will narrow our focus to specific categories of combinatorial point configurations,

delineating both the set Π and the mapping φ in the form of (3.13).

3.3 Typology of combinatorial point configurations

Let us offer an approach to classifying a combinatorial point configuration E ⊂ Rn

using the concept of a multiset.

For any e-configuration x ∈ E given by (3.15), we form the multiset

G(x) = {ej1 , ej2 , ..., ejn} (3.16)

with the underlying set S (G(x)) and primary specification [G(x)].

Forming the union of the multisets G(x) over all x ∈ E, we come to the multiset

G(E) =
⋃

x∈E

G(x). (3.17)

with the underlying set S (G(E)) and primary specification [G(E)].

Definition 3.4. Multiset G(x) of the form (3.16) will be called an inducing multiset of an

e-configuration x ∈ E.

Definition 3.5. The multiset G(E) formed by (3.17) will be called an inducing multiset of a

combinatorial point configuration E ⊂ Rn generated by a set of e-configurations x ∈ E.

Let G be the multiset of the form

G = {g1, g2, ..., gη} = {en1
1 , e

n2
2 , ..., e

nk
k } (3.18)
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3.3 Typology of combinatorial point configurations

with the underlying set

S(G) = {e1, e2, ..., ek} (3.19)

and primary specification

[G] = (n1, n2, ..., nk). (3.20)

For multiplicities of elements of the primary specification [G], the following relation

holds

η =
k∑

i=1
ni, 1 ≤ ni ≤ n, i ∈ Jk. (3.21)

Further, we utilize the multiset G as an inducing multiset G(E) of the combinatorial

point configuration E ⊂ Rn, i.e. we suppose that G(E) = G. Now, we can introduce specific

classes of combinatorial point configurations characterized by a combinations of the numbers

n, η and k.

Definition 3.6. A combinatorial point configuration E ⊂ Rn will be called a permutation

point configuration (PPC) if G(x) = S(G) for any x ∈ E and η = n = k.

Definition 3.7. A combinatorial point configuration E ⊂ Rn will be called a multipermutation

point configuration (MPC) if G(x) = G for any x ∈ E and η = n ≥ k.

If η = n = k, an MPC will be a PPC. Thus, Definition 3.7 generalizes the concept of a

PPC. Respectively, all properties of MPC are also valid for PPC. At the same time, PPCs

possess specific properties. Therefore, if necessary, we will emphasize how n and k are related.

Definition 3.8. A combinatorial point configuration E ⊂ Rn will be called a partial permutation

point configuration (PPPC) if G(x) = S (G(x)) ⊂ G for any x ∈ E and n < η, η = k.

Definition 3.9. A combinatorial point configuration E ⊂ Rn will be called a partial

multipermutation point configuration (PMPC) if G(x) ⊂ G for any x ∈ E and n < η, k ≤ η.
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3.3 Typology of combinatorial point configurations

A PMPC is a PPPC if η = k, and Definition 3.7 generalizes the concept of a PPPC.

All properties of a PMPC are valid for a PPPC. To point out specific properties of a PPPC,

we will additionally emphasize that n = k.

Analyzing Definitions 3.4-3.8, we can see that there are no restrictions on the cardinality

of the combinatorial point configuration E ⊂ Rn. Moreover, it makes sense to consider a set

of all possible e-configurations generated by the inducing multiset G(E) = G. In this regard,

we introduce additional concepts.

Definition 3.10. A multipermutation point configuration E ⊂ Rn is called the entire MPC

(EMPC) if E consists of all possible e-configurations x ∈ E such as G(x) ⊂ G.

If G = S(G), we say that we deal with the entire PPC (EPPC).

Definition 3.11. A partial multipermutation point configuration E ⊂ Rn will be called the

entire PMPC (EPMPC) if E consists of all possible e-configurations x ∈ E such as G(x) ⊂ G.

When G = S(G), we operate with the entire PPPC (EPPPC).

Definition 3.12. A partial multipermutation point configuration E ⊂ Rn will be called

the entire unbounded partial permutation point configuration (EUPPPC) if E consists of all

possible e-configurations x ∈ E such as G(x) ⊂ G(E) = G = {g1, g2, ..., gη} = {en
1 , e

n
2 , ..., e

n
k}.

For the entire combinatorial point configurations defined above, we introduce special

notations. An entire point multipermutation configuration E with the inducing multiset

G of the form (3.18)-(3.21) is denoted by Enk(G). If η = n = k, we use the notation

En(G) = Enn(G).

By analogy, the entire partial multipermutation point configuration is denoted by

En
ηk(G) and the entire unbounded partial multipermutation point configuration is denoted by

Ēn
k (G). When η = k, we use the notation En

k (G).

  The  classification  of  combinatorial  point  configurations  is  associated  with  their  distinc-

tive  characteristics.  These  peculiarities  are  shaped,  on  one  hand,  by  the  properties  of  the 

preimages  of  CPCs  as  combinatorial  structures  and,  on  the  other  hand,  by  their  attributes  as 

finite  point  configurations.  Therefore,  for  CPCs,  all  the  results  described  in  Chapters  1  and  2
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3.3 Typology of combinatorial point configurations

are applicable. First of all, we discuss vertex- and surface-located finite point configurations,

as well as their decompositions into hyperplanes and surfaces. In this regard, we emphasize

that:

• a CPC E is vertex-located if it satisfies condition (1.51);

• if a CPC E satisfies condition (1.19) for certain strictly convex surface S of the form

(1.19), then E is referred to as a surface-located CPC;

• if the circumsurface S is a hypersphere, then E is called a spherically-located CPC;

• if the circumscribed surface S is an ellipsoid, then E is called an ellipsoidally-located

CPC;

• if the surface S is a supersphere, then E is called a superpherically-located CPC;

• if the levelness of E is m(E), then E is called a m(E)-level CPC and so on.

Every known combinatorial structure is an preimage Π of a certain combinatorial

point configurations E, namely, Π = φ−1(E). Following (3.7) and (3.8), let us consider these

configurations as the result of immersing E = φ(Π) of the combinatorial set Π into Euclidean

space Rn. Then we get

Pnk = φ−1 (Enk(G)) , (3.22)

Pn = φ−1 (En(G)) , (3.23)

P n
ηk = φ−1

(
En

ηk(G)
)
, (3.24)

P n
k = φ−1 (En

k (G)) , (3.25)

P̄ n
k = φ−1

(
Ēn

k (G)
)
. (3.26)

Taking into account the mapping (3.9), we come to

•  Pn  of  the  form  (3.23)  is  the  set  of  permutations  without  repetitions  from  elements  of  A;

•  if  k  <  n,  then  Pnk  of  the  form  (3.22)  is  the  set  of  multipermutations  with  repetitions

  from  elements  of  A;
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• P n
k of the form (3.25) is the set of partial permutations without repetitions from elements

of A;

• if k < η, then P n
ηk of the form (3.24) is the set of partial multipermutations with

repetitions from elements of A;

• P̄ n
k of the form (3.26) is the set of partial multipermutations with unbounded repetitions

from elements of A.

Some properties of these combinatorial sets, mostly related to the enumeration problem,

will be applied further when combinatorial point configurations are explored.

3.4 Illustrative examples

We illustrate the above concepts with several examples aiming to illustrate the combi-

natorial structure of a CPC E ⊂ Rn.

• Let n = 3 and G(E) = {0, 5, 7} be the multiset with the underlying set S (G(E)) =

G(E) = {0, 5, 7}. In this case, η = k = 3.

Consider e-configurations x1 = (0, 7, 5), x2 = (0, 5, 7), x3 = (5, 0, 7), x4 = (5, 7, 0),

x5 = (7, 5, 0), x6 = (7, 0, 5). Then, the CPC E = {xi}i∈J6
is an EPPC, while its subsets

are PPCs. Moreover, E = {xi}i∈J6
is an EPPC.

• Let n = 4 and G(E) = {1, 3, 3, 6} be the multiset with the underlying set S (G(E)) =

G(E) = {1, 3, 6}. Here, η = 4, k = 3.

Consider the following e-configurations: x7 = (1, 3, 3, 6), x8 = (1, 3, 6, 3), x9 = (1, 6, 3, 3),

x10 = (3, 3, 1, 6), x11 = (3, 3, 6, 1), x12 = (3, 1, 3, 6), x13 = (3, 1, 6, 3), x14 = (3, 6, 1, 3),

x15 = (3, 6, 3, 1), x16 = (6, 1, 3, 3), x17 = (6, 3, 1, 3), x18 = (6, 3, 3, 1).

Then the CPC E = {xi}i∈J18\J6
is an EMPC, while every its subset is a MPC.

• Let n = 2 and G(E) = {−1, 0, 2} be the multiset with the underlying set S (G(E)) =

G(E) = {−1, 0, 2}. In this case, η = k = 3.
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Consider the e-configurations x19 = (−1, 0), x20 = (−1, 2), x21 = (0,−1), x22 = (0, 2),

x23 = (2,−1), x24 = (2, 0). Then the CPC E = {xi}i∈J24\J18
is an EPPPC, and any of

its subsets is a PPPC.

• Let n = 3 and G(E) = {0, 2, 2, 5, 5} be the multiset with the underlying set S (G(E)) =

{0, 2, 5}. In this case, η = 5, k = 3.

Introduce the following e-configurations: x25 = (0, 2, 2), x26 = (0, 2, 5), x27 = (0, 5, 2),

x28 = (0, 5, 5), x29 = (2, 0, 2), x30 = (2, 0, 5), x31 = (2, 2, 0), x32 = (2, 2, 5), x33 = (2, 5, 0),

x34 = (2, 5, 2), x35 = (2, 5, 5), x36 = (5, 0, 2), x37 = (5, 0, 5), x38 = (5, 2, 0), x39 = (5, 2, 2),

x40 = (5, 2, 5).

Then the CPC E = {xi}i∈J40\J24
is an EPMPC, while every its subset is a PMPC.

• Let n = 3 and G(E) = {−1, 1} be the multiset with the underlying set G(E) =

S (G(E)) = {−1, 1}. In this case, η = k = 2.

Consider the e-configurations x41 = (−1,−1,−1), x42 = (−1,−1, 1), x43 = (−1, 1,−1),

x44 = (−1, 1, 1), x45 = (1,−1,−1), x46 = (1,−1, 1), x47 = (1, 1,−1), x48 = (1, 1, 1).

Then the CPC E = {xi}i∈J48\J40
is an EUPMPC.

Exploring various CPCs given by their elements, it is an issue to classify them. In this

case, initially, the inducing set G(E) of a certain CPC E is not given and needs to be derived.

This task is easily solvable since the conditions that the CPC E must satisfy depending on

its class are listed above. We illustrate this approach to classifying CPCs with the following

examples.

We set n = 4 and analyze the following e-configurations: x49 = (0, 1, 5, 7); x50 =

(0, 5, 1, 7); x51 = (1, 5, 0, 7); x52 = (0, 5, 7, 1); x53 = (7, 1, 0, 5); x54 = (5, 1, 0, 7); x55 =

(7, 1, 5, 0); x56 = (5, 7, 0, 1).

• Suppose that E(1) = {xi}i∈J56\J48
. Then G(x49) = G(x50) = G(x51) = G(x52) =

xi∈E(1)

={0,  1,  5,  7}.

Since  G(xi)  =  S  
(
G  
(
E(1)

))  
for  any  xi  ∈  E(1),  i  ∈  J56\J48,  then  the  CPC  E(1)  is  a  PPC.
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• Let us add the e-configurations x57 = (3, 1, 5, 7), x58 = (0, 5, 1, 3), x59 = (1, 5, 3, 7),

x60 = (0, 3, 7, 1) to the above CPC and explore the CPC E(2) = {xi}i∈J60\J48
.

We have G(x57) = {1, 3, 5, 7}, G(x58) = {0, 1, 3, 5}, G(x59) = {0, 3, 5, 7}, G(x60) =

{0, 1, 3, 7} and

G
(
E(2)

)
=

⋃
xi∈E(2)

G(xi) = S
(
G
(
E(2)

))
= {0, 1, 3, 5, 7}.
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Since  G(xi)  ⊂  S  
(
G  
(
E(2)

))  
for  any  xi  ∈  E(2),  i  ∈  J60\J48,  then  the  CPC  E(2)  is  a

PMPC.

•  Let  x61  =  (1,  1,  5,  7);  x62  =  (1,  5,  1,  7);  x63  =  (1,  7,  1,  5);  x64  =  (1,  5,  7,  1);

  x65  =  (7,  1,  1,  5);  x66  =  (5,  1,  1,  7);  x67  =  (7,  1,  5,  1);  x68  =  (5,  7,  1,  1).

For  the  CPC  E(3)  =  {xi}i∈J68\J60
,  we  have

G(x61)  =  G(x62)  =  G(x62)  =  G(x64)  =  G(x65)  =  G(x66)  =  G(x67)  =  G(x68)  =  {1,  1,  5,  7}

G  
(
E(3)

)  
=  

xi  

⋃
∈E(3)

G(xi)  =  {1,  1,  5,  7}.

Since  G(xi)  =  G  
(
E(3)

)  
for  each  xi  ∈  E(3),  then  the  CPC  E(3)  is  an  MPC.

•  Let  us  consider  the  CPC  E(4)  =  {xi}i∈J72\J48
,  where  x69  =  (3,  3,  5,  7);  x70  =  (3,  5,  1,  3);

 x71  =  (1,  3,  3,  7);  x72  =  (0,  3,  3,  1).

In  this  case,  S  (G(x69))  =  {3,  5,  7};  S  (G(x70))  =  {1,  3,  5};  S  (G(x71))  =  {1,  3,  7};

 S  (G(x72))  =  {0,  1,  3}

G  
(
E(4)

)  
=  

xi  

⋃
∈E(4)

G(xi)  =  {0,  1,  3,  3,  5,  7},  S  
(
G  
(
E(4)

))  
=  {0,  1,  3,  5,  7}.

Therefore,  E(4)  is  a  PMPC.

  In  the  following  chapters,  we  investigate  important  properties  of  multipermutation  and

partial  multipermutation  point  configurations.
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3.5 Special cases of EMPCs and EPMPCs

When for a FPC E,

k = 2,

we will call it a set of special e-configurations.

This class is singled out from the classes EMPC and EPMPC due to its specific

properties such as vertex locality, polyhedral sphericity and others.

In particular,

1. En2(G) is called the entire special multipermutation point configuration (ESPC);

2. En
η2(G) is the entire special partial multipermutation point configuration (ESPPC);

3. En
2 (G) is the entire unbounded special partial multipermutation point configuration

(EUSPPC).

The induced multiset of an ESPC is

G = {en1
1 , e

n2
1 }, e1 < e2, n1 + n2 = n, n1, n2 ≥ 1, (3.27)

while the induced multiset of an ESPPC is

G = {eη1
1 , e

η2
1 }, e1 < e2, 1 ≤ η1, η2 ≤ n, η1 + η2 = η > n. (3.28)

Let us introduce the parameter m for the multiplicity of e2 among coordinates of special

e-configurations and the parameters m1,m2 : m1 ≤ m2 expressing a lower bound and an upper

bound for the multiplicity of e2 among the configurations’ coordinates, i.e. m ∈ [m1,m2].

For every ESPC, m = m1 = m2, and (3.27) can be rewritten in the compact form

G = {en−m
1 , em

2 }, (3.29)

where 1 < m < n.
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Similarly, for every ESPPC, 1 < m1 < m<n, and (3.27) can be rewritten in the compact

form

G = {eη−m2
1 , em2

2 },

where

m1 = n− η1,m2 = η2. (3.30)

Respectively, every E ⊂ En2(G) will be a special multipermutation point configuration

(SPC). At the same time, every E ′ ⊂ En
η2(G) will be a special partial multipermutation point

configuration (SPPC) if E ′ is induced by a multiset G′ ⊆ G with |G′| > n, otherwise E ′ will

be a SPC.

Clearly, for sets of special e-configurations,

S(G) = {e1, e2}.

Depending on values e1, e2, some classes of the sets can be introduced such as

• if

S(G) = {0, 1}, (3.31)

we use term "binary" instead of "special";

• if

S(G) = {−1, 1}. (3.32)

Respectively,

1. the ESPC En2(G) satisfying (3.31) is called the entire binary multipermutation point
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configuration (EBPC) and is denoted as

Bn (m) , (3.33)

where m is given by (3.29);

2. similarly, the ESPC En2(G) satisfying (3.32) is denoted as B′
n(m)

3. the EBPPC En
η2(G) satisfying (3.31) is called the entire binary partial multipermutation

point configuration (EBPPC) and is denoted

Bn (m1,m2) , (3.34)

where m1,m2 are given by (3.30);

4. the EBPPC En
η2(G) satisfying (3.32) is denoted

B′
n(m1,m2),

where m1,m2 are given by (3.30);

5. the EUSPPC E
n
2 (G) satisfying (3.31) is the entire unbounded binary multipermutation

point configuration (EUBPPC) denoted as Bn;

6. the EUSPPC E
n
2 (G) satisfying (3.32) is denoted as B′

n.
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Chapter 4
Multipermutation point configurations

The chapter is dedicated to studying the properties of sets of the class EMPC in general

and exploring the peculiarities of its special cases.

The description of the EMPC Enk(G) and its convex hull is based on the works

[28, 31, 64, 76, 79, 109]. For studying the EPPC En(G) and its convex hull, the publications

[9, 13,14,76,106,108] are used. When presenting the properties of the EBPC Bn(m) and its

convex hull, the papers [5, 10,40,66,112] are utilized.

The study of the properties of EMPC, such as surface locality, decomposition, levelness,

and symmetry, is based on the approaches described in Chapters 1 and 2 of this monograph.

The same applies to properties of the corresponding polytopes, such as dimension, adjacency of

polytopes’ vertices, combinatorial equivalence, irredundancy ofH-representations, single-outing

simple polytopes, and so on.

4.1 The entire multipermutation point configuration

In this section, we explore properties of the EMPC Enk(G) along features of its convex

hull called the multipermutohedron and denoted by

Πnk (G) = conv Enk(G). (4.1)

Let us exclude from consideration the singleton set En1(G), further assuming that the
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condition k ≥ 2 is satisfied. Respectively, n > 1.

Remark 4.1. Due too 1 ≤ ηi ≤ n, i ∈ Jk and [G] = (n1, ..., nk), for the multiplicities (3.14),

it holds: 1 ≤ ni ≤ n− k + 1, i ∈ Jk.

Below, we list the main properties of the EMPC and permutohedron.

The cardinality of Enk(G)

|Enk (G)| = n!
n1! · ... · nk! . (4.2)

The plane locality of Enk(G)

The set Enk(G) lies in the hyperplane:

n∑
i=1

xi =
n∑

i=1
gi. (4.3)

The spherical locality of Enk(G)

It is easy to see that all points of Enk(G) satisfy the equation:

n∑
i=1

x2
i =

n∑
i=1

g2
i , (4.4)

that is, this set is inscribed in a hypersphere centered at the origin, hence, the set Enk(G) is

spherically-located.

Since Enk(G) also lies in the hyperplane, such hypersphere is not unique, and circum-

scribed hyperspheres about it form a family. We write it out using the notation:

Sj =
n∑

i=1
gj

i , j ∈ N. (4.5)

Given (3.14), the expressions (4.5) can be represented in compact form:

Sj =
k∑

i=1
nie

j
i , j ∈ N.
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In these new notations, we rewrite (4.3) and (4.4):

n∑
i=1

xi = S1; (4.6)
n∑

i=1
x2

i = S2. (4.7)

Theorem 4.1. The points Enk(G) lie on the family of hyperspheres Sr(a)(a):

n∑
i=1

(xi − a)2 = r2(a), where r(a) =
√
S2 − 2aS1 + na2, (4.8)

where a ∈ R1 is a parameter, and S1, S2 is given by the expressions (4.6) and (4.7).

In the family (4.8),

• S0, the hypersphere centered at the origin, is given by the equation (4.7) and has radius:

r0 =
√
S2; (4.9)

• the circumsphere Smin of the minimum radius has the parameters:

amin = S1
n

; (4.10)

rmin = r(amin) =
√
S2 − S2

1
n
. (4.11)

The hypersphere Smin is given by the equation:

n∑
i=1

(xi − S1
n

)2 = S2 − S2
1

n
. (4.12)

It can be represented in the form:

n∑
i=1

x2
i − 2S1

n

n∑
i=1

x2
i = S2 − 2S2

1
n
.

Finally, we formulate the property of the set Enk(G), which is highly important for

further presentation.
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Polyhedral-sphericity of Enk(G)

Proposition 4.1. The set Enk(G) is polyhedral-spherical and can be represented as

Enk(G) = Sr(a)(a) ∩ Πnk(G), (4.13)

where the point a is defined by the parameter a ∈ R1, while the radius r(a) is given by the

formula (4.8).

The proof follows directly from Theorem 2.4. Since Enk(G) is spherically-located, it

belongs to the class of surface-located sets. Therefore, it is a polyhedral-surface set, and the

formula (2.4) becomes (4.13). Thus, Enk(G) is polyhedral-spherical.

Depending on the choice of the parameter a in the equation of the circumscribed

hypersphere and the H-representation of the polytope Πnk(G), various polyhedral-spherical

representations of the set Enk(G) are formed based on the formula (4.13).

Enk(G)-decomposition into families of parallel hyperplanes

We present two types of decompositions of Enk(G) into parallel hyperplanes:

1. into families of hyperplanes parallel to coordinate ones;

2. into parallel hyperplanes orthogonal to the hyperplanes (4.3).

Theorem 4.2. The set Enk(G) lies on the families {H t
s}t∈JTs

hyperplanes of the form

H t
s : s

n− s

n−s∑
i=1

xi−
n∑

i=n−s+1
xi + as

t = 0, (4.14)

where s ∈ Jn−1, t ≤ Ts ≤ Cs
n,

as
t = − s

n− s
· S1 + n

n− s
· eG,s

t , t ∈ JTs . (4.15)
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Proof. The equation (4.14) can be rewritten as

s
n−s∑
i=1

xi + (s− n)
n∑

i=n−s+1
xi + As

t = 0,

where As
t = as

t (n− s) .
(4.16)

Given (4.3), the condition (4.16) for Enk(G) is equivalent to the following:

s
n∑

i=1
xi − n

s∑
i=1

xn−i+1 + As
t =

= s · S1 − n
s∑

i=1
xn−i+1 + As

t = 0.
(4.17)

This shows that the constants {As
t}s,t are determined by the possible values taken by

the function
s∑

i=1
xn−i+1 на Enk(G). So, let ΣG,s be the multiset of all such values, respectively,

its underlying set S(ΣG,s) will contain all possible different values:

ΣG,s =

 ∑
i∈ω: |ω|=s

gn−i+1

 , S (ΣG,s) =
{
eG,s

t

}
t∈Ts

. (4.18)

Then the parameter As
t takes Ts different values from the set S (ΣG,s), whose number

does not exceed Cs
n.

Let us rewrite (4.17) as s · S1 − n · eG,s
t + As

t = 0, where

As
t = −s · S1 + n · eG,s

t , t ∈ JTs . (4.19)

Returning to the value of as
t and taking into account that as

t = As
t

n−s
, we see that there

exists the decomposition of Enk(G) along the hyperplanes (4.14) and (4.15).

The resulting decomposition is also the decomposition (1.31) of the set Enk(G) toward

the normal vector to the hyperplanes (1.32) of the form

Hj(n) = {x ∈ Rn : j
n−j∑
i=1

xi + (j − n)
n∑

i=n−j+1
xi = 0}, j ∈ Jn−1. (4.20)

We generalize this decomposition to the case of an arbitrary partition of the set of
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variables {xi}i∈Jn
into s- and n− s-element subsets.

Corollary 4.1. For an arbitrary fixed ω ⊂ Jn, the set Enk(G) decomposes in the family{
H

′t
ω

}
t∈JTs

hyperplanes of the form:

H
′t
ω : s

n− s

∑
i/∈ω

xi −
∑
i∈ω

xi + as
t = 0, (4.21)

where s = |ω| , t ≤ Ts ≤ Cs
n, and quantities as

t set using (4.15).

Indeed, (4.14) is represented as (4.21) when choosing ω = Jn\Jn−s. Using the expres-

sions (4.16) and (4.17) in
∑
i/∈ω

xi,
∑
i∈ω

xi from
n−s∑
i=1

xi,
n∑

i=n−s+1
xi, we get the formula (4.21).

Note that the hyperplanes in the family (4.21) are orthogonal to the hyperplanes (4.6)

since the normal vector to them is the vector of ones, while the normal vector to H ′t
ω has n− s

coordinates equal to s
n−s

, the rest s coordinates are ones.

Note also that in this transition from partitioning the set Jn into subsets Jn\Jn−s, Jn−s

to its partition into arbitrary s- and n− s-element subsets, the formula (4.17) becomes

s · S1 − n
∑
i∈ω

xi + As
t = 0. (4.22)

Separating the variables in (4.22), we get

∑
i∈ω

xi = 1
n

(s · S1 − As
t).

Now, taking into account (4.19), we obtain

∑
i∈ω

xi = 1
n

(2s · S1 − n · eG,s
t ) = 2s · S1

n
− eG,s

t , t ∈ Ts.

Thus, we came to one more decomposition of Enk(G) into the family of Ts of parallel

hyperplanes given for each ω ⊂ Jn. We formulate this result as the below corollary.

Corollary 4.2. ∀ ω ⊂ Jn the decomposition of Enk(G) into parallel hyperplanes toward the
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vector

ni(ω) =


1, i ∈ ω,

0, i /∈ ω

(i ∈ Jn)

is valid and has the form of the decomposition (1.40)-(1.42).

Namely, ∀ω ⊂ Jn, s = |ω|

Enk(G) =
Ts∪

t=1
Et,ω, (4.23)

Et,ω = H t,ω ∩ Enk(G). (4.24)

where

H t,ω =
{
x ∈ Rn : ∑

i∈ω
xi = Bs

t

}
, t ∈ JTs , (4.25)

Bs
t = 2sS1

n
− eG,s

t ,

while the constants eG,s
t are given by (4.18).

If s = 1, the decomposition (4.23)-(4.25) becomes a decomposition (1.40)-(1.42) of the

set Enk(G) along coordinates. It considers that all coordinates of an arbitrary point of Enk(G)

take all k values from S(G). Accordingly, the following statement holds.

Proposition 4.2. Enk(G) is a k-level set along each coordinate.

Corollary 4.3. The set Enk(G) is k-level along coordinates:

m′(Enk(G)) = k. (4.26)

Moreover, the condition (1.40) can be represented in the form of (1.43),

E
′ij = En−1,ki

(Gi), (4.27)
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or (1.44), (4.27), where E = Enk(G),

Gi = G\{ei}, ki = |S(Gi)|, i ∈ Jk. (4.28)

Since, by our assumption, the condition n > 1 is satisfied, all the sets (4.27) are

non-empty EMPCs. Thus, the necessary condition (1.45) is satisfied that (1.40)-(1.42) is a

decomposition of the set E = Enk(G) along coordinates.

We also indicate which sets are formed at the intersection of Enk(G) with the hyperplane

H t,ω depending on ω:

• If s = 1 or s = n− 1, we are dealing with a decomposition (1.40)-(1.42), where the sets

(1.40) are formed from the EMPCs of n− 1-dimensional permutation e-configurations

(4.27) by adding one coordinate from G to the coordinates of its points.

E
′ij = PrHijEij = PrHijEnk(G), i ∈ Jk, j ∈ Jn.

The sets Eij formed in cutting can be represented by the Cartesian product of the EMPC

of n− 1-dimensional permutation e-configurations E ′ij and the one-element EMPC {ei}

of 1-dimensional permutation e-configurations (i ∈ Jk, j ∈ Jn).

• A similar situation occurs in other cases. Thus, if 1 < s < n− 1, then, at the intersection

of Enk(G) and H t,ω, one or more Cartesian products of the EMPCs of s-dimensional and

n− s-dimensional permutation e-configurations induced by the multiset G are formed.

Vertex criterion of Πnk(G)

Theorem 4.3. The set of vertices of the multipermutohedron (4.1) coincides with the EMPC

Enk (G):

vert Πnk (G) = Enk (G) . (4.29)

The proof of this theorem for a set of an EPPC is given in [106], for an EMPC in [79].

We present a new short proof based on the spherical locality of Enk (G). Thus, according to

Theorem 4.1, Enk (G) is polyhedral-spherical. Hence, by Corollary 2.1, it is vertex-located.
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Vertex adjacency criterion for Πnk (G)

Theorem 4.4. The vertices of the polytope Πnk (G) adjacent to the vertex x ∈ vert Πnk (G)

are all the points obtained from x by permuting the components of the underlying set (1.3) of

the multiset G equal to ei, ei+1 (i ∈ Jk−1) (further referred to as ei ↔ ei+1-transposition), and

only they are.

Vertex regularity degree of Πnk (G)

Theorem 4.5. The number R of adjacent vertices to an arbitrary vertex of the polytope

Πnk (G) is determined by the formula:

R =
k−1∏
i=1

nini+1. (4.30)

Remark 4.2. It is easy to see that the value R in (4.30) is bounded from below by n− 1:

R ≥ n− 1. (4.31)

Moreover, for k = n, the inequality (4.31) becomes equality. It will be shown below that, in

class Πnk (G), there exist other polytopes for which this inequality holds as equality. Note

that (4.31) also implies that the dimension of Πnk (G) does not exceed n− 1.

The irredundant H-representation of Πnk (G)

Theorem 4.6. The polytope Πnk (G) is given by the following linear constraints, including the

equation (4.3) and inequalities

i∑
j=1

xαj
≥

i∑
j=1

gj, {αj}j∈Ji
⊂ Jn, i ∈ Jn−1. (4.32)

The constraint system (4.32) consists of n− 1 collections of inequalities corresponding

to a fixed value i, called the i-union (i ∈ Jn−1).
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Remark 4.3. The inequalities (4.32) can also be rewritten as

∑
j∈ω

xj ≥
|ω|∑
j=1

gj, ω ⊂ Jn. (4.33)

Thus, the polytope Πnk (G) is described analytically by the constraints (4.3) and (4.33)

(further referred to as (Πnk (G).HR)).

The system (Πnk (G).HR) can also be rewritten in an equivalent form that includes the

equation (4.32) and the following inequalities:

• lower-bound constraints on variables:

xi ≥ e1, i ∈ Jn; (4.34)

• upper-bound constraints on variables:

xi ≤ ek, i ∈ Jn; (4.35)

• the remaining constraints of (4.33):

∑
j∈ω

xj ≥
|ω|∑
j=1

gj, ω ⊂ Jn, 1 < |ω| < n− 1. (4.36)

Theorem 4.7. The system (4.3) and (4.33) of constraints of the polytope Πnk (G) is redundant

if and only the minimum and/or maximum element of G is a multiple, i.e. if:

n1 + nk > 2. (4.37)

From (4.33), excluding the unions with indexes

i ∈ J = imin, n1 ∪ n− nk, imax, (4.38)

where

imin = min {2, n− nk} , imax = max {n− 2, n1} , (4.39)
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converts the system (4.3) and (4.33) into the irredundant constraint system for the polytope

Πnk (G).

Remark 4.4. This theorem is a refinement of the theorem presented in [109]. It allows

to foresee not only cases of redundant unions of constraints in the system (4.36), but also

one of the unions of inequalities (4.34) or (4.35). And this, in turn, makes it possible to

formulate this refinement as a criterion for the irredundancy of the H-representation of the

multipermutohedron.

Corollary 4.4. The irredundant H-representation of the polytope Πnk (G) (further referred to

as (Πnk (G).IHR)) is the constraint system that includes the equation (4.32) and unions of

inequalities (4.33) with numbers i = |ω| ∈ J , where J is the complement to the set J given by

the formula (4.38), i.e. J = Jn−1\J .

The dimension of Πnk (G)

Theorem 4.8. The polytope Πnk (G) is n− 1-dimensional:

dim Πnk (G) = n− 1. (4.40)

Proof. The proof of this theorem for the permutohedron is given in [106]. We generalize

it to the EMPC using Remark 1.2. (4.3) and (4.32) forms an H-representation of Πnk (G),

including one equation, i.e. the rank (1.55) of the corresponding matrix-row ρ = 1. On the

other hand, the center amin of the circumscribed hypersphere Smin, whose parameter amin is

given by (4.10)), is an interior point of Πnk (G) in the affine subspace (4.3). This is because all

the inequalities (4.32) are satisfied strictly at the point amin. According to (1.57), this means

dim Πnk (G) = n− ρ = n− 1, which is needed to be proven.

Symmetry hyperplanes of Enk(G) and Πnk(G)

Theorem 4.9. The set Enk(G) and the polytope Πnk(G) are symmetric about each of the C2
n

hyperplanes:

xi − xj = 0, 1 ≤ i < j ≤ n. (4.41)
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Remark 4.5. Adding the equation (4.6) to the conditions of Theorems 4.1, 4.2, and 4.9

allows establishing the existence of: a) families (4.6) and (4.8) of n− 2-spheres circumscribed

about Enk(G); b) Enk(G)-decompositions (4.6), (4.14) and (1.39), (4.6) into families of parallel

n− 2−planes; c) symmetry of Enk(G) and Πnk(G) about n− 2-planes give by (4.6), (4.41).

Centrally symmetric sets among Enk(G)

Theorem 4.9 says that Enk(G) possesses certain symmetry. However, not every set in

this class is centrally symmetric.

Now, we single out centrally symmetric sets in the class Enk(G) and, accordingly,

centrally symmetric polytopes among Πnk(G).

Theorem 4.10. The set Enk(G) is centrally symmetric if and only if the elements of the

inducing multiset G satisfy the condition:

gi + gn−i+1

2 = S1

n
, i ∈ J[ n+1

2 ], (4.42)

i.e. the center of symmetry Enk(G) can only be the point amin, which is the center of Smin.

Proof. Diametrically opposite point to the point x ∈ Enk(G) is the point y ∈ Enk(G) satisfying

the condition:

if xi = gj, then yi = gn−j+1, i ∈ Jn.

In this case, the only center of symmetry of Enk(G) can be the midpoint z of the

segment [x, y]. Namely, z = x+y
2 , where zi = gj+gn−j+1

2 , i ∈ Jn. This condition must be satisfied

for an arbitrary point x ∈ Enk(G), which is possible only if all coordinates of the point z are

equal, namely,

b = gi + gn−i+1

2 , i ∈ Jn.

At the same time, in this case, if n is even, then S1 = ∑n
2
i=1(gi + gn−i+1) = n

2 · 2b = n · b,

which implies (4.42). If n is odd, then S1 = ∑n−1
2

i=1 (gi + gn−i+1) + gn+1
2

= (n− 1)b+ b = n · b.

Therefore, in any case, b = S1
n

= amin.

Theorem 4.10 says that symmetric Enk(G)-sets are induced only by those multisets
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whose elements are symmetric about their mean. The same applies to elements of the

underlying set and primary specification of G.

Corollary 4.5. The polytope Πnk(G) is centrally symmetric if and only if the multiset G

satisfies the condition (4.42).

Corollary 4.6. If the set Enk(G) is centrally symmetric, then its underlying set and primary

specification satisfy conditions:

|ei − amin| = |ek−i+1 − amin|, i ∈ J[ k+1
2 ]; (4.43)

ni = nk−i+1, i ∈ J[ n+1
2 ]. (4.44)

Example 4.1. The EMPC E53(G) induced by the multiset G = {12, 3, 42} has the following

parameters: S(G) = {1, 3, 4}, [G] = {2, 1, 2}, amin = 13
5 . The condition (4.44) is met, while

the condition (4.43) is violated because |e1 − amin| = 8
5 ̸= |e3 − amin| = 7

5 . Thus, the set E53(G)

is not centrally symmetric.

In this section, some properties of the EMPC and multipermutohedron have been

established. In the following sections, we consider subclasses of Enk(G), adapt the main

properties given in this section to them and derive new features specific to these specific

subclasses.

Let us move to the consideration of particular cases of Enk(G), namely, to the extreme

cases in this class corresponding to the maximum (k = n) and the minimum (k = 2) values of

k. The first case corresponds to the EPPC En(G) and is considered in detail in Section 4.2.

The latter case corresponds to the EMPC En2(G) that is induced by two different numbers

and studied in Section 4.4. Let us derive properties of the sets En(G) and En2(G) and their

convex hulls.
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4.2 The entire permutation point configuration

Consider the entire permutation point configuration En(G) and its convex hull called

the permutohedron:

Πn (G) = conv (En (G)) .

Taking into account that, in this case, the condition

G = A (4.45)

is satisfied and, accordingly,

n = k, (4.46)

in all the formulas given in Sec. 4.1, elements of the multiset G can be replaced by elements of

its underlying set

gi → ei, i ∈ Jn. (4.47)

For example, the expression (4.5) becomes

Sj =
n∑

i=1
ej

i , j ∈ N. (4.48)

As a result, we get the following properties of En(G) and Pn(G).

The cardinality of En(G)

|En (G)| = n!. (4.49)

The dimension of Πn (G)

dim Πn (G) = n− 1. (4.50)
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Vertex locality of En (G)

vert Πn (G) = En (G) .

Spherical and hyperplane locality of En(G)

The hyperplane, where En(G) lies, is given by the equation

n∑
i=1

xi = S1.

The family

{Sr(a)(a)}a∈R1 (4.51)

of circumscribed hyperspheres about En(G) is given by the equation (4.8), where S1 and S2

are given by the formula (4.48), and a ∈ R1 is a parameter.

Polyhedral-sphericity of En(G)

En(G) = Sr(a)(a) ∩ Πn(G),

where Sr(a)(a) is arbitrary hypersphere from the family (4.51), and a ∈ R is a parameter.

Vertex adjacency criterion for Πn (G)

The set of adjacent vertices to each vertex e ∈ En (G) is formed from e by a single

ei ↔ ei+1-transposition (i ∈ Jn−1).

Vertex regularity degree of Πn (G)

R = n− 1. (4.52)

116



4.2 The entire permutation point configuration

The simplicity of Πn (G)

According to Remark 4.2, the condition (4.52) means that the degree of regularity of

vertices on the polytope Πn (G) reaches its lower bound n − 1. Due to (4.50), this bound

coincides with the dimension of Πn (G), i.e.

R = dim Πn (G) ,

implying that Πn (G) is simple.

The irredundant representation of Πn (G)

The above H-representations of Πnk (G) can easily be adapted for Πn (G), taking into

account (4.48). Since there are no multiple elements in G, the condition (4.37) is violated,

and this is sufficient for the H-representation (Πnk (G).HR) to be irredundant. We introduce

the notation (Πn (G).IHR) for the representation and write it taking into account (4.45):

n∑
j=1

xj =
n∑

j=1
ej,

∑
j∈ω

xj ≥
|ω|∑
j=1

ej, ω ⊂ Jn.

The number of constraints in (Πn (G).HR) is

|H| = 2n − 1,

2n−1 of which are inequalities and one equation (here, H is the set of facets Πn (G)).

En (G) is n-level set along coordinates

n-levelness of En (G) along coordinates follows directly from Corollary 4.3. Substituting

(4.46) in (4.26), we get

m′(En (G)) = n.

In addition, En(G) allows the decomposition (1.40)-(1.42), where the formula (1.39)
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becomes ∀ j ∈ Jn,

H ij = {x ∈ Rn : xj = ei} , i ∈ Jn, (4.53)

while the sets (1.40) are formed from auxiliary sets (4.27) having the form of

E
′ij = En−1,k−1(G\{ei}), i, j ∈ Jn.

Decompositions of En (G) into hyperplanes parallel to Πn(G)-facets

Since the H-representation (Πn(G).HR) is irredundant, then, for each ω ⊂ Jn, the

formulas (4.23)-(4.25) define the decomposition of En (G) toward the normal vector of the

facet H1,ω from the family (4.25):

H1,ω =
{
x ∈ Rn :

∑
i∈ω

xi = S|ω|

}
.

Considering (4.53) and that Πn(G) has facets parallel to the coordinate hyperplanes,

the levelness m(En (G)) of En (G)lies in the range:

n ≤ m(En (G)) ≤ max
s∈Jn−1

Cs
n = C

[ n
2 ]

n .

Centrally symmetric En(G) and Πn(G)

Theorem 4.10 implies that En(G), Πn(G) are symmetric if

ei + en−i+1

2 = S1

n
, i ∈ J[ n+1

2 ], (4.54)

which is also equivalent to satisfying the following condition:

|ei − amin| = |en−i+1 − amin|, i ∈ J[ n+1
2 ].
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4.3 The EPPC En

Now, we suppose that G = Jn, i.e. G is the set of the first n natural numbers, while

the EPPC is En(Jn). This set is denoted as En, i.e. En = En(Jn), and the corresponding

permutohedron is

Πn = conv En.

In addition to the properties directly following from the fact that En and Πn belong to

EPPCs and permutohedra, respectively, such as

|En| = n!,

dim Πn = R = n− 1,

vert Πn = En

and others, the EPPC En and polytope Πn have peculiarities caused by the specifics of their

inducing set Jn.

For example, in the decomposition (1.40)-(1.42), the hyperplanes (1.39) form a set of

families (4.53) of equidistant hyperplanes: ∀j ∈ Jn

H ij = {x ∈ Rn : xj = i} , i ∈ Jn. (4.55)

The formula (4.48) becomes

Sj =
n∑

i=1
ij, j ∈ N.

Accordingly, the expressions (4.6) and (4.7) take the form:

S1 =
n∑

i=1
i = n(n+1)

2 ; (4.56)

S2 =
n∑

i=1
(4.57)i2  =  n(n+1)(2n+1)

6  
.
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4.3 The EPPC En

Applying the relations (4.56) and (4.57), we obtain the following properties of En, Πn

as a consequence of the listed above characteristics of En (G) and Πn (G).

The plane locality of En, Πn

En and Πn lie on the hyperplane:

n∑
i=1

xi = n(n+ 1)
2 .

The spherical locality of En

En lies on the family of hyperspheres (4.51) of radius:

r(a) =
√
n(n+ 1)(2n+ 1)

6 − a · n(n+ 1) + a2, (4.58)

where a ∈ R1 is a parameter.

In the family (4.51) and (4.58):

• the hypersphere of minimum radius Smin has the following parameters:

amin = n+1
2 , (4.59)

rmin = 1
6

√
3n(n+ 1)(n− 1);

• the hypersphere S0 centered at the origin has the radius:

r0 =
√
n(n+ 1)(2n+ 1)

6 .

Polyhedral-sphericity of En

En is a polyhedral-spherical set, namely,

En = Sr(a)(a) ∩ Πn,
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4.3 The EPPC En

where Sr(a)(a) is a hypersphere from the family (4.51) given by the parameter a ∈ R1 and

having the radius (4.58).

The H-representation of Πn

An irredundant representation of Πn(G) (further referred to as (Πn.IHR)) is obtained

directly from (Πn (G).IHR) by substitution:

i∑
j=1

gj =
i∑

j=1
j = i(i+ 1)

2 .

It results in (Πn.IHR) having the form of

n∑
j=1

xj = n(n+1)
2 ,

∑
j∈ω

xj ≥ i(i+1)
2 , ω ⊂ Jn, i = |ω| .

Vertex adjacency criterion for Πn

The vertices of Πn adjacent to every x ∈ En are the ones obtained from x by the

i ↔ i+ 1-transposition (i ∈ Jn−1), and only they are.

En-decompositions into families of hyperplanes parallel to Πn-facets

Since the H-representation(Πn.IHR) is irredundant, replacing its inequalities by equali-

ties defines the set H of facets of Πn:

H = {Hω}ω⊂Jn :

Hω = {x ∈ Rn :
∑
i∈ω

xi = j(j + 1)
2 }, ω ⊂ Jn, j = |ω|.

(4.60)

So, for example, if ω = {i} ∈ Jn, (4.60) defines the set of hyperplanes in the decom-

position (4.55) corresponding to the decomposition of En along the coordinate xi and into

hyperplanes parallel to the facet

H1,ω = {xi = e1}.
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4.3 The EPPC En

Theorem 4.11. For ω ⊂ Jn and j = |ω|, the decompositions of the set En into hyperplanes

parallel to the facet H1,ω have the form:

Haj ,ω = {x ∈ Rn :
∑
i∈ω

xi = aj}, aj ∈ Jamax
j

\Jamin
j −1,

where amin
j = j(j + 1)

2 , amax
j = j(2n− j + 1)

2 .

(4.61)

Proof. For every j ∈ Jn−1 and all ω ⊂ Jn such that |ω| = j, the function h(ω, x) = ∑
i∈ω

xi

runs through all integer values from the range [amin
j , amax

j ], where amin
j , amax

j are given by

(4.61). Indeed, this function takes the value amin
j on permutation e-configurations xmin,ω ∈

En : {xmin,ω
i }i∈ω = Jj, {xmin,ω

i }i/∈ω = Jn\Jj. The value amax
j is reached on the permutation

e-configurations xmax,ω ∈ En : {xmax,ω
i }i∈ω = Jn\Jn−j, {xmax,ω

i }i/∈ω = Jn−j. At other points of

En the function h(ω, x) takes an integer value from the interval (amin
j , amax

j ).

Let x ∈ En be a point such that h(ω, x) = a ∈ (amin
j , amax

j ). Consider the set N(x) of

vertices adjacent to it. Since they are all formed from x by xi ↔ xj-transpositions such that

|xi − xj| = 1, three subsets can be distinguished in N(x): a) the set of points of N+(x) c) the

set N0(x) consisting of those vertices adjacent to x, where the value of h(.) remains unchanged.

It is easy to see that N0(x) is formed by the mentioned transpositions of x-coordinates within

ω, i.e. |N0(x)| ≤ |ω| − 1 = j − 1 ≤ n− 2, at the remaining n− j points, where n− j > 0, h(.)

decreases or increases exactly by one.

Thus, it is shown that, for all ω ⊂ Jn, j = |ω| and aj ∈ Jamax
j

\Jamin
j −1, it is true that

En ∩Haj ,ω ≠ ∅, i.e. there exists the decomposition (4.23)-(4.25) of En into hyperplanes parallel

to the facets of Πn. It is

En =
amax

j

∪
t=amin

j

Et,ω,

Et,ω = H t,ω ∩ En,

where

H t,ω =
{
x ∈ Rn : ∑

i∈ω
xi = t

}
, t ∈ Jamax

j
\Jamin

j −1.

129



4.3 The EPPC En

En-levelness

Lemma 4.1. The levelness of the set En is given by the formula:

m(En (G)) =
⌊
n

2

⌋ ⌈
n

2

⌉
+ 1. (4.62)

Proof. Based on Theorem 4.11, from the formula (4.61) it is easy to derive the exact number

of levels of the En-decomposition into hyperplanes parallel to Πn-facets. Thus, if H1,ω is a

facet of Πn corresponding to certain inequality of the j = |ω|-th union of inequalities of this

polytope, then the value

Lj = j(2n− j + 1)
2 − j(j + 1)

2 + 1 =
j

2(2n− j + 1 − j − 1) + 1 = j(n− j) + 1
(4.63)

yields the levelness of En toward the normal vector of the facet H1,ω.

We are interested in the maximum of the function (4.63) since the levelness of the set

En can be found by the formula m(En) = max
j∈Jn−1

Lj. As j increases, the value of Lj increases,

then decreases. It reaches the maximum:

• m(En) = (n
2 )2 + 1 for j = n

2 , if j is even;

• m(En) =
⌊

n
2

⌋ ⌈
n
2

⌉
+ 1 for j =

⌊
n
2

⌋
,
⌈

n
2

⌉
, if j odd.

Combining both of these cases, we get the formula (4.62).

Centrally symmetric En and Πn

Since, in En, the neighboring elements of G are located at a distance of ones, the

condition (4.54) is satisfied. Therefore, En and Πn are centrally symmetric, with the point

amin as their center of symmetry and given by the parameter (4.59).
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4.4 The entire special multipermutation point configuration

4.4 The entire special multipermutation point configura-

tion

The entire special multipermutation point configuration En2(G) possesses specifics

compared to the entire class Enk(G).

The convex hull of En2 (G) is called the special permutohedron and denoted by

Πn2 (G) = conv En2 (G) .

Let us list the properties of En2 (G) and Πn2 (G) following from the listed above

properties of the EMPC Enk (G) and multipermutohedron Pnk (G). Suppose that the condition

(3.27) is satisfied.

The cardinality of En2 (G)

|En2 (G)| = Cn1
n = Cn2

n . (4.64)

The formula (4.64) follows from the formulas (4.2) and (3.27).

As seen, the cardinality of the ESPC is determined by binomial coefficients. It varies

within the range:

n ≤ |En2 (G)| ≤ C
[ n

2 ]
n

and reaches a minimum and a maximum at

min {n1, n2} = 1, (4.65)

max {n1, n2} =
[
n

2

]
, (4.66)

respectively.
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4.4 The entire special multipermutation point configuration

The dimension of Πn2 (G)

dim Πn2 (G) = n− 1.

Vertex locality of En2 (G)

vert Πn2 (G) = En2 (G) .

Since, for the set En2 (G), the formula (4.5) becomes

Sj = n1e
j
1 + n2e

j
2, j ∈ N, (4.67)

the properties of its plane- and spherical locality are formulated as follows.

The plane locality of En2 (G)

The set En2 (G) lies on the hyperplane:

n∑
i=1

xi = n1e1 + n2e2 = ne1 + n2 (e2 − e1) = ne2 + n1 (e1 − e2) . (4.68)

The spherical locality of En2 (G)

The set En2 (G) is inscribed in the family of hyperspheres (4.51) centered at the point

a of radius:

r(a) =
√
n1(e1 − a)2 + n2(e2 − a)2, (4.69)

defined by the parameter a ∈ R1.

Hyperspheres Smin, S0 for En2 (G)

Let us determine the parameters of the minimal hypersphere circumscribed about

En2 (G). For that, we introduce the value:

(4.70)∆  =  e2  −  e1.
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4.4 The entire special multipermutation point configuration

Given the expression (4.68), the parameter (4.10) is

amin = n1e1 + n2e2

n
= e1 + n2

n
∆ = e2 − n1

n
∆. (4.71)

Substituting (4.70) and (4.71) into the relation (4.69) yields:

rmin =
√
n1

(
n2

n
∆
)2

+ n2

(
n1

n
∆
)2

= ∆
n

√
n1n2 (n1 + n2) = ∆

n

√
n1n2n,

where

rmin = ∆
√
n1n2

n
. (4.72)

Thus, Smin has the parameters (4.71) and (4.72).

From (4.72), it is also seen that rmin varies within

∆
√

1 − 1
n

≤ rmin ≤ ∆
2

√
n, (4.73)

reaching the minimum and maximum under satisfying the conditions (4.65) or (4.66), respec-

tively.

Note that rmin reaches the upper bound given in (4.73) only if n is even and n1 = n2 = n
2 .

In this case, the formulas (4.71) and (4.72), yielding the parameters of Smin:

rmin = ∆
2

√
n, (4.74)

amin = e1 + e2

2 . (4.75)

For En2 (G), the circumscribed hypersphere S0 centered at the origin has the radius

r0 =
√
S2 =

√
n1e2

1 + n2e2
2.

Polyhedral-sphericity of En2(G)

The set En2(G) is polyhedral-spherical, namely,

En2(G) = Sr(a)(a) ∩ Πn2(G),
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4.4 The entire special multipermutation point configuration

where Sr(a)(a) is the family (4.51) and (4.69) of circumspheres given by the parameter a ∈ R1.

The irredundant H-representation of Πn2 (G)

Due to the assumption n > 1, n1 + n2 = n holds, hence, the necessary and sufficient

condition (4.37) for the irredundancy of theH-representation (Πn2 (G).HR) is certainly satisfied

for n > 2. Moreover, the group of constraints (4.36) is always redundant. As a result, the

irredundant H-representation of the special permutohedron (Πn2 (G).IHR) is a subsystem of

the constraint system (4.32), (4.34), and (4.35), which can be represented as (4.68) and

e1 ≤ xi ≤ e2, i ∈ Jn (4.76)

(further referred to as (Πn2 (G).HR1)).

Let us also rewrite the formula (4.35), taking into account (3.27) and getting:

xi ≤ e2, i ∈ Jn. (4.77)

As one can be seen from (Πn2 (G).HR1), the polytope Πn2 (G) is a cut of the hypercube

(4.76) by the hyperplane (4.68).

Based on Theorem 4.7, we formulate a theorem, establishing the irredundant H-

representation of Πn2 (G).

Theorem 4.12. (Πn2 (G).HR1) is the redundant H-representation of the polytope Πn2 (G) if

and only if the condition (4.65) holds for G.

If the condition (4.65) is met, we have

• if

n1 = 1,

(Πn2 (G).IHR) is (4.68) and (4.77);

• if

nk = 1,
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4.4 The entire special multipermutation point configuration

then (Πn2 (G).IHR) involves the constraints (4.34) and (4.68).

If the condition (4.65) is violated, the representations (Πn2 (G).IHR) and (Πn2 (G).HR1)

coincide.

Vertex adjacency criterion for Πn2 (G)

Vertices of the polytope Πn2 (G), adjacent to the point x ∈ En2 (G), are formed from x

by its single e1 ↔ e2-transposition of its coordinates.

Vertex regularity degree of Πn2 (G)

The regularity degree of Πn2 (G)-vertices is

R = n1n2. (4.78)

As you can see from (4.78), R varies within

n− 1 ≤ R ≤
⌊
n

2

⌋
·
⌈
n

2

⌉
≤ n2

4 , (4.79)

reaching the minimum and maximum under the conditions (4.65) and (4.66), respectively.

Remark 4.6. The formula (4.79) allows singling out one more class of simple polytopes in

class Πnk(G), which is special permutohedra satisfying the condition (4.65). It is shown below

that they are n− 1-simplices.

Two-levelness of En2 (G)

En2 (G) is a two-level set, i.e.

m(En2 (G)) = 2.

Applying Proposition 4.2 to the case (3.27), we obtain that the set En2 (G) is two-level

along every coordinate, wherefrom m′(En2 (G)) = 2. The family of hyperplanes (1.39) in the
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4.4 The entire special multipermutation point configuration

decomposition (1.40)-(1.42) is

H ij = {x ∈ Rn : xj = ei}, i ∈ J2, j ∈ Jn, (4.80)

and the sets (4.27) formed in the projection En2 (G) onto the hyperplane (4.80) are either

ESPCs of the dimension lower by one or singleton sets: ∀ j ∈ Jn,

E
′1j = En−1,k1({en1−1, en2}), E ′2j = En−1,k2({en1 , en2−1}), k1, k2 ∈ {0, 1}.

On the other hand, based on (4.76), the set H of facets Πn2 (G) is a subset of 2n facets

of the hypercube [e1, e2]n, i.e. it is a subset of the family

H ⊆ {Hij}i∈J2, j∈Jn .

This implies that all the facets of Πn2 (G) are parallel to the coordinate hyperplanes.

Hence, En2 (G) is two-level toward normal vectors to its facets, and is a two-level set.

Centrally symmetric En2 and Πn2

Since the case k = 2 is under consideration, the conditions (4.44) and (4.43) of symmetry

En2 and Πn2 are simplified to

n1 = n2 = n

2 . (4.81)

This implies that, for even n only, there exist centrally symmetric ESPCs and multi-

permutohedra. Respectively, the dimension of the centrally symmetric polytopes is odd.

So, the following statement holds.

Lemma 4.2. The set En2 (G) and the polytope Πn2 (G) are symmetric if and only if the

dimension of Πn2 (G) is odd, and the condition (4.81) is satisfied.
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4.5 The EBPC Bn (m)

Consider class Bn (m) of the entire binary multipermutation point configurations

(EBPC).

Further, we will assume that

m ∈ J0
n, (4.82)

in particular, Bn(0) and Bn(n) are the singletons

Bn(0) = 0, Bn(n) = e = (1, ..., 1),

where 0 is a zero vector, and e is a vector of ones in Rn.

The convex hull of the EBPC Bn (m) is called the hypersimpex [66] and is denoted as

∆n,m = convBn (m) . (4.83)

The choice of such a name is caused by the fact that the hypersimplex is a generalization

of the unit n− 1-simplex

∆n,1 = ∆n = {0 ≤ x ≤ e : x⊤e = 1} (4.84)

formed in the cut of the unit hypercube [0, 1]n by the hyperplane x⊤e = 1, in the case of its

cut by the hyperplane x⊤e = m, where m satisfies the condition (4.82):

∆n,m = {0 ≤ x ≤ e : x⊤e = m}.

Taking into account (3.33) and

G =
{
0n−m, 1m

}
, (4.85)

we reformulate the properties of En2(G), Πn2(G) derived in Section 4.4 for the set Bn (m) and
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4.5 The EBPC Bn (m)

polytope ∆n,m. For that, we make the substitutions:

e1 → 0, e2 → 1, n1 → n−m, n2 → m. (4.86)

As a result, we have the following.

The cardinality of Bn (m)

The cardinality of Bn (m) is

|Bn (m)| = Cm
n .

It ranges in:

n ≤ |Bn (m)| ≤ C
[ n

2 ]
n .

The dimension of ∆n,m

dim ∆n,m = n− 1.

Vertex locality of Bn (m)

vert ∆n,m = Bn (m) .

Spherical and hyperplane locality of Bn (m)

For Bn (m), the formula (4.67) is simplified to

Sj = m, j ∈ N.

Substituting the formula (4.85) into (4.68)-(4.75), we get

• ∆ = 1;
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4.5 The EBPC Bn (m)

• Bn (m) lies in the hyperplane:
n∑

i=1
xi = m; (4.87)

• Bn (m) is inscribed in the family (4.51) of hyperspheres with the center a and radius:

r(a) =
√
m− 2m · a+ n · a2, (4.88)

where a ∈ R1 is a parameter.

Hyperspheres Smin and S0 for Bn(m)

In the family (4.87) and (4.88), the hypersphere Smin is given by the parameters:

amin = m

n
, rmin =

√
m (n−m)

n
,

while the hypersphere S0 has radius r0 =
√
m.

Polyhedral-sphericity of Bn (m)

The set Bn (m) is polyhedral-spherical, namely,

Bn (m) = Sr(a)(a) ∩ ∆n,m,

where Sr(a)(a) is arbitrary hypersphere from the family (4.87) and(4.88).

The irredundant H-representation of ∆n,m

Let us formulate a corollary from Theorem 4.12 about the irredundant H-representation

of ∆n,m denoted by (∆n,m.IHR). Suppose the inducing multiset is given by (4.85).

Corollary 4.7. If the condition (4.65) is met, then:

1. if

(4.89)1  <  m  <  n,
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then the H-representation (∆n,m.IHR) has the form of (4.87) and

0 ≤ xi ≤ 1, i ∈ Jn; (4.90)

2. if (4.89) is violated and m = 1, then (∆n,1.IHR) is given by (4.87),

xi ≥ 0, i ∈ Jn; (4.91)

3. if (4.89) is violated, while

m = n− 1,

then the H-representation (∆n,n−1.IHR) is given by (4.87) and

xi ≤ 1, i ∈ Jn. (4.92)

Case 2 in this corollary corresponds to the unit n− 1-simplex ∆n,1. Case 3 corresponds

to another n− 1-simplex among the (0 − 1)-permutohedron, which is ∆n,n−1.

In general, polytopes in the family {∆n,m}m are cuts of the unit hypercube by the

hyperplane (4.87). Their irredundant H-representations can be given in the form (4.84) for

all the above cases, namely:

∆n,1 = {x ≥ 0 : x⊤e = 1};

∆n,n−1 = {x ≤ e : x⊤e = n− 1};

∆n,m = {0 ≤ x ≤ e : x⊤e = m}, if 1 < m < n.

Vertex adjacency criterion for ∆n,m

All adjacent vertices of ∆n,m to an arbitrary vertex x ∈ Bn (m) can be formed from x

by a single (0 − 1)-transposition of its coordinates.
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Vertex regularity degree of ∆n,m

For ∆n,m,

R = m (n−m) ,

according to (4.78) and (4.86).

In this case, R takes values in the range (4.79) as the value of min {m,n−m} increases

from 1 to
⌊

n
2

⌋
.

Remark 4.7. The lower bound R = n − 1 is reached only on ∆n,1 and ∆n,n−1, i.e. on the

unit n− 1-simplex ∆n,1 and on the n− 1-simplex induced by the multiset {0, 1n−1}.

Two-levelness of Bn (m)

Bn (m) is a two-level set:

m(Bn (m)) = 2.

Bn (m) is a two-level as a special case of two-level ESPCs.

Decompositions of Bn (m) into parallel hyperplanes

Due to (3.33) and (4.85), there exists the decomposition (1.42)-(1.40) of the set Bn (m).

It can be written as ∀ j ∈ Jn

Bn(m) = E0j ∪ E1j, Eij = Πij ∩Bn(m),

Πij = {x ∈ Rn : xj = i} , i = 0, 1.
(4.93)

Moreover, the sets (4.27) formed in the projections of Bn(m) onto the hyperplane (1.40)

fall into the same class, namely: for every j ∈ Jn,

E
′0j = Bn−1({0n−m−1, 1m}),

E
′1j = Bn−1({0n−m, 1m−1}).

The formula (4.93) defines simultaneously the decomposition of the set Bn(m) along

coordinates and toward normal vectors of ∆n,m-facets.
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Centrally symmetric Bn (m) and ∆n,m

Centrally symmetric Bn (m) and ∆n,m satisfy the condition:

n is even, m = n

2 . (4.94)

The same EBPCs that satisfy the condition (4.94) form a subclass of EBPCs where R

reaches the upper bound n2

4 .

4.6 The EMPC E ′
n3(G)

We introduce one more subclass of EMPCs formed from ESPCs by adding a single

intermediate element to the inducing multiset.

Let us consider the multiset:

G = {en1
1 , e2, e

n3
3 } = {en1

1 , e2, e
n−n1−1
3 } (4.95)

and the EMPC induced by G.

To single out these EMPCs from the whole class Enk(G), we will use a special notation

E ′
n3(G) . At the same time, the corresponding multipermutohedron is denoted as

Π′
n3(G) = conv E ′

n3(G)

Sets of class E ′
n3(G) are defined for n ≥ 3, while, for n = 3, such a set is an EPPC

E ′
33(G) = E3(G) due to S(G) = G. In other cases, i.e. for n > 3, the set is an EMPC.

Let us list some properties of E ′
n3(G) and Π′

n3(G).

The cardinality of E ′
n3(G)

Proposition 4.3. The cardinality of E ′
n3(G) is determined by the formula:

|E ′
n3(G)| = Cn1

n (n− n1).
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Indeed, substituting the primary specification [G] = (n1, 1, n− n1 − 1) of the multiset

G given by (4.95) into the formula (4.2), we get

|E ′
n3(G)| = n!

n1!(n− n1 − 1)! = n!(n− n1)
n1!(n− n1)!

= Cn1
n (n− n1).

The dimension of Π′
n3(G)

dim Π′
n3(G) = n− 1.

Vertex regularity degree of Π′
n3(G)

Proposition 4.4. The polytope Π′
n3(G) is simple.

Indeed, in accordance with (4.30), the vertex regularity degree is

R = n1n2 + n2n3 = n1 + n− n1 − 1 = n− 1.

On the other hand, the dimension of Π′
n3(G) is also n− 1. Thus, this polytope is simple.

Hyperplane locality of E ′
n3(G)

The set E ′
n3(G) lies on the hyperplane:

n∑
i=1

xi = n1 · e1 + e2 + n3 · e3. (4.96)

The irredundant H-representation of Π′
n3(G)

As already noted, the set E ′
n3(G) is defined for n ≥ 3. Moreover, only for n = 3 G has

no multiple elements, and no one H-representation (4.32) and (4.33) is irredundant.

We introduce the notation (Π′
n3(G).IHR) for the irredundant H-representation of the

polytope Π′
n3(G) and formalize it in the following corollary of Theorem 4.12.

Corollary 4.8. (Π′
n3(G).IHR) has the form of (4.96) and

(4.97)e1  ≤  xi  ≤  e3,  i  ∈  Jn.
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4.6 The EMPC E ′
n3(G)

As seen from (4.97), likewise Πn2(G), the polytope Π′
n3(G) is a cut of this hypercube

by the hyperplane (4.96).

Three-levelness of E ′
n3(G)

The set E ′
n3(G) is three-level:

m(E ′
n3(G)) = 3.

According to Proposition 4.2, the set E ′
n3(G) is three-level along each coordinate, i.e.

m′(E ′
n3(G)) = 3. In this case, there exists the decomposition (1.40)-(1.42), where the family

(1.39) is

H ij = {x ∈ Rn : xj = ei}, i ∈ J3, j ∈ Jn, (4.98)

and the condition (4.27), defining the auxiliary sets formed in the projection E ′
n3(G) onto the

hyperplane (4.98), turns into the following: for every j ∈ Jn,

E
′1j = En−1,k1({en1−1

1 , e2, e
n3
3 }), k1 ∈ {2, 3},

E
′2j = En−1,2({en1

1 , e
n3
3 }),

E
′3j = En−1,k3({en1

1 , e2, e
n3−1
3 }), k3 ∈ {2, 3}.

(4.99)

As you can see, the sets (4.99) belong to class E ′
n3(G) or ESPCs of the dimension one

less than the original set dimension.

In addition to the fact that E ′
n3(G) is three-level along coordinates, the set H of facets

Π′
n3(G) satisfies the relation:

H ⊆ {{xi = ei}i=1,3}j∈Jn .

This means all Π′
n3(G)-facets are parallel to the coordinate hyperplanes. Therefore,

(4.98) defines the decomposition of E ′
n3(G) toward normal vectors of Π′

n3(G)-facets. Thus,

m(E ′
n3(G)) = m′(E ′

n3(G)) = 3, and E ′
n3(G) is a three-level set.
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4.7 Simple multipermutohedra

Centrally symmetric E ′
n3(G) and Π′

n3(G)

Combining the conditions (4.42) and (4.44) with (4.95), we get that E ′
n3(G) and Π′

n3(G)

are centrally symmetric if and only if

e2 = e1 + e3

2 , n1 = n3. (4.100)

Thus, in order for the relation (4.100) to be true, n must be odd. This means symmetric

polytopes of the class Π′
n3(G) have an odd dimension.

Comparing the H-representations (Πn2 (G).IHR) and (Π′
n3 (G).IHR), one can see that

both polytopes Πn2 (G) and Π′
n3 (G) are cuts of the hypercube by the hyperplane. Moreover, as

was shown, the sets of their vertices can differ significantly. This difference in the combinatorial

structure of the resulting sets, En2(G) and E ′
n3(G), is due to, for the polytope Πn2(G), the

cut by the hyperplane (4.3) is carried out exactly through the vertices of the hypercube. As a

result, no new vertices arise, while Π′
n3(G) is formed by a cut of the hypercube through the

interior points of its edges. Thus, new vertices in the cut arise and form the set E ′
n3(G).

4.7 Simple multipermutohedra

In conclusion, we list all simple polytopes in class Πnk(G).

Recall that three such subclasses have already been identified. These are the n − 1-

simplices ∆n,1 and ∆n,n−1, permutohedron Πn(G), and multipermutohedron Π′
n3(G).

To enumerate all simple multipermutohedra, one of two methods can be used:

1. Single out those polytopes Πnk(G) whose vertex degree satisfies the condition:

R = n− 1.
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4.7 Simple multipermutohedra

In order to accomplish this, the following integer optimization problem can be solved:

R(x1, ..., xn) =
n−1∏
i=1

xixi+1 → min
n∑

i=1
xi = n;

xi ∈ N, i ∈ Jn;

xi ≤ xi+1, i ∈ Jn−1.

The number of different solutions to this problem is essentially the number of simple

polytopes Πnk(G), and the nonzero coordinates of the solutions will determine the

primary specifications of the inducing multisets.

2. Enumerate all polytopes in class Πnk(G) satisfying the condition that the number of γ

of incident faces to each vertex of which coincides with the dimension of the polytope,

i.e. γ = n− 1.

The second approach is applied in [28], and the following solution is obtained:

Theorem 4.13. The polytope Πnk(G) is simple if and only if:

• if k = 2 then 1 ∈ {n1, ..., nk};

• if k > 2 then

ni = 1, i ∈ Jk−1\{1}. (4.101)

Among the simple polytopes listed above, the first condition is satisfied by only ∆n,1

and ∆n,n−1. The second is valid for Πn(G) and Π′
n3(G). In addition, the condition (4.101) is

also  satisfied  for  a  whole  class  of  polytopes  Π′
n3(G)  whose  primary  specifications  of  inducing

sets  contain  unit  elements,  except  for  the  maximum  of  the  first  and  last  elements.

  We  combine  these  two  conditions  into  one  and  reformulate  Theorem  4.13  as  follows.

Theorem  4.14.  The  multipermutohedron  Πnk(G)  is  simple  if  and  only  if  the  primary  specifi-

cation  of  its  inducing  multiset  satisfies  the  below  condition:

ni  ·  ni+1  =  max{ni,  ni+1},  i  ∈  Jk−1.
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4.8 Combinatorically equivalent multipermutohedra

4.8 Combinatorically equivalent multipermutohedra

Theorem 4.15. Two multipermutohedra of the same dimension are combinatorically equivalent

if and only if, after ordering their elements non-decreasingly, the primary specifications of

their inducing multisets coincide up to their reverse ordering:

Πnk(G) ∼= Πnk(G′) ⇔ [G] = [G′] or [G] = [G′′],

where G′′ =
{
g′

n−i+1

}
i∈Jn

.

Proof. Let G satisfy the condition

gi ≤ gi+1, i ∈ Jn−1

and G′ = {g′
i}i∈Jn such that

g′
i ≤ g′

i+1, i ∈ Jn−1.

Consider two cases:

• Case 4.8.1 when primary specifications of G, G′ are the same, i.e. [G] = [G′];

• Case 4.8.2 - [G], [G′] match after reverse reordering of elements, т.е. [G] = [G′′].

In Case 4.8.1, we establish a bijection between the vertices Πnk(G) and Πnk(G′), in

other words, between the points Enk(G) and Enk(G′), as follows:

∀ x = (gi1 , ..., gin) ∈ Enk(G) → x′ = (g′
i1 , ..., g

′
in

) ∈ Enk(G′). (4.102)

According to the vertex adjacency criterion of the multipermutohedron, for each pair

of points x ∈ Enk(G) and x′ ∈ Enk(G′), satisfying the (4.102) condition, the same one-to-

one correspondence can be established for adjacent vertices, i.e. between elements of their

neighborhoods NΠ
nk

(G)(x) and NΠ
nk

(G′)(G′)(x′):

∀ x = (gi1 , ..., gin) ∈ Enk(G), y ∈ NΠ
nk

(G)(x) : y = (gj1 , ..., gjn) ↔

x′ = (g′
i1 , ..., g

′
in

) ∈ Enk(G′), y′ ∈ NΠ
nk

(G′)(x′) : y′ = (g′
j1 , ..., g

′
jn

).
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4.9 Illustration of Enk(G) and Πnk(G) (n = 3, 4)

Thus, the condition (1.62) is satisfied, i.e. the graphs of the polytopes Πnk(G), Πnk(G′)

are isomorphic, and hence, these polytopes themselves are combinatorically equivalent.

In Case 4.8.2, a bijection is as follows:

∀ x ∈ Enk(G) :

x = (gi1 , ..., gin) → x′ = (g′
n−i1+1, ..., g

′
n−in+1) ∈ Enk(G′).

(4.103)

The formula (4.103) allows moving from Case 4.8.2 to Case 4.8.1, which implies the

combinatorial equivalence of Πnk(G) and Πnk(G′).

Remark 4.8. Theorem 4.15 implies that the reverse enumeration of elements of a primary

specification of an inducing multiset does not change the combinatorial structure of the EMPC

and the corresponding multipermutohedron.

Therefore, without loss of generality, we further assume that:

∃ i ∈ J[ n+1
2 ] : nj ≥ nk−j+1, j ∈ Ji; ni > nk−i+1, (4.104)

where n0 = 0.

As you can see, the number of all possible combinatorically nonequivalent permutohedra

of a certain dimension will be determined by the number of different primary specifications

(4.104). Determining this number is an issue required deep consideration.

4.9 Illustration of Enk(G) and Πnk(G) (n = 3, 4)

Let us classify EMPCs and multipermutohedra for the dimensions two and three. Also,

we give them a geometric interpretation as projections onto the hyperplane xn = 0 for n = 3, 4.

Example 4.2. Let n = 3. According to 4.8 and the assumption that k ≥ 2, there are two

possible primary specifications:

[G1] =
(
13
)
, [G2] = (2, 1) . (4.105)
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4.9 Illustration of Enk(G) and Πnk(G) (n = 3, 4)

In the first case, k = n = 3, i.e. we are dealing with the EPPC E = E3 (G1). The

polytope P = Π3 (G1) is a hexagon whose projection onto x3 = 0 is shown in Figure 4.1.

In the second case, k = 2, i.e. we consider the ESPC E = E32 (G2), and its polytope

P = Π32 (G2) is a triangle (two-simplex) whose binary version, B3(1), ∆3,1, projected onto

x3 = 0 is shown in Figure 4.2.

Figure 4.1: The projection of E3
and Π3

Figure 4.2: The projection of
B3(1) and ∆3,1

Example 4.3. Let us consider the case of n = 4, which corresponds to three-dimensional

permutohedra. The following options for primary specifications are possible here:

[G1] =
(
14
)
, [G2] =

(
2, 12

)
, [G3] = (1, 2, 1) ,

[G4] =
(
22
)
, [G5] = (3, 1) .

(4.106)

Let us introduce the notation: E ′i = E4ki
(Gi) , ki = |S (Gi)| , P

′i = convE
′i, i ∈ J5.

Then k1 = 4 = n, k2 = k3 = 3, k4 = k5 = 2, i.e. E ′1 is the EPPC, E ′4, E
′5 is the ESPC.

E
′3 belongs to class E ′

n3(G), while E ′2 is just the EPPC. The sets E ′4 and E
′5 are binary.

Respectively, P ′4 and P ′5 are the hypersimplex ∆3,2 and unit three-simplex ∆3,1, respectively.

Their projections Ei = PrαE
′i onto the hyperplane α : x4 = 0, along with the projections of

the corresponding polytopes P i = PrαP
′i (i ∈ J5), shown in Figures 4.3-4.7.

As you can see, P 1 is a truncated dodecahedron, P 2 is a truncated tetrahedron, P 3

is a cuboctahedron, P 4 is an octahedron, P 5 is a simplex (three-simplex) (see Appendix A).

Moreover, the degree of regularity of the vertices of the polytopes P 1, P 2 and P 5 is three, i.e.
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4.9 Illustration of Enk(G) and Πnk(G) (n = 3, 4)

it coincides with their dimension. Respectively, these three polytopes are simple. At the same

time, the degree of regularity of vertices of the polytopes P 3 and P 4 is four, i.e. the polytopes

are not simple.

Remark 4.9. Note that since the set of equidistant numbers is chosen as the set generator

for the constructed sets of e-configurations, in the space R4 all combinatorically equivalent

faces are regular polygons, but after projecting onto the x4 = 0 hyperplane, this property is

violated, so a dodecahedron is formed in this projection, but not a regular dodecahedron, a

cuboctahedron that is not a regular cuboctahedron, etc. If an orthogonal projection onto the

hyperplane of polytopes were constructed, exactly the corresponding Platonic and Archimedean

solids would be formed.

150



4.9 Illustration of Enk(G) and Πnk(G) (n = 3, 4)

Figure 4.3: E1 and P 1 Figure 4.4: E2 and P 2

Figure 4.5: E3 and P 3 Figure 4.6: E4 and P 4

Figure 4.7: E5 and P 5
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Chapter 5
Partial multipermutation point configurations

The chapter describes the properties of the partial multipermutation point configurations

and their special cases. The publications [79, 106] were used to study the entire partial

permutation point configurations and their convex hulls. The EPPPC and its convex hull are

explored based on [15,28,79,85,107]. The sources [5, 8, 29,95,111] are used as a background

for studying features of the EBPPC, EUBPPC and the corresponding polytopes [22,112].

Particular attention is paid to decomposing the EPMPCs into families of vertex-located

sets, singling outing a subclass of vertex-located EPPPCs, and constructing their surface-

polyhedral functional representations.

5.1 The entire partial multipermutation point configura-

tion

When presenting the properties of the EPPPCs, we follow the scheme proposed in

Chapter 4. Namely, first, we consider the EPPPC Eηk(G), then its special cases: the EPPPC

En
k (G),  EUPPPC  En

k  (G),  and  the  special  EPPPC  En
η2(G).

These  sets  of  e-configurations  are  studied  jointly  with  their  convex  hulls.

The  convex  hull:

•  of  the  EPMPC  En
ηk  (G)  is  called  the  partial  multipermutohedron:

Πn
ηk  (G)  =  convEn

ηk  (G)  ;
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5.1 The entire partial multipermutation point configuration

• of the EPPPCs En
k (G) is called the partial permutohedron:

Πn
k (G) = convEn

k (G) ;

• of the EUPPPC E
n
k (G) is called the partial multipermutohedron with unbounded

repetitions:

Πn

k (G) = convE
n
k (G) .

Before proceeding to a detailed presentation of the properties of En
ηk (G) and Πn

ηk (G),

we recall that for the EPPPCs, the condition η > n is satisfied, respectively, the cardinality of

the inducing multiset G varies within the range

n+ 1 ≤ η ≤ n · k. (5.1)

Remark 5.1. In contrast to the EMPC, for En
ηk (G), we do not require the fulfillment of the

condition n > 1 because if condition (5.1) is satisfied, then even for n = 1, the set E = En
ηk (G)

does not degenerate into a point. Note that the condition η ≥ n+ 1 is necessary for the set E

to be an EMPPC, and η ≤ n · k is necessary for G to be inducing set for such a set. Therefore,

we assume that condition (5.1) holds.

The family En
ηk(G) covers the whole class EPPPC, among which there are vertex-located

and non-vertex-located, spherically-located and ellipsoidally-located sets, sets containing

polynomial and exponential on n number of elements. The diversity is also observed among the

Πn
ηk(G) polytopes. Irredundant H-representations of partial multipermutohedra can contain

polynomial and exponential on n number of constraints.

Now, we explore some properties of the set En
ηk (G) and the polytope Πn

ηk (G), given

that they are induced by the multiset G of the form (1.4), (1.7).

The cardinality of En
ηk(G)

Closed formulas for the cardinality of En
ηk(G) are known only for particular cases. For

example, the cardinality of:
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5.1 The entire partial multipermutation point configuration

• the EPPPC En
k (G) can be found by the formula:

|En
k (G)| = k!

(k − n)! ; (5.2)

• the EUPPPC E
n
k (G) is defined as follows:

∣∣∣En
k (G)

∣∣∣ = kn; (5.3)

• the EPMPC En
n+1,k(G) induced by the multiset G of the cardinality n+ 1:

∣∣∣En
n+1,k(G)

∣∣∣ = (n+ 1)!
η1! · ... · ηk! .

As seen from (5.1), the EPPPCs and EUPPPCs are extreme cases in η in the class

En
ηk(G). The values (5.2) and (5.3) set the upper and lower bounds on |En

ηk (G) |:

k!
(k − n)! ≤

∣∣∣En
ηk (G)

∣∣∣ ≤ kn.

If the condition n + 1 < η < n · k is satisfied, then we deal with an EPMPC. Its

cardinality can be found by utilizing the possibility of its decomposition into EMPCs. In order

to accomplish this, we form a set of n-element subsets of G:

G =
{
Gi
}

i∈I
, (5.4)

where Gi such that

G =
⋃
i∈I

Gi,

Gi ⊂ G,
∣∣∣Gi
∣∣∣ = n, κi =

∣∣∣S (Gi
)∣∣∣ , i ∈ I,

∀i, i′ ∈ I i ̸= i′ Gi ̸= Gj.

(5.5)

Lemma 5.1. The set En
ηk(G) is decomposed into the family

{
Enκi

(
Gi
)}

i∈I
(5.6)
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5.1 The entire partial multipermutation point configuration

of at most Cn
η EMPCs of n-dimensional multipermutation e-configurations:

En
ηk(G) =

⋃
i∈I

Enκi

(
Gi
)
, (5.7)

where I and Gi satisfy the condition (5.5) for all i ∈ I.

Indeed, each of the multisets in the family (5.4) induces the EMPC Enki
(Gi), which is

a proper subset of En
ηk(G). Together, these sets form the whole set En

ηk(G). Their number |I|

can be bounded from above by the number Cn
η .

Corollary 5.1. The cardinality of En
ηk(G) can be found by the formula:

∣∣∣En
ηk(G)

∣∣∣ = n!
∑

Gi⊂G

1
ni

1! · ... · ni
κi

! , (5.8)

where [
Gi
]

=
(
ni

1, ..., n
i
κi

)
, i ∈ I.

Proof. According to (5.5), different multisets from the family (5.4) induce different sets of the

family (5.6), i.e. if i, i′ ∈ I are such that

i ̸= i′ ⇒ Enκi

(
Gi
)

∩ Enκi′

(
Gi′) = ∅. (5.9)

Taking into account (5.7) and (5.9), the cardinality of En
ηk(G) can be found as follows:

∣∣∣En
ηk(G)

∣∣∣ =
∑

Gi∈G

∣∣∣Enκi

(
Gi
)∣∣∣. (5.10)

Determining |Enκi
(Gi)| by the formula (4.2) and substituting the result into (5.10) we

obtain the formula (5.8).

Vertex criterion of Πn
ηk (G)

Theorem 5.1. The point x ∈ En
ηk (G) is a vertex of the polytope Πn

ηk (G) if and only if

(5.11)∃  s,  r  ∈  J  0n,  s  +  r  =  n,
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5.1 The entire partial multipermutation point configuration

such that the coordinates of the point x are formed by permutations of the numbers:

g1, g2, ..., gs, gη−r+1, ..., gη. (5.12)

Vertex adjacency criterion for Πn
ηk (G)

Theorem 5.2. If x ∈ vert Πn
ηk (G), then all vertices adjacent to it are obtained in one of two

ways:

• a permutation of two x-coordinates equal to

gi, gi+1 (gi ̸= gi+1, i ∈ Js−1 ∪ Jη−1\Jη−r) , (5.13)

• the replacement of a component equal to gs by the value gη−r ̸= gs or a component gη−r+1

by the value gs+1 ̸= gη−r+1,

where s, r determined from (5.11).

Remark 5.2. For vertΠn
ηk (G), one can also get a decomposition of type (5.7) by considering

in the set G of the form (5.4) only those multisets that satisfy the conditions (5.11) and (5.12).

Let G′ ⊆ G be the resulting set.

Let us construct G′. For that, first, we introduce the following notation:

G
′s = {gi}i∈J0

s
∪ {gη−i+1}i∈J0

n−s
, s ∈ J0

n,

k
′

s =
∣∣∣S (G′s

)∣∣∣ , [G′s] = (n′s
1 , ..., n

′s
k′

s
).

(5.14)

Among elements of the collection

G′ =
{
G

′s
}

s∈J0
n

,

there  can  be  identical  multisets,  i.e.  G′  is,  generally,  a  multiset  whose  elements  are  the

multisets  (5.14),  which  underlying  set  is  essentially  G′:

G′  =  S(G′).
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5.1 The entire partial multipermutation point configuration

Another way to construct G′ is to combine the common elements of G and G′ assuming

that G′ = G ∩ G′.

G′ is defined by a certain set I ′ ⊆ J0
n such that

G′ =
{
G

′s
}

s∈I′
⊆ G.

Respectively, for the multisets of the family G′, a condition similar to (5.9) holds and

looks like: if

i, i′ ∈ I ′: i ̸= i′ ⇒ G
′i ̸= G

′i′
.

Hence, the formulas (5.7) and (5.8) can be adapted to (5.14), yielding:

vert Πn
ηk(G) = ∪

i∈I′
Enk

′
i

(
G

′i
)
. (5.15)

Respectively, ∣∣∣vert Πn
ηk(G)

∣∣∣ = n!
∑
i∈I′

1
n

′i
1 ! · ... · n′i

k
′
i

! . (5.16)

Let us formulate conditions under which G′ = G′ and, consequently,

G′ =
{
G

′s
}

s∈J0
n

.

In this case, G′0 and G′n are sets. Correspondingly,

n = |S(G′0)| = |S(G′n)|. (5.17)

If (5.17) holds, the formula (5.16) is simplified to

∣∣∣vert Πn
ηk(G)

∣∣∣ = n!
∑
i∈J0

n

1 = n! (n+ 1) = (n+ 1)!.
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5.1 The entire partial multipermutation point configuration

The irredundant H-representation of Πn
ηk (G)

Theorem 5.3. The partial multipermutohedron Πn
ηk (G) is given by the system of inequalities:

∑
j∈ω

xj ≥
|ω|∑
j=1

gj, ω ⊆ Jn; (5.18)

∑
j∈ω′

xj ≤
|ω′|∑
j=1

gη−j+1, ω
′ ⊆ Jn. (5.19)

The H-representation (5.18) and (5.19) (further referred to as (Πn
ηk (G).HR)) consists of

2n constraint unions associated with different values of |ω| or |ω′|. Like Πnk (G), the presence of

multiple minimal or maximal elements of the inducing multiset G is a necessary and sufficient

condition for the redundancy of (Πn
ηk (G).HR).

Theorem 5.4. The H-representation (Πn
ηk (G).HR) is redundant if and only if the minimum

and/or maximum element of G is a multiple, i.e.

η1 + ηk > 2. (5.20)

Elimination:

• from (5.18), the unions with indexes

i ∈ J = imin, η1 ∪ η − ηk, imax, (5.21)

where

imin = min {2, η − ηk} , imax = max {η − 2, η1} ,

• from (5.19), the unions with indexes

i′ ∈ J ′ = i′ min, ηk ∪ η − η1, i
′ max, (5.22)

where

i
′ min = min {2, η − η1} , i

′ max = max {η − 2, ηk} ,
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5.1 The entire partial multipermutation point configuration

turns (Πn
ηk (G).HR) into an irredundant system of constraints of the polytope Πn

ηk (G).

Remark 5.3. This theorem refines the theorem given in [15] that establishes an irredundantH-

representation of the partial multipermutohedron. In addition to [15], Theorem 5.4 establishes

the existence of redundant unions of inequalities: a) in (5.18), even for η1 = 1; b) in (5.19),

even for ηk = 1. This is possible if the following condition holds:

η < 2n, (5.23)

i.e. the inducing multiset G is relatively small. This allows the formulation of the theorem,

establishing a refined criterion of an irredundant H-representation of the polytope Πn
ηk (G).

Corollary 5.2. The irredundant H-representation of the polytope Πn
ηk (G) (further (Πn

ηk (G).IHR))

is a system of linear inequalities including

• inequalities of the unions (5.18) with numbers i = |ω| ∈ J , where J = Jn\J , and the set

J is given by the formula (5.21);

• inequalities of the unions (5.19) with numbers i′ = |ω′| ∈ J ′, where J ′ = Jn\J ′, and J ′

is given by (5.22).

The criterion of belongingness of a point to Πn
ηk (G)

Despite, in general, the exponential number of constraints in the irredundant H-

representation (Πn
ηk (G).IHR), the structure of the partial multipermutohedron is such that

there is a simple way to check whether a given point Rn belongs to this polytope.

Theorem 5.5. Let x ∈ Rn be such that

xi ≤ xi+1, i ∈ Jn−1. (5.24)

Then from fulfillment at x: for every i ∈ Jn,

• of the only inequality of ith union of the constraint system (5.18), it follows the validity
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5.1 The entire partial multipermutation point configuration

of all inequalities of this union, namely:

i∑
j=1

xj ≥
i∑

j=1
gj ⇒

∑
i∈ω

xj ≥
i∑

j=1
gj, ω ⊆ Jn, |ω| = i;

• of one inequality i′−union of the system (5.19), it follows the fulfillment of the remaining

inequalities of this union:

i′∑
j=1

xn−j+1 ≤
i′∑

j=1
gη−j+1 ⇒

∑
j∈ω′

xn−j+1 ≤
i′∑

j=1
gη−j+1, ω

′ ⊆ Jn, |ω′| = i′.

Corollary 5.3.

Taking into account Corollary 5.3, we formulate another corollary from this theorem.

Corollary 5.4. If x0 ∈ Rn is such that

x0
i ≤ x0

i+1, i ∈ Jn−1, (5.25)

then x0 ∈ Πn
ηk (G) if and only if one of the following unions (5.18) and (5.19) are satisfied at

x0:

i∑
j=1

x0
j ≥

i∑
j=1

gj, i ∈ {1} ∪ Jn\Jη1 , (5.26)

i′∑
j=1

x0
n−j+1 ≤

i′∑
j=1

gη−j+1, i
′ ∈ {1} ∪ Jn\Jηk

. (5.27)

Remark 5.4. This corollary provides a simple way to check whether an arbitrary point

Rn belongs to Πn
ηk (G). It suffices to arrange its coordinates non-decreasingly and check

2n+ 2 − η1 − ηk inequalities of the system (5.26) and (5.27). Moreover, x0 is an interior point

of Πn
ηk (G) if and only if all the constraints (5.26) and (5.27) are satisfied as strict inequalities.
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5.1 The entire partial multipermutation point configuration

The full-dimensionality of Πn
ηk (G)

Theorem 5.6. The dimension of the partial multipermutohedron coincides with the dimension

of Euclidean space:

dim Πn
ηk(G) = n. (5.28)

Proof. . Let us apply Remark 1.2. Since the constraint system (5.18) and (5.19) does not

contain equations, the rank of the matrix ρ in (1.57) is zero. This implies that to prove the

validity of (5.28), it suffices to find an arbitrary interior point of the domain (5.18) and (5.19).

Let us introduce the notation for sums of n minimal and maximal elements of G:

Smin
1 =

n∑
i=1

gi, S
max
1 =

n∑
i=1

gη−i+1, (5.29)

and also for their mean:

amin
1 = Smin

1
n

, amax
1 = Smax

1
n

. (5.30)

It is clear that, due to the ordering requirement (1.7) and the condition (5.1), it holds

Smin
1 < Smax

1 . Then for the value a, the mean of (5.30):

a = amin
1 + amax

1
2 = Smin

1 + Smax
1

2n

the relation holds:

a ∈
(
amin

1 , amax
1

)
. (5.31)

Let us verify that a point corresponding to this parameter a is an interior point of the

polytope Πn
ηk (G). The inclusion a ∈ int Πn

ηk (G) holds if the inequalities (5.18) and (5.19) are

strictly satisfied at the point a.

Let us use Remark 5.4 for x0 = a. Since the condition (5.25) is satisfied, it remains to

show that the constraints (5.26) are (5.27) are fulfilled strictly at a.

Let us apply the properties of the mean of numbers ordered non-decreasingly:

∀i < i′

i∑
j=1

gj

i
≤

i′∑
j=1

gj

i′
,

i∑
j=1

gη−j+1

i
≥

i′∑
j=1

gη−j+1

i′
.
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5.1 The entire partial multipermutation point configuration

Considering (5.31), we substitute the coordinates of the point a into (5.26) and (5.27)

getting:

i∑
j=1

gj ≤ i
Smin

1
n

< i
Smin

1 + Smax
1

2n = i · a, i ∈ Jn,

i′∑
j=1

gη−j + 1 ≥ i′
Smax

1
n

> i′
Smin

1 + Smax
1

2n = i′ · a, i′ ∈ Jn.

Thus, a ∈ int Πn
ηk(G), hence, Πn

ηk (G) is a full-dimensional polytope.

k-levelness of En
ηk (G) along coordinates

m′(En
ηk (G)) = k.

Similar to the EMPC, coordinates of points of En
ηk (G) take all k values of S(G).

Respectively, the set En
ηk (G) is k-level along coordinates.

The system of constraints (1.40)-(1.42) defines its decomposition into hyperplanes

parallel to the coordinate hyperplanes. For the projections (1.43) of the sets (1.40) formed at

the intersection of En
ηk (G) with each of these hyperplanes, the condition (1.44) is satisfied, i.e.

these projections coincide with the projections of the entire set En
ηk (G) onto the hyperplane

(1.39). Also, we have

E
′ij = En−1

η−1,ki
(Gi), i ∈ Jk, j ∈ Jn, (5.32)

where Gi and ki are given by the formula (4.28) (i ∈ Jk).

Thus, the set En
ηk (G) can be represented as the union of sets whose projections onto

the hyperplane parallel to the coordinate ones are the EMPCs of the dimension one less than

the original set. In fact, it is the decomposition of the set En
ηk (G) since all the sets (5.32) are

non-empty according to Remark 5.1 and pairwise disjoint since they lie in parallel hyperplanes.

Decompositions of En
ηk (G) toward e

Let us use Lemma 5.1 and unite the sets of the family (5.6) according to the rule of

equality of the sums of the coordinates to a given number b, in other words, with respect to
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5.1 The entire partial multipermutation point configuration

belongingness their points to the hyperplane x⊤e = b.

We form the multiset:

B = {bi}i∈I , bi =
∑
g∈Gi

g, i ∈ I. (5.33)

Now, the decomposition (5.7) can be rewritten as

En
ηk(G) =

⋃
b∈S(B)

En,b
ηk (G), (5.34)

where

En,b
ηk (G) = {x ∈ En

ηk(G) : x⊤e = b}, b ∈ S(B). (5.35)

The value |S(B)| is, in fact, the levelness of the decomposition (5.34) of En
ηk(G) toward

the vector e. Lemma 5.1 estimates the levelness as follows: |S(B)| ≤ |I| ≤ Cn
η .

Also, note that the cuts (5.35) of the set En
ηk(G) by the hyperplanes x⊤e = const form

a new class of sets of e-configurations, whose properties can be studied. In some cases, all or a

part if the sets (5.35) are EPPCs. In particular, if B = S(B), they are all the EMPCs, and

then the formula (5.34) defines a decomposition of En
ηk(G) into the family of n-dimensional

EMPCs.

In the general case, we can say that the set Eηk(G) is decomposed into the family of

sets lying on parallel hyperplanes:

{x ∈ Rn : x⊤e = b}, b ∈ S(B)

and hence, En
ηk(G) is m(e)-level toward e, where m(e) = |S(B)|.

Remark 5.5. The last two properties of En
ηk(G) allow deriving the following bounds on its

levelness:

m(En
ηk(G)) ≥ max{k, |S(B)|}, (5.36)

where  B  is  given  by  (5.33).

It  is  easy  to  see  that  the  inequality  (5.36)  turns  into  equality  if  (Πn
ηk(G).IHR)  contains
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5.1 The entire partial multipermutation point configuration

nothing but the first and/or last unions in the systems (5.18) and (5.19), and at least one

of the last two unions is present. If the irredundant H-representation Πn
ηk(G) contains other

unions, the levelness of the set En
ηk(G) toward normal vectors of the corresponding facets

can be determined in the same way as the multiset B was found, and the underlying set was

extracted from it. The cardinality of the underlying set establishes the set’s levelness toward

normal vectors of facets associated with one constraint union. By combining the results for all

valid unions of inequalities, the levelness of the set En
ηk(G) can be found.

Centrally symmetric En
ηk (G) and Πn

ηk (G)

Theorem 5.7. The set En
ηk (G) is centrally symmetric about the point a given by the parameter

a = S1

η
, where S1 =

η∑
i=1

gi (5.37)

if and only if

gi = gη−i+1, i ∈ J[ η+1
2 ]. (5.38)

For the central symmetry of the polytope Πn
ηk (G) about the point a′ defined by the

parameter:

a′ = Smin
1 + Smax

1
2n , (5.39)

where Smin
1 and Smax

1 are given by the formula (5.29), it is necessary and sufficient that the

following condition be satisfied:

gi + gη−i+1

2 = a′, i ∈ Jn. (5.40)

Proof. Similar to the proof of Theorem 4.10, we first focus on the symmetry conditions for

En
ηk (G), and then move to Πn

ηk (G).

1. To an arbitrary point x ∈ En
ηk(G), the below point y will be diametrically opposite to x:

if xi = gj, then yi = gη−j+1, i ∈ J[ η+1
2 ]. (5.41)
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5.1 The entire partial multipermutation point configuration

In this case, y must be a point of Enk(G), i.e. the following condition is met:

x ∈ En
ηk(G) ⇔ y ∈ En

ηk(G). (5.42)

The center of symmetry, if it exists, coincides with the midpoint of the segment [x, y].

Since the conditions (5.41) and (5.42) must hold for all x ∈ En
ηk(G), the condition (5.38)

is obtained. In this case, the midpoints of all formed segments will coincide in only case

if all coordinates of their intersection point are equal to each other, and this is possible

only at the point a given by the parameter (5.37).

2. Since the shape of the partial multipermutohedron is completely determined by n first

and n last elements of G, for the symmetry of Πn
ηk(G), it suffices that the conditions (5.41)

and (5.42) are satisfied for its vertices, in particular, the condition (5.42) is weakened to

x ∈ vert Πnk(G) ⇔ y ∈ vert Πnk(G). (5.43)

The conditions (5.41) and (5.43) are satisfied for every x ∈ vertΠnk(G) if (5.40) holds.

Then the center of symmetry of Πn
ηk(G) is determined by n first and n last elements of the

inducing set G, i.e. the condition (5.39) will hold.

In Sections 4.2 and 4.4, two particular cases of the EMPCs are considered in detail,

En (G) and En2 (G). They are extreme with respect to k. Similarly, in addition to the sets

En
k (G) and En

k(G), in class En
ηk(G), the following special cases are explored in more detail:

• Case 5.1.1 η is the least possible;

• Case 5.1.2 k is the least possible.

From (5.1), it follows that Case 5.1.1 corresponds to

η = n+ 1, (5.44)

i.e. to considering the EMPPC En
n+1,k(G). In Case 5.1.2, the condition (3.27) is satisfied, and
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5.2 The entire partial permutation point configuration

the EMPPC En
η2(G) induced by a generating set of two numbers is under consideration. The

intersection of these two classes forms class En
n+1,2(G), which is considered separately.

We explore the mentioned subclasses of the EMPPCs sequentially.

5.2 The entire partial permutation point configuration

Like the EPPC En(G), some properties of the EPPPC En
k (G) are a direct consequence

of the properties of the EMPPC listed in Sec. 5.1, as well as the result of the change of

variables (4.47) and the substitution η = k.

The remaining properties are specific to the EPPPCs and the corresponding polytopes.

Combinatorial equivalence of Πn
k (G) and Πn

n+1 (G′) и Πn+1 (G′′)

For arbitrary sets G,G′, G′′ such that |G| = k, |G′| = |G′′| = n+ 1 the relation is true:

Πn
k (G) ∼= Πn

n+1 (G′) ∼= Πn+1 (G′′) ∀ k > n. (5.45)

The formula (5.45) says that all partial permutohedra of the same dimension are

combinatorically equivalent and establishes a connection between a n-partial permutohedron

and a n + 1-permutohedron. The permutohedron was discussed in Section 4.2, and the

properties derived there are easily generalized onto the polytope Πn
k (G). They are listed

below.

The cardinality of En
k (G)

The value |En
k (G)| is given by the formula (5.2).

Vertex criterion of Πn
k (G)

A corollary from Theorem 5.1 is that a point x ∈ En
k (G) is a vertex of the polytope

Πn
k (G) if and only if there exist the numbers s, r satisfying the condition (5.11) such that the
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5.2 The entire partial permutation point configuration

coordinates of x form a permutation of the numbers:

e1, e2, ..., es, ek−r+1, ..., ek.

The number of vertices of Πn
k (G)

|vert En
k (G)| = (n+ 1)!.

This formula follows (4.49) and (5.45).

Vertex adjacency criterion for Πn
k (G)

From Theorem 5.2, it follows that, for an arbitrary point x ∈ vert Πn
k (G), all vertices

of Πn
k (G) adjacent to it are obtained in one of two ways:

1. by an ei ↔ ei+1-permutation of a pair of x-components;

2. by the replacement es → ek−r or ek−r+1 → es of a x-coordinate, where r, s are given by

(5.11).

The irredundant H-representation of Πn
k (G)

The irredundant H-representation of a partial permutohedron (further referred to as

(Πn
k (G).IHR)) is obtained as a consequence of Theorem 5.3, which takes into account that the

condition (5.20) violates in this case. Respectively, Respectively, no redundant unions exist in

(Πn
k (G).IHR).

Corollary 5.5. The irredundant H-representation (Πn
k (G).IHR) has the form of

∑
j∈ω

xj ≥
|ω|∑
j=1

ej, ω ⊆ Jn;

∑
j∈ω′

xj ≤
|ω′|∑
j=1

ek−j+1, ω
′ ⊆ Jn.
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The full-dimensionality of Πn
k (G)

dim Πn
k(G) = n. (5.46)

The simplicity of Πn
k (G)

Indeed, the degree of regularity of Πn
k (G)-vertices satisfies the condition

R = n. (5.47)

This formula follows from (4.52) and (5.45). Together, the conditions (5.46) and (5.47)

yield dim Πn
k(G) = R, which is the simplicity condition for Πn

k (G).

k-levelness of En
k (G) along coordinates

m(En
k (G)) = k.

In addition, since G is a set, for any i ∈ Jk, its subsets Gi of the form (4.28) are sets of

cardinality |Gi| = k − 1. As a result, the formula (5.32) for the projections of En
k (G) onto its

decomposition hyperplanes, parallel to the coordinate hyperplanes, looks like

E
′ij = En−1

k−1 (Gi), i ∈ Jk, j ∈ Jn.

Centrally symmetric En
k (G) and Πn

k (G)

The cases of centrally symmetric EPPPCs and partial permutohedra are listed in the

corollary from Theorem 5.7.

Corollary 5.6. The set En
k (G) is centrally symmetric about the point a of the form:

a = S1

k
, where S1 =

k∑
i=1

ei,
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5.3 The entire unbounded partial permutation point configuration

if and only if

ei = ek−i+1, i ∈ J[ k+1
2 ].

A necessary and sufficient condition for the central symmetry of the polytope Πn
k (G)

about the point a′ given by the parameter

a′ = Smin
1 + Smax

1
2n ,

where Smin
1 , Smax

1 given by expressions:

Smin
1 =

n∑
i=1

ei, S
max
1 =

n∑
i=1

eη−i+1,

is the following:
ei + ek−i+1

2 = a′, i ∈ J[ k+1
2 ].

5.3 The entire unbounded partial permutation point con-

figuration

The EUPPPC E
n
k(G) and its convex Πn

k(G) are relatively well studied. For example,

E
n
k(G) is an n-dimensional bounded lattice An, and Πn

k(G) is the hypercube.

Let us list some of their properties.

E
n
k(G) is a discrete lattice

E
n
k(G) = An, (5.48)

i.e. it is the nth degree of its generating set.
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The cardinality of En
k(G)

The value |En
k(G)| is given by the formula (5.3) following from the formula (5.48), the

properties of the Cartesian product of sets and the relation k = |A|. Indeed,

|En
k(G)| = |An| = |A|n = kn. (5.49)

The irredundant H-representation of Πn

k(G)

Moving in the equation (5.48) to the convex hull of its left-hand and right-hand parts,

we obtain

conv E
n
k(G) = Πn

k(G) = (conv A)n = [e1, ek]n, (5.50)

wherefrom it can be seen that the constraints, also known as the irredundant H-representation

of Πn

k(G) (further referred to as (Πn

k(G).IHR)), has the form:

e1 ≤ xi ≤ ek, i ∈ Jn, (5.51)

It defines a hypercube with side ek − e1. The same result can be easily obtained from

Corollary 5.2.

The criterion of belongingness of a point to Πn

k(G)

Proposition 5.1. A point x ∈ E
n
k(G) is a vertex of Πn

k(G) if and only if its coordinates are

equal to e1 or ek:

x ∈ vert Πn

k(G) ⇔ xi ∈ {e1, ek}, i ∈ Jn. (5.52)

The number of vertices of Πn

k(G)

|vert Πn

k(G)| = 2n,

which directly follows from (5.52).
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Vertex adjacency criterion for Πn

k(G)

All vertices adjacent to an arbitrary point x ∈ Πn

k(G) are formed from it by a single

replacement e1 → ek or ek → e1 of one of its coordinates.

This condition can be represented in terms of the Hamming distance:

∀x, y ∈ vert Πn

k(G) x ↔ y ⇔ Hd(x, y) = 1. (5.53)

Vertex regularity degree of Πn

k(G)

R = n.

The full-dimensionality of Πn

k(G)

dim Πn

k(G) = n.

The simplicity of Πn

k(G)

Πn

k(G) is a simple polytope.

k-levelness of En
k(G)

m(En
k(G)) = k.

Indeed, likewise, in all sets of the class En
ηk(G), the set En

k(G) is k-level along coordinates,

i.e. m(En
k(G)) = k. And since all facets of the hypercube Πn

k(G) are parallel to the coordinate

hyperplanes, the number k will also specify the levelness toward normal vectors of its facets.

Overall, En
k(G) is a k-level set.

Unlike the set En
k (G), G is a multiset with the maximum possible multiplicities of

elements, so fixing one coordinate does not affect the remaining ones. Respectively, the

multisets Gi of the form (4.28) will also be multisets with unbounded multiplicities. Thus,
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G′ = Gi = (A)n−1, |S(Gi)| = k (i ∈ Jk). In this case, the formula (5.32) for sets formed

in the projections of En
k(G) onto its decomposition hyperplanes, parallel to the coordinate

hyperplanes, has the form of

E
′ij = E

n−1
k (G′), i ∈ Jk, j ∈ Jn,

where G′ is formed from G by decreasing the multiplicity of each element by one.

Centrally symmetric En
k(G)

Theorem 5.7 implies that the polytope Πn

k(G) is centrally symmetric, which is true

since the hypercube is symmetric. Namely, it has a center and hyperplanes of symmetry.

The requirement for the central symmetry of En
k(G) is the symmetry of the elements

of the generating set A about its mean since, due to [G] = (kn), the conditions (5.37) and

(5.38) in this case can be rewritten in the form:

a = S1
k

, where S1 =
k∑

i=1
ei,

ei = ek−i+1, i ∈ J[ k+1
2 ].

5.4 The EPMPC En
n+1,k(G)

Let us consider particular cases of the set En
ηk(G) introduced above as Cases 5.1.1 and

5.1.2.

We start with the first of them and outline the properties of the EPMPC En
n+1,k(G)

and the polytope Πn
n+1,k(G).

En
n+1,k(G) is a projection of the entire multipermutation point configuration of

n+ 1-elements

It is easy to see that En
n+1,k(G) is formed from the EMPC En+1,k(G) by eliminating

one coordinate of its points, i.e. is the projection of the latter onto Euclidean space of the

dimension lower by one. Without loss of generality, we assume that the last n+ 1th coordinate
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is fixed, i.e.

En
n+1,k(G) = PrαEn+1,k(G), (5.54)

where

α = {x ∈ Rn+1 : xn+1 = 0}. (5.55)

When projected onto the hyperplane (5.55), generally, the spherically-located set

En+1,k (G) ceases to be spherically-located since this projection is not orthogonal.

It is easy to see that the polytope Πn
n+1,k(G) is the projection of Πn+1,k(G) onto the

hyperplane α:

Πn
n+1,k(G) = PrαΠn+1,k(G).

The ellipsoidal locality of En
n+1,k (G)

The following theorem states that En
n+1,k (G), like En+1,k (G), is a surface-located set,

and it is established which strictly convex surface can be circumscribed about it.

Theorem 5.8. The set En
n+1,k (G) is inscribed in the ellipsoid (1.25) with the parameters:

A = E + I = [aij]n×n : aij =


2, if i = j,

1, if i ̸= j;

b = −2S1e, c = S2
1 − S2,

(5.56)

where I is a matrix of ones, E is an n-order identity matrix,

Sj =
n+1∑
i=1

gj
i , j = 1, 2. (5.57)

Proof. We start by considering the EMPC En+1,k (G), which is spherically-located according

to Theorem 4.1. To determine the parameters of its circumsphere, we apply the formulas (4.5),

(4.6), and (4.8), getting:

n+1∑
i=1

xi = S1, (5.58)

n+1∑
i=1

(5.59)(xi  −  a)2  =  S2  −  2aS1  +  (n  +  1)  a2,
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where S1, S2 are given by expressions (5.57).

Let us move to the projection onto the hyperplane α, excluding the variable xn+1. To

do this, we separate it in the equation (5.58):

xn+1 = S1 −
n∑

i=1
xi.

Let us substitute this expression into (5.59):

S2 − 2aS1 + (n+ 1) a2 =
n∑

i=1
(xi − a)2 + (xn+1 − a)2 =

=
n∑

i=1
(xi − a)2 +

(
−

n∑
i=1

xi + S1 − a

)2

=

=
n∑

i=1
(xi − a)2+

(
n∑

i=1
xi

)2

+ 2 (a− S1)
n∑

i=1
xi + (S1 − a)2.

(5.60)

It is easy to see that the equation (5.60) defines an ellipsoid. It is circumscribed

about En
n+1,k (G) since, by definition, En+1,k (G)-points satisfy the equation (5.59), and by

construction, the points of En
n+1,k (G) satisfy the equation (5.60), i.e. they are inscribed in the

ellipsoid.

Simplifying (5.60) we get

S2 − 2aS1 + (n+ 1) a2 =
n∑

i=1
x2

i − 2a
n∑

i=1
xi + na2+

+ xT Ix+ 2 (a− S1)
n∑

i=1
xi + S2

1 − 2aS1 + a2.

Wherefrom

xTEx+ xT Ix− 2S1

n∑
i=1

xi + S2
1 − S2 = 0. (5.61)

As a result, the equation (1.25) of the ellipsoid is obtained, where A, b, c are given by

the formula (5.56).

As can be seen, the parameter a is cancelled throughout the transformations, i.e.

in the projection of a family of hyperspheres circumscribed about En
n+1,k (G), the unique

circumscribed ellipsoid is obtained.
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Vertex  locality  of  En
n+1,k  (G)

En
n+1,k(G)  =  vert  Πn

n+1,k(G).

  Indeed,  according  to  Theorem  5.8,  En
n+1,k(G)  is  a  surface-located  set.  Hence,  it  is 

vertex-located  according  to  Theorem  2.1.

Polyhedral-ellipsoidality  of  En
n+1,k  (G)

En
n+1,k(G)  =  Πn

n+1,k(G)  ∩  S,

where  S  is  the  ellipsoid  given  by  the  equation  (1.25)  with  the  parameters  (5.56).

Combinatorial  equivalence  of  Πn
n+1,k(G)  and  Πn+1,k(G)

Theorem  5.9.

Πn
n+1,k(G)  ∼=  Πn+1,k(G).  (5.62)

Proof.  If  G  is  a  set,  the  formula  (5.62)  becomes  Πn
n+1(G)  ∼=  Πn+1(G),  and  it  follows  from  (5.45).

Let  us  prove  that  the  combinatorial  equivalence  is  also  preserved  when  G  is  a  multiset.  Note

  that  when  projecting  onto  Euclidean  space  of  lower  dimension,  the  combinatorial  structure  of

  a  polytope  changes  for  two  reasons.  First,  some  vertices  become  interior  points  of  a  polytope 

(or  its  faces  of  arbitrary  dimension)  formed  as  a  result  of  projection.  Consequently,  the  vertex

  set  of  the  original  polytope  ceases  to  be  a  vertex  set  of  the  projection  polytope.  The  second

  reason  is  that  some  vertices  are  projected  onto  the  same  point.  As  a  result,  vertices  that  were

  not  adjacent  in  the  original  polytope  can  be  adjacent  in  the  projection  polytope.  Let  us  show

  that,  in  the  case  under  consideration,  neither  one  nor  the  other  occurs,  and  therefore,  the

  combinatorial  structure  of  the  polytope  remains  unchanged.  The  first  situation  does  not  arise

since,  as  was  shown,  En
n+1,k(G)  is  vertex-located,  similarly  to  the  original  set  En+1,k(G).  As 

for  the  second  reason,  it  is  easy  to  see  that  the  set  En
n+1,k(G)  (in  other  words,  the  vertex  set 

of  Πn
n+1,k(G))  can  be  formed  in  two  stages:  on  the  first  step,  sequentially  extract  one  element

from  G,  forming  submultisets  (4.28);  on  the  second  stage,  form  all  multipermutations  from
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the obtained n-element multiset. Let, for example, the generated element of En
n+1,k(G) be x

and the inducing multiset be Gi. Complementing x with the n+ 1th coordinate equal to ei,

we get the point y = (x, ei) ∈ En
n+1,k(G). Thus, from the element En+1,k(G), one can easily

determine the element En
n+1,k(G) as its projection onto the hyperplane (5.55) and vice versa.

Thus, there is a one-to-one correspondence between points of En
n+1,k(G) and En+1,k(G). This

means ”gluing” vertices does not occur.

So, when (5.55) is projected, the graph of the polytope does not change. Therefore,

the original and projected polytopes are combinatorically equivalent.

This feature allows generalizing many of the above properties of the EMPC onto the

class En
n+1,k(G) after the following replacements:

n → n+ 1, ni → ηi, i ∈ Jk.

The same applies the polytope Πn
n+1,k(G) properties.

Properties of En
n+1,k(G) and Πn

n+1,k (G) following from Theorem 5.9

Based on (5.62), many properties of En+1,k (G) and Πn+1,k (G) can be generalized onto

En
n+1,k (G) and Πn

n+1,k (G). For example,

• (4.2) is transformed into the formula for the En
n+1,k (G)-cardinality:

∣∣∣En
n+1,k (G)

∣∣∣ = |En+1,k (G)| = (n+ 1)!
η1! · ... · ηk! ; (5.63)

(5.64)

•  (4.30)  turns  into  the  formula:

R  =  η1η2  +  η2η3  +  ...  +  ηk−1ηk

determining  the  degrees  of  vertex  regularity  of  Πn
n+1,k  (G);

•  the  formula

dim  Πn
n+1,k  (G)  =  n
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follows from (4.40) and testifies to the full-dimensionality of Πn
n+1,k (G).

• En
n+1,k(G) is k-level along coordinates and toward the vector e:

m′(En
n+1,k) = m(e) = k.

Indeed, according to Proposition 4.2, the set En+1,k (G) is k-level along its n + 1-th

coordinate. In particular, if it is decomposed along coordinates (see (1.40)-(1.42)) and

then is projected onto the corresponding hyperplanes, the EMPCs (4.27) of the form

E
′ij = Enki

(G\{ei}),

ki = |S(G\{ei})|, i ∈ Jk, j ∈ Jn+1

are obtained.

Centrally symmetric En
n+1,k(G) and Πn

n+1,k(G)

Let us use the formula (5.55) along with the projection property to transform centrally

symmetric sets into centrally symmetric ones and formulate a corollary from Theorem 4.10.

Corollary 5.7. The set En
n+1,k(G) and the polytope Πn

n+1,k(G) are centrally symmetric if and

only if the condition holds:

gi + gn−i+2

2 = S1

n+ 1 , i ∈ J[ n
2 ]+1,

where S1 given by the expression (5.57).

Simple polytopes among Πn
n+1,k(G)

Taking into account the relation (5.62), we can reformulate Theorem 4.14 and formulate

the simplicity conditions for this class.

Theorem 5.10. The partial multipermutohedron Πn
n+1,k(G) is simple if and only if the primary
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specification of the inducing multiset G satisfies the condition:

ηi · ηi+1 = max{ηi, ηi+1}, i ∈ Jk−1.

5.5 The entire special partial multipermutation point con-

figuration

Let us consider Case 5.1.2 if k = 2, i.e. the generating set consists of two elements.

By analogy with the entire special multipermutation point configuration, the set En
η2(G)

is called the entire special partial multipermutation point configuration (ESPPC), and its

convex hull Πn
η2(G) is called the special partial permutohedron.

The set En
η2(G) is induced by the multiset (3.28) such that

n < η = η1 + η2 ≤ 2n (5.65)

and according to the terminology introduced in Section 3.5, its elements are called special

permutation e-configurations.

As shown below, En
η2(G) is another class of vertex-located sets in the class EPMPC.

Moreover, the sets En
n+1,k (G) and En

η2(G), i.e. Cases 5.1.1 and 5.1.2, vertex-located EPMPCs

are exhausted.

Let us present some properties of En
η2(G) and Πn

η2(G), which follow both from their

belonging to classes of the EPMPC and partial multipermutohedra (see Section 5.1) and from

the condition (3.27).

The full-dimensionality of Πn
η2(G)

dim Πn
η2(G) = n.
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5.5 The entire special partial multipermutation point configuration

The spherical locality of En
η2(G)

Proposition 5.2. The set En
η2(G) is spherically-located:

En
η2(G) ⊂ Sr(a),

and its circumscribed hypersphere Sr(a) is uniquely defined by the expressions (4.74) and

(4.75).

Proof. Let us consider a point x ∈ En
η2(G). For x, there exists Ix ⊂ J0

n : xi =


e1, if i ∈ Ix;

e2, if i /∈ Ix.

Let us square the distance from x to the point amin given by the parameter (4.75):

(
x− amin

)2
=
∑
i∈Ix

(
xi − amin

)2
+
∑
i/∈Ix

(
xi − amin

)2
=

∑
i∈Ix

(
e1 − e1 + e2

2

)2
+
∑
i/∈Ix

(
e2 − e1 + e2

2

)2
.

In the notations (4.70), this expression is rewritten as follows:

(
x− amin

)2
=

n∑
i=1

(
∆
2

)2

= ∆2n

4 = (rmin)2. (5.66)

This means the hypersphere equation is obtained with the parameters (4.74) and

(4.75). Te equation is satisfied by an arbitrary point En
η2(G). This is the only hypersphere

circumscribed about En
η2(G) and Πn

η2(G) since the latter is a full-dimensional polytope. The

equation (5.66) defines the hypersphere Smin for En
η2(G).

Vertex locality of En
η2(G)

En
η2(G) = vert Πn

η2(G). (5.67)

Indeed, according to Proposition 5.2, En
η2(G) is a surface-located set. Therefore, by

Theorem 2.1, the set is vertex-located.
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5.5 The entire special partial multipermutation point configuration

Two-levelness of En
η2(G) along coordinates

m′(En
η2(G)) = 2.

By the formulas (3.28), for En
η2(G), the same decomposition (1.42), (1.40), (4.80), as

for En2 (G) exists and decomposes the set into pairs of hyperplanes parallel to the coordinate

ones. In this case, in the projection onto the hyperplane (4.80), the ESPPC or singleton sets

are formed since the formula (5.32) holds and transforms into

E
′ij = En−1

η−1,ki
(Gi), i ∈ Jk, j ∈ Jn, (5.68)

where Gi given by the formula (4.28), ki ∈ {1, 2}, i ∈ Jk.

Decomposition of En
η2(G) into ESPCs

Lemma 5.2. En
η2(G) decomposes into the family of η − n+ 1 ESPCs:

En
η2(G) =

η2⋃
i=n−η1

Enk′
i

(
G

′i
)
,

where G
′i =

{
en−i

1 , ei
2

}
, i ∈ Jη2\Jn−η1−1,

k′
i = |S

(
G

′i
)

| =


1, if i ∈ {0, n} ,

2, i ∈ Jn−1.

(5.69)

Proof. Since the formula (5.67) holds, we can use Remark 5.2. In this case, by (3.28) and

(5.65), the formulas (5.14) and (5.15) become n′ = η − n,

G
′s =

{
en−η2+s

1 , eη2−s
2

}
, s ∈ J0

η−n,

vert Πn
η2(G) = En

η2(G) =
η−n
∪

i=0
Enk

′
i

(
G

′i
)
,

k
′

i =
∣∣∣S (G′i

)∣∣∣ ∈ {1, 2}, s ∈ J0
η−n.

(5.70)

Now, applying the substitution s = η−i in (5.70), we come to the expressions (5.69).
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5.5 The entire special partial multipermutation point configuration

η − n+ 1-levelness of En
η2(G) toward e

me(En
η2(G)) = η − n+ 1.

We utilize the decomposition (5.34) and (5.35) of the EPPPC toward e.

In this case, the formula (5.33) becomes

B = {bi}i∈J0
η−n

,

bi =
n∑

j=1
g

′i
j = e1 · (n− η2 + i) + e2 · (η2 − i), i ∈ J0

η−n.

Here, bi ̸= bj if i ̸= j, i.e. En
η2(G) decomposes exactly into η−n+1 parallel hyperplanes

toward e. Respectively, En
η2(G) is η − n+ 1-level toward e.

In this case, the decomposition (5.34) and (5.35) is

En
η2(G) =

⋃
b∈B

En,b
η2 (G), (5.71)

where

En,b
η2 (G) = {x ∈ En

η2(G) : x⊤e = b}, b ∈ B. (5.72)

connected with the decomposition (5.70) since

∀ b ∈ B ∃! i ∈ J0
η−n : En,b

η2 (G) = Enk
′
i
(G′i).

Remark 5.6. These η − n+ 1 levels of En
η2(G) can be divided into three groups:

• a lower-level El corresponding to b = bl = min
i
bi, and El = ∅ if bl = n · e1;

• an upper-level Eu corresponding to b = bu = max
i
bi, and Eu = ∅ if bu = n · e2;

• an intermediate-level Em:

(5.73)Em  =  En
η2  (G)  \  

{
El,  Eu

}  
.
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As one can see, each of the sets El, Eu, and Em can be empty. Also, given the

relationship between (5.70) and (5.71), and the relation bi < bi+1 (i ∈ J0
η−n−1), we have

El =


En2({eη1

1 , e
n−η1
2 }), if η1 < n;

∅, if η1 = n;
(5.74)

Eu =


En2({en−η1

1 , eη2
2 }), if η2 < n;

∅, if η2 = n;
(5.75)

Em =



En2(G), if η1 = η2 = n;

En−1,kl(G\{e1}), if η1 < n, η2 = n (kl = |S(G\{e1})|);

En−1,ku(G\{e2}), if η1 = n, η2 < n (ku = |S(G\{e2})|);

En−2,klu(G\{e1, e2}), if η1, η2 < n (klu = |S(G\{e1, e2})|).

Moreover, kl, ku, klu ∈ {1, 2}, i.e. Em is the ESPPC, namely, the EUSPPC or degener-

ates into a singleton. The lower- and upper-levels of the set En
η2 are singled out because they

simultaneously possess the properties of the EUSPPC E
n
2 (G) and ESPC, while intermediate-

level points inherit only the properties of En
2 (G).

The cardinality of En
η2(G)

∣∣∣En
η2(G)

∣∣∣ =
η2∑

i=n−η1

Ci
n. (5.76)

To derive this formula, in the formula (5.69), it suffices to move to the cardinality of

the set components: ∣∣∣En
η2(G)

∣∣∣ =
η2∑

i=n−η1

∣∣∣Enki

(
G

′i
)∣∣∣,

ki ∈ {1, 2} , i ∈ Jη2\Jn−η1−1.

(5.77)

Applying now the formula (4.64) to (5.77), which is also valid for the degenerate case

ki = 1, we come to the formula (5.76).
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The irredundant H-representation of Πn
η2 (G)

Let us formulate the corollary from Theorem 5.4 for the case k = 2, noticing that

the condition (5.20) of the reducibility of the H-representation (Πn
η2 (G).HR) is valid for

n ≥ 2. Special cases will be the polytopes of class Πn
η2 (G) induced by the multiset G whose

multiplicity of the minimum/maximum elements reaches its lower bound 1 or the upper bound

n. That is why, we list all possible combinations of η1, η2 and formulate this corollary with

reference to them:

• Case 5.5.1: 1 < η1, η2 < n;

• Case 5.5.2: 1 < η1, η2 < n;

• Case 5.5.3: η1 = 1, η2 = n;

• Case 5.5.4: η1 = η2 = n;

• Case 5.5.5: η1 = n, 1 < η2 < n;

• Case 5.5.6: 1 < η1 < n, η2 = n.

Corollary 5.8. Depending on the combination η1 and η2, the irredundant H-representation

(Πn
η2 (G).IHR) has the form of the below inequalities:

• in Case 5.5.1: (4.76),

n∑
i=1

xi ≥
n∑

i=1
gi = η1 · e1 + (n− η1)e2, (5.78)

n∑
i=1

xi ≤
n∑

i=1
gη−i+1 = (n− η2)e1 + η2 · e2; (5.79)

• in Case 5.5.2: (4.34) and (5.79);

• in Case 5.5.3: (4.77) and (5.78);

• in Case 5.5.4: (4.76);

• in Case 5.5.5: (4.76) and (5.79);

• in Case 5.5.6: (4.34) and (4.76).
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Vertex adjacency criterion for Πn
η2 (G)

Application of Theorem 5.1 and Remark 5.6 to the case of k = 2 allows distinguishing

three types of adjacent vertices of Πn
η2 (G) to a point x ∈ En

η2 (G):

• e1 → e2-vertices obtained from x by replacing the coordinate e1 by e2;

• e2 → e1-vertices formed from x by replacing the coordinate e2 by e1;

• e1 ↔ e2-vertices formed from x by transposition of coordinates e1 and e2.

As a consequence of this theorem, let us formulate the vertex adjacency criterion for

Πn
η2 (G).

Corollary 5.9. (from Theorem 5.1). If x ∈ El, all its e1 → e2- and e1 ↔ e2-vertices are

adjacent to x, and only they are; if x ∈ Eu, then adjacent ate its e2 → e1- and e1 ↔ e2-vertices;

if x ∈ Em, then adjacent ate its e1 → e2- and e2 → e1-vertices.

Vertex degree of Πn
η2 (G)

Proposition 5.3. The points of the sets (5.73)-(5.75) have the same degree of regularity.

Namely:

∀x ∈ El R (x) = Rl = η1 · (n− η1) + η1 = η1 · (n− η1 + 1) ;

∀x ∈ Eu R (x) = Ru = η2 · (n− η2) + η2 = η2 · (n− η2 + 1) ;

∀x ∈ Em R (x) = Rm = n.

(5.80)

This follows directly from Corollary 5.9 as a result of applying the formula (4.78) to

the points of El and Eu.

Centrally symmetric En
η2(G) and Πn

η2(G)

Proposition 5.4. En
η2(G) and Πn

η2(G) are centrally symmetric if and only if η is even and

η1 = η2 = η

2 . (5.81)
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If (5.81) is satisfied, then the center of symmetry of this set and polytope is the center

of the circumscribed hypersphere (5.66) given by the parameters (4.74) and (4.75).

Proof. Since En
η2(G) is vertex-located, the symmetry conditions for En

η2(G) and Πn
η2(G) coincide

and are given by the symmetry condition (5.40) of the multiset G about its mean. Since

the case of k = 2 is under consideration, this condition for the ESPPC is simplified to the

expression (5.81), like for the ESPC, it was the condition (4.81).

Taking into account (5.81), the formula (5.39) for the parameter a′ defining the center

a′ of the circumscribed hypersphere becomes

a′ = Smin
1 + Smax

1
2n = e1 + e2

2 ,

where

Smin
1 = η

2 · e1 + (n− η

2)e2, S
max
1 = η

2 · e2 + (n− η

2)e1.

This means it is the hypersphere with the parameters (4.74) and (4.75).

Thus, for every n > 1, there exists a family of centrally symmetric ESPPCs En
η2({ej

1, e
j
2}), j ∈

Jn\J[ n
2 ] and the corresponding polytopes. Moreover, it is shown that, for all centrally symmet-

ric ESPCs and ESPPCs generated by the numbers e1 and e2, the circumscribed hyperspheres

are identical.
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Simple polytopes among Πn
η2(G)

Proposition 5.5. In class of special partial permutohedra, there are only the following simple

polytopes:

P 1 = Πn
n+1,2({en

1 , e2});

P 2 = Πn
n+1,2({e1, e

n
2 });

P 3 = Πn
2n−2,2({en−1

1 , en−1
2 });

P 4 = Πn
2n−1,2({en−1

1 , en
2 });

P 5 = Πn
2n−1,2({en

1 , e
n−1
2 });

P 6 = Πn

2 ({en
1 , e

n
2 }).

Proof. According to Proposition 5.3 and due to the full-dimensionality of Πn
η2(G), if the

corresponding ESPPC En
η2(G) contains only the level Em, the polytope is simple. This applies

only to the special partial permutohedron with unbounded repetitions P 6.

In all other cases, at least one of the extreme levels El or Eu is present.

In order to combine the expressions for Rl and Ru into the formula (5.80), we introduce

the auxiliary function ϕ(x) = x(n + 1 − x) and solve the problem ϕ(x) → min
x∈Jn−1

. It is easy

to see that there are two solutions Xmin = {1, n− 1} and min
x∈Jn−1

ϕ(x) = ϕ(1) = ϕ(n− 1) = n.

This means that, for the polytopes remaining after the elimination of P 6, the extreme levels

are induced by the multisets of type (3.28) and (5.65), whose element multiplicities are 1 or

n− 1.

In general, simple special partial permutohedra are exhausted by inducing multisets

with element’s multiplicities such that η1, η2 ∈ {1, n− 1, n}. Listing all possible combinations

of them and, considering η1 + η2 > n, we obtain the entire collection P 1 − P 6.

Remark 5.7. It is easy to see that, in accordance with the above typology of special partial

permutohedra, in each of the Cases 5.5.1-5.5.6, there is one simple polytope, namely:

• Case 5.5.1 corresponds to P 3 whose irredundant constraint system can be represented in
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5.5 The entire special partial multipermutation point configuration

vector form as follows:

P 3 = {e1 ≤ x ≤ e2, x
⊤e ≥ (n− 1)e1 + e2, x

⊤e ≤ e1 + (n− 1)e2},

wherefrom it is seen that it is a hypercube with two opposite corners cut off at adjacent

vertices;

• Case 5.5.2 corresponds to the polytope P 1, whose irredundant system of constraints is

P 1 = {e1 ≤ x, x⊤e ≤ (n− 1)e1 + e2}

and it is an n-simplex;

• Case 5.5.3 corresponds to P 2 given by the irredundant constraints:

P 2 = {x ≤ e2, x
⊤e ≥ e1 + (n− 1)e2},

which also describes the n-simplex;

• Case 5.5.4 corresponds to P 5, and its irredundant system of constraints is

P 6 = {e1 ≤ x ≤ e2},

while this polytope is a hypercube;

• Case 5.5.5 corresponds to P 5. Its irredundant H-representation is

P 5 = {e1 ≤ x ≤ e2, x
⊤e ≤ e1 + (n− 1)e2}.

The polytope itself is a hypercube with the corner cut off;

• Finally, Case 5.5.6 corresponds to P 4, and its irredundant H-representation is

P 6 = {e1 ≤ x ≤ e2, x
⊤e ≥ (n− 1)e1 + e2}.
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It is also a hypercube with an angle truncated at adjacent vertices.

Among En
n+1,2(G), let us explore the class En

n+1,2(G) in more detail, which also belongs

to En
n+1,k(G)-sets, on the binary ESPPC (further referred to as the entire binary partial

multipermutation point configuration, EBPPC), and on the EUSPPC E
n
2 (G).

5.6 The ESPPC En
n+1,2(G)

Let us list certain properties of the ESPPC

E = En
n+1,2(G), (5.82)

following from its membership both in the classes En
η2(G) and En

n+1,k(G).

The cardinality of En
n+1,2(G)

The formula (5.63) is converted to

∣∣∣En
n+1,2 (G)

∣∣∣ = (n+ 1)!
η1! · η2!

= Cη1
n+1 = Cη2

n+1.

Vertex regularity degree of Πn
n+1,2(G)

R = η1η2.

This follows from (5.64) and says that, in this case, there are no intermediate-levels

sets, i.e. the set (5.73) is empty, Em = ∅, and the points of the upper-level Eu and lower-level

El have the same degree of regularity R = Rl = Ru.

Two-levelness of En
n+1,2(G)

m(En
n+1,2(G)) = 2.
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Since En
n+1,2(G) belongs to the class En

n+1,k(G), it will be k = 2-level by coordinates

and toward the vector e.

Based on the form of (En
n+1,2(G).IHR), the facets En

n+1,k(G) are parallel to the coordinate

hyperplanes or have a normal vector e, wherefrom it follows that the levelness of the set

En
n+1,2(G) is two, and, overall, this set is two-level.

Quadratic surfaces circumscribed about En
n+1,2(G)

The equation (5.61) defines an ellipsoid other than the circumscribed hypersphere with

the parameters (4.74) and (4.75). Thus, a quadratic surface circumscribed about En
n+1,2(G) is

not unique.

5.7 Vertex-located EPMPCs

We single out vertex-located sets in the class En
ηk (G). Recall that two such sets have

already been identified, and they belong to Cases 5.1.1 and 5.1.2. These are the classes

En
n+1,k (G) (see Section 5.4) and En

η2 (G) (see Section 5.5).

As it turns out, no other vertex-located sets among En
ηk (G) are established in the next

theorem.

Theorem 5.11. Vertex-located EPMPCs are only the following:

• Class 1: En
n+1,k (G),

• Class 2: En
η2 (G)

and only they.

Proof. We will prove the theorem by contradiction in two stages.

Suppose there exists another class, Class 3, among En
η′k′ (G′) different from Classes 1

and 2:

En
η′k′ (G′) = vert Πn

η′k′ (G′) . (5.83)
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Eliminating the conditions (3.27) and (5.44) characterizing Classes 1 and 2, we remain

with the case where

k′ > 2, η′ > n+ 1. (5.84)

Stage 1. Consider a set E belonging to both Class 1 and Class 2. This means

E = En
n+1,2 (G), i.e. satisfies (5.82). We form a set E ′ = En

η′k′ (G′) from E by adding the only

element e′ ∈ (e1, e2) to the n+ 1-element inducing multiset G of E. The parameters of the

resulting multiset G′ are η′ = n+ 2, k′ = 3,

G′ = {g′
i}i∈Jη′ = {eη1

1 , e
′, eη2

2 } =
{
eη1

1 , e
′, en−η1+1

2

}
. (5.85)

Let us show that E ′ is not vertex-located by introducing the polytope Π′ = conv E ′

and the point x′ ∈ E ′ : x′ = (g′
i)i∈Jn+1\{1}.

Let us demonstrate that

x′ /∈ vert Π′, (5.86)

based on the fact that, by (5.85),

x′ =
(
eη1−1

1 , e′, en−η1
2

)
. (5.87)

We apply the vertex criterion for the partial multipermutohedron (see Theorem 5.1).

Let us take a point x ∈ En
η′k′ (G′) and order its coordinates non-decreasingly, then utilizing

two auxiliary parameters r′, s′:

xi = gi, i ∈ J0
r′ , xr′+1 > gr′+1;

xn−i′+1 = gη−i′+1, i
′ ∈ J0

s′ , xn−s′ < gη−s′ .

(5.88)

  It  is  easy  to  see  that  r′,  s′  are  related  to  the  parameters  r,  s  from  the  formulas  (5.11)

and  (5.12)  as  follows:

r′  ≥  r,  s′  ≥  s,  s′  +  r′  ≥  s  +  r.

Since  the  coordinates  of  x′  are  ordered  non-increasingly,  one  can  apply  the  formula
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(5.88) directly to x′, G′, E ′. Hence, r′ = η1 − 1, s′ = n− η1 and therefore:

n > s′ + r′ ≥ s+ r,

i.e. the condition (5.11) that x′ is a vertex of Π′ is violated, which means that (5.86) holds.

Thus, we have shown that adding one element to a multiset inducing a vertex-located

ESPPC E of the form (5.82) leads to the formation of a non-vertex EPPPC E ′, where,

in addition to the point (5.87), all permutation e-configurations induced by the multiset{
eη1−1

1 , e′, en−η1
2

}
are not vertices of the resulting polytope Π′.

Step 2. Now, we take an arbitrary set En
ηk (G) satisfying the condition (5.84). By

analogy with (5.85), we introduce a submultiset G′ formed from three different elements of G,

its largest and smallest elements with maximum multiplicity and an arbitrary middle element

of multiplicity one:

G′ = {eη1
1 , ej, e

ηk
k } , where 1 < j < k. (5.89)

We also consider an auxiliary EPMPC induced by a multiset G′:

E ′ = En′

η′3 (G′) , η′ = η1 + ηk + 1, n′ = η′ − 2. (5.90)

As shown in Step 1, the point y′ =
(
eη1−1

1 , e′, eηk−1
k

)
satisfies relation y′ /∈ vert Πn′

η′3 (G′),

i.e. it can be represented as a convex linear combination of other points of the set (5.90):

∃ J , Y =
{
yj
}

j∈J
⊆ vert Πn′

η′3 (G′) ,

{αj}j∈J > 0,
∑
j∈J

αj = 1 :

y′ =
∑
j∈J

αjyj.

(5.91)

We complete the multiset (5.89) to an n-element submultiset G, yielding the multiset:

G′′ ⊆ G : G′ ⊂ G′′, |G′′| = n, G′′ = G′ ∪ {gji
}i∈Jn−n′

.

Let  us  form  the  point  x′  ∈  Rn  and  the  set  X  =  {xj}j∈J  ⊂  Rn  as  the  Cartesian  products
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5.8 The EBPPC Bn (m1,m2)

of y′ and yj, j ∈ J with the vector g = (gji
)i∈Jn−n′

such that

x′ = (y′, g) , xj=
(
yj, g

)
, j ∈ J. (5.92)

Due to (5.91) and the construction of (5.92), x′ is represented by the following convex

linear combination:

x′ =
∑
j∈J

αjx
j, (5.93)

with the coefficients given by the formula (5.91).

Regardless of whether the inclusion X ⊆ vert Πn
ηk (G) holds, one can see that x′ is a

convex linear combination of other points En
ηk (G), hence, x′ /∈ vert Πn

ηk (G).

Thus, we have found that, for an arbitrary En
ηk (G), the fulfillment of the condition

(5.84) means that the set is non-vertex-located. The resulting contradiction to the assumption

(5.83) proves the theorem.

5.8 The EBPPC Bn (m1,m2)

In this section, we list the properties of the EBPPC Bn (m1,m2).

By analogy with the hypersimplex (4.83), we introduce the following notation for the

convex hull of the set (3.34):

∆n,m1,m2 = conv Bn (m1,m2)

and will call it the (0 − 1)-partial permutohedron (the binary partial permutatohedron):

Let us list some properties of the EBPPCs and (0 − 1)-partial permutohedra following

from the properties of the ESPPCs and the corresponding special partial permutohedra given

in Section 5.5. Taking into account (3.34) and (5.97), we come to the substitutions similar to

(4.86):

e1 → 0, e2 → 1, η1 → n−m1, η2 → m2. (5.94)
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5.8 The EBPPC Bn (m1,m2)

The full-dimensionality of ∆n,m1,m2

dim ∆n,m1,m2 = n.

The spherical locality of Bn (m1,m2)

Bn (m1,m2) ⊂ Sr(a).

The only hypersphere circumscribed about Bn (m1,m2) has the parameters:

a = amin = 1
2 , r(a) = rmin =

√
n

2 . (5.95)

Vertex locality of Bn (m1,m2)

Bn (m1,m2) = vert ∆n,m1,m2 .

Two-levelness of Bn (m1,m2) along coordinates

m′(Bn (m1,m2)) = 2.

For the set Bn (m1,m2) as for a representative of class En
η2(G), there exists the same

decomposition (1.42), (1.40) and (4.80) into pairs of the hyperplanes xi = 0, 1, i ∈ Jn.

Moreover, for the projections of the cuts of Bn (m1,m2) by these hyperplanes, the formula

(5.68) becomes

E
′1j = Bn−1 (m1 − 1,m2) , E

′2j = Bn−1 (m1,m2 − 1) , j ∈ Jn.

As one can see, the sets formed in the projection are EBPCs if m1,m2 > 1, otherwise

they degenerate into a singleton 0 or e.
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The decomposition of Bn (m1,m2) toward e

Bn (m1,m2) decomposes into the family of the m2 −m1 + 1 EBPCs:

Bn (m1,m2) =
m2⋃

m=m1

Bn (m). (5.96)

This formula is the result of substituting

G =
{
0n−m1 , 1m2

}
, η=n−m1 +m2. (5.97)

into the decomposition (5.71) and (5.72) of the ESPPC.

It also demonstrates the decomposition of the set Bn (m1,m2) into the family of me

hyperplanes toward the vector e, where

me = m2 −m1 + 1. (5.98)

The cardinality of Bn (m1,m2)

Moving in (5.96) to cardinality, we derive that the number of elements in the set

Bn (m1,m2) is equal to the partial binomial sum:

|Bn (m1,m2)| =
m2∑

m=m1

|Bn (m)| =
m2∑

m=m1

Cm
n . (5.99)

The irredundant H-representation of ∆n,m1,m2

For this case, we formulate the following proposition based Corollary 5.8.

Proposition 5.6. The irredundant H-representation of the special partial permutohedron can

contain up to four groups of constraints:

• the lower-bound constraints (4.91);

• the upper-bound constraints (4.92);
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5.8 The EBPPC Bn (m1,m2)

• the lower-bound constraint on the sum of variables:

n∑
i=1

xi ≥ n−m1; (5.100)

• the upper-bound constraint on the sum of variables:

n∑
i=1

xi ≤ m2. (5.101)

Depending on the combination of the parameters m1,m2, we come to six different types

of (0 − 1)-partial permutohedra:

1. (∆n,0,n.IHR) has the form of (4.90);

2. (∆n,0,1.IHR) is (4.91),
n∑

i=1
xi ≤ 1;

3. (∆n,n−1,n.IHR) is (4.92),
n∑

i=1
xi ≥ n− 1;

4. (∆n,0,m2.IHR) for 1 < m2 < n is (4.90), (5.101);

5. (∆n,m1,n.IHR) for 1 < m1 < n is (4.90), (5.100);

6. (∆n,m1,m2.IHR) for 1 < m1 < m2 < n is (4.90), (5.100), (5.101).

Remark 5.8. Finally, we rewrite all possible irredundant H-representations of the polytope

∆n,m1,m2 in vector form:

∆n,0,n = {x ∈ Rn : 0 ≤ x ≤ 1};

∆n,0,1 = {x ∈ Rn : x ≥ 0, x⊤e ≤ 1};

∆n,n−1,n = {x ∈ Rn : x ≤ 1, x⊤e ≥ n− 1};

∆n,0,m2 = {x ∈ Rn : 0 ≤ x ≤ 1, x⊤e ≤ m2} if 1 < m2 < n;

∆n,m1,n = {x ∈ Rn : 0 ≤ x ≤ 1, x⊤e ≥ n−m1} if 1 < m1 < n;

∆n,m1,m2 = {x ∈ Rn : 0 ≤ x ≤ 1, n−m1 ≤ x⊤e ≤ m2}, if 1 < m1 < m2 < n.
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Bn (m1,m2)-levelness

m(Bn (m1,m2)) =


m2 −m1 + 1, if m2 −m1 < n,

2, если m1 = 0,m2 = n.

(5.102)

Indeed, (∆n,m1,m2 .IHR) says that the hypersimplex ∆n,m1,m2 has two types of facets:

a) facets parallel to coordinate hyperplanes, and, along coordinates, the set Bn (m1,m2) is

two-level; b) facets with normal vector e. Towards the vector e, the set is me-level, where the

formula (5.98) gives us me . According to the condition m1 < m2, the latter is at least two.

Accordingly, if there are facets with the normal vector e, then the value of me determines the

levelness of the set Bn (m1,m2).

Taking into account that in all cases except for ∆n,0,n, the second type of facets is

present, we derive that the formula (5.102) yields the levelness of an arbitrary set Bn (m1,m2).

The formula (5.102) implies that the number m(Bn (m1,m2)) reaches its lower bound

two in two cases only. Namely, if the value m2 − m1 is 1 or n, thus reaching its lower and

upper bounds:

m(Bn (m1,m2)) = 2 ⇔ m2 −m1 ∈ {1, n}.

Therefore, there are n 2-level sets in the family

Bn (i, i+ 1) , i ∈ Jn−1; Bn (0, n) = Bn. (5.103)

Vertex adjacency criterion for ∆n,m1,m2

Corollary 5.9 is reformulated as the following.

Proposition 5.7. in three ways: a) by a single 0 ↔ 1-transposition (further 0 ↔ 1-vertices);

b) by a single 0 → 1-substitution (further 0 → 1-vertices); c) by a single 1 → 0-substitution

(further 1 ↔ 0-vertices).

Namely:

• if x ∈ El, then adjacent to it are its 0 → 1- and 0 ↔ 1-vertices,
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5.8 The EBPPC Bn (m1,m2)

• if x ∈ Eu, then adjacent to x are its 1 → 0- and 0 ↔ 1-vertices,

• x ∈ Em, then its adjacent are 0 → 1- and 1 → 0-vertices,

and only they are.

Here,

El =


Bn (m1) , if m1 ≥ 1,

∅, otherwise,
Eu =


Bn (m2) , if m2 ≤ n− 1,

∅, otherwise,

Em = Bn (m1,m2) \{El, Eu}.

(5.104)

Vertex  regularity  degree  of  ∆n,m1,m2

  Given  (5.94),  Proposition  5.3  becomes

Proposition  5.8.  Each  of  the  sets  (5.104)  unites  the  vertices  of  ∆n,m1,m2  with  the  same  degree 

of  regularity:

∀x  ∈  El  R  (x)  =  Rl  =  (n  −  m1)  ·  (m1  +  1)  ;

∀x  ∈  Eu  R  (x)  =  Ru  =  (n  −  m2  +  1)  ·  m2;  (5.105)

  ∀x  ∈  Em  R  (x)  =  Rm  =  n.

Simple  polytopes  among  ∆n,m1,m2

The  following  corollary  follows  from  Proposition  5.5.

Corollary  5.10.  Among  the  (0  −  1)-partial  permutohedra,  there  are  six  simple  polytopes:

•  ∆n,0,n  is  the  unit  hypercube;

•  ∆n,0,1  is  the  unit  n-simplex;

•  ∆n,n−1,n  is  the  n-simplex;

•  ∆n,0,n−1  is  the  unit  hypercube  with  the  point  e  truncated  along  the  adjacent  vertices;

•  ∆n,1,n  is  the  unit  hypercube  with  the  point  0  truncated  along  adjacent  vertices;

•  ∆n,1,n−1  is  the  unit  hypercube  with  the  points  0,  e  truncated  along  adjacent  vertices.
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Polytopes ∆n,m1,m2 with regular vertices

In class ∆n,m1,m2 , we can single out the polytopes with regular vertices, i.e. those that

satisfy the condition:

∃ R : ∀ x ∈ Bn(m1,m2) R(x) = R. (5.106)

Six of them are listed in Corollary 5.10, but there is one more class of polytopes

possessing this property.

It is easy to see from the formula (5.105) that if Bn(m1,m2) contains an intermediate-

level set, then for satisfying the condition (5.106), the polytope ∆n,m1,m2 must be simple:

If done (5.105) and Em ̸= ∅ ⇒ ∆n,m1,m2 is simple.

Accordingly, all the polytopes meeting this requirement are listed in Corollary 5.10.

If there are no intermediate-level sets, this means Bn(m1,m2) includes a lower- and an

upper-level sets only. Taking into account (5.105), we get

If (5.105)holds and Em = ∅ ⇒ ∆n,m1,m2 = El ∪ Eu ⇒

⇒ m1 = m2 − 1, (n−m1) · (m1 + 1) = (n−m2 + 1) ·m2. (5.107)

Substituting the first condition from (5.107) into the second leads an identity, i.e. all

polytopes corresponding to the EBPPC without intermediate-level sets will have regular

vertices only.

This is generally a family of n− 1 polytopes:

∆n,j−1,j, j ∈ Jn\{1}. (5.108)

Based on (5.97), for them, η = j+ (n− j+ 1) = n+ 1, i.e. the family (5.108) consists of

the (0−1)-partial permutohedra combinatorically equivalent to the binary n+1-permutohedra:

∆n,j−1,j
∼= ∆n+1,j, j ∈ Jn\{1}.

199



5.9 The EUBPPC Bn

This is another way to prove that the family (5.108) forms a class of polytopes with

regular vertices because, as was shown in Section 4.5, all vertices of the polytopes are regular.

To summarize, considering that among the six polytopes listed in Corollary 5.10, two

are from the family (5.108).

Proposition 5.9. The polytopes of the family (5.108) along with ∆n,0,n, ∆n,0,n−1, ∆n,1,n,

∆n,1,n−1 and only polytopes with the same degree of regularity of vertices.

Centrally symmetric Bn,m1,m2 and ∆n,m1,m2

We formulate this symmetry conditions as a consequence of Proposition 5.4.

Corollary 5.11. The set Bn,m1,m2 and polytope ∆n,m1,m2 are centrally symmetric if and only

if m1,m2 satisfy the condition:

m1 +m2 = n. (5.109)

If (5.109) holds, the point a = 1
2 is the center of their symmetry.

The formula (5.109) is the result of substituting (5.97) into (5.81).

Remark 5.9. Taking into account that, by assumption, m1 < m2, one can say that, for a

fixed n, there are [n+1
2 ] symmetric EBPPCs:

Bn,j,n−j,∆n,j,n−j, j ∈ J0
[ n−1

2 ].

5.9 The EUBPPC Bn

In Sections 5.5 and 5.8, properties of both vertex-located EPMPCs En
n+1,k(G) and

En
η2(G) were outlined.

According to (3.28) and (5.65), in the subclass of the ESPPCs, two extreme cases can

be distinguished in η:

• the minimum possible η, η = n+ 1, corresponds to the set En
n+1,2(G) belonging simulta-

neously to Cases 5.1.1 and 5.1.2 (see Section 5.6);
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• the maximum possible η, η = 2n, corresponds to the EUSPPC E
n
2 (G) induced by

two-element generating sets. Its peculiarity is that it simultaneously belongs to the

classes En
η2(G) and En

k(G). This determines the specifics of this set and its convex hull

called the special partial multipermutohedron with unbounded repetitions Πn

2 (G).

Consider the properties of En
2 (G), Πn

2 (G), starting with (0 − 1)-case, and then we

generalize to the entire class.

The main properties of Bn, PBn−convBn were listed in Section 5.8 within consideration

of the class EBPPC because Bn is its special case of the set Bn(m1,m2), corresponding to a

pair of parameters:

m1 = 0, m2 = n. (5.110)

Thus,

Bn = Bn,0,1, PBn = ∆n,0,n, (5.111)

whence, in particular, it follows that PBn is the unit n-cube.

Let us list some properties of the Bn set and the PBn polytope based on the properties

given in Sections 5.3 and 5.8. In this case, we will perform substitutions (5.110) and

k = 2, e1 = 0, e2 = 1.

As will be shown, the known properties of the unit hypercube PBn directly following

from the properties of ∆n,m1,m2 and Πn

k(G).

The cardinality of Bn

|Bn| = 2n. (5.112)

This formula can be obtained in two ways. On the one hand, in this case, taking into

account that A = {0, 1} is the generating set, the formula (5.48) becomes Bn = {0, 1}n, while

the formula (5.49) becomes (5.112).

On the other hand, the formula (5.99) is converted to |Bn| =
n∑

m=0
Cm

n = 2n and gives
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the same result.

The spherical locality of Bn

Like all sets of class Bn (m1,m2), the set of binary vectors is spherically-located.

Moreover, the hypersphere circumscribed about it is uniquely defined and has parameters

(5.95).

Vertex locality of Bn

Bn = vert PBn

like any set of class Bn (m1,m2).

Polyhedral-sphericity of Bn

Bn = PBn ∩ S√
n

2

(1
2

)
;

The full-dimensionality of PBn

dimPBn = n.

Indeed, the full-dimensionality is the commonality of polytopes of class Πn
ηk(G).

Vertex adjacency criterion for PBn

All vertices adjacent to an arbitrary point x ∈ Bn are formed from it by a 0 → 1- or

1 → 0-replacement of one of its coordinates.

This property follows directly from the vertex adjacency criterion Πn

k(G). It can also

be formulated in terms of the Hamming distance, whereby the formula (5.53) becomes

∀x, y ∈ Bn : x ↔ y ⇔ Hd(x, y) = 1.
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The simplicity of PBn

The simplicity of the polytope follows from (5.111) and Corollary 5.10. Also, it means

that both the degree of the vertices of the polytope PBn and its dimension are equal to n.

The irredundant H-representation of PBn (∆n,0,n.IHR)

The fact that the polytope PBn is given by the irredundant system of 2n inequalities

(4.90) follows, on the one hand, from the irredundant H-representation Πn

k(G). Indeed, in this

case, the formula (5.50) is converted to

PBn = [0, 1]n,

and (5.51) becomes (4.90).

On the other hand, according to Proposition 5.6, for the case of (5.111), the irredundant

representation of the polytope is given by the inequalities (4.90), denoted above by (∆n,0,n.IHR).

Now, it can now also be denoted (PBn.IHR).

Symmetry of Bn and PBn

For (m1,m2) = (0, 1), for the EBPPC and (0 − 1)-partial multipermutohedron, the

symmetry condition (5.109) about the point 1
2 holds. This means the set Bn and polytope PBn

are symmetric about this point. In addition, they will be symmetric about any hyperplane

passing through the center of symmetry. In particular, Bn and PBn have n symmetry

hyperplanes parallel to the coordinate hyperplanes:

Πi =
{
x ∈ Rn : xj = 1

2

}
. (5.113)

Decomposition of Bn into EBPCs

Bn =
n⋃

m=0
Bn (m).

This formula follows from (5.96) and defines a decomposition of Bn into a family of n+1
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EBPCs, the first and last of which are singletons. The same formula yields the decomposition

of Bn toward e and says that it is n+ 1-level toward this vector.

Remark 5.10. The symmetry of Bn about the point 1
2 and hyperplanes (5.113) allows

asserting that, in addition to xT e = m, m ∈ J0
n, there are many other decompositions of Bn

into n+ 1 parallel hyperplanes. These will be decompositions toward normal vectors whose

vector of absolute values of its coordinates is proportional to e.

Two-levelness of Bn

m(Bn) = 2.

This follows from the formula (5.103).

5.10 Combinatorically equivalent partial multipermutohe-

dra

As seen from the H-representation (Πn
ηk (G).IHR), the polytope Πn

ηk(G) is completely

determined by n first and n last elements of the multiset (1.2), and its combinatorial structure

is fully determined by the multiplicities of these elements.

Let us introduce into consideration the corresponding n-element submultisets of G, as

well as their underlying sets and primary specifications:

Gmin = {gi}i∈Jn
, Gmax = {gη−n+i}i∈Jn

;

kmin = |S(Gmin)|,
[
Gmin

]
=
(
ηmin

i

)
i∈Jkmin

;

kmax = |S(Gmax)|, [Gmax] = (ηmax
i )i∈Jkmax ,

where
Gmin = {(emin

i )ηmin
i }i∈Jkmin ,

Gmax = {(emax
i )ηmax

i }i∈Jkmax .

The  multisets  Gmin  and  Gmax  are  called  the  initial  and  final  submultisets  of  G.
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5.10 Combinatorically equivalent partial multipermutohedra

It is easy to see that any two partial permutohedra whose vertices are n-dimensional

e-configurations induced by multisets with the same initial and final submultisets are combina-

torically equivalent.

Let us formulate this observation as a statement.

Proposition 5.10. (Sufficient condition 1 for combinatorial equivalence of partial multiper-

mutohedra). If for G and G′,

Gmin = G
′ min, Gmax = G

′ max, (5.114)

then ∀n ≤ min {η, η′}

Πn
η′k′(G′) ∼= Πn

ηk(G) (5.115)

Here, η′ = |G′| , k′ = |S (G′)|, G′ min = {g′
i}i∈Jn

, G
′ max =

{
g′

η′−n+i

}
i∈Jn

.

Let us formulate other conditions under which the relation (5.115) is satisfied, and a

pair of partial multipermutohedra are combinatorically equivalent. They are based on the

analysis of the primary specifications of G and G′ along with their initial and final submultisets.

We consider an arbitrary multiset G of the form (1.7) and form G′ from it by eliminating

a certain number of its intermediate elements:

G′ = G\Gn+1,η−n, where Gn+1,η−n = {gn+1, ..., gη−n} . (5.116)

In this case, two situations occur depending on G’s cardinality:

•  Case  5.10.1.  η  <  2n,  then

Gn+1,η−n  =  ∅,  G′  =  G,  G′  ⊂  Gmin  ∪  Gmax,  η′  =  η,  k′  =  k;

•  Case  5.10.2.  If

η  ≥  2n,  (5.117)

else

G′  =  G,  G′  =  Gmin  ∪  Gmax,  η′  =  2n,  k′  ≤  k.

205



5.10 Combinatorically equivalent partial multipermutohedra

Overall, for G′, it is true:

η′ = min {η, 2n} , k′ ≤ k. (5.118)

Consider the n-dimensional EPPPC induced by a multiset (5.116) and the corresponding

polytope Πn
η′k′(G′). It follows from the construction of G′ that the condition (5.114) is satisfied,

and by Proposition 5.10, this polytope is combinatorically equivalent to the original Πn
ηk(G).

Moreover, Πn
η′k′(G′) is induced by an η′-element multiset satisfying the condition (5.118). Thus,

when studying the combinatorial structure of the partial multipermutohedra, we can restrict

ourselves to considering multisets such that

n+ 1 ≤ η ≤ 2n. (5.119)

To exclude from consideration those multisets whose primary specifications have the

inverse order to that given in G, we also assume that G satisfies the below condition similar

to (4.104):

∃ i ∈ J0
k+1 : ηj = ηk−j+1, j ∈ Ji−1; ηi > ηk−i+1, (5.120)

where η0 = 0, ηk+1 = n+ 1.

Similarly, for G′ we assume that

∃ i′ ∈ J0
k′+1 : η′

j = η′
k′−j+1, j ∈ Ji′−1; ηi′ > ηk′−i′+1, (5.121)

where [G′] = (η′
i)i∈Jk′ and η′

0 = 0, η′
k′+1 = n+ 1.

  As  indicated  in  Section  4.8,  if  (4.104)  holds,  then  two  multipermutohedra  Πnk(G)

and  Πn′k′  (G)  are  combinatorically  equivalent  if  the  primary  specifications  of  their  inducing

multisets  coincide.  For  these  partial  multipermutohedra,  this  condition  is  sufficient  only.

Proposition  5.11.  (Sufficient  condition  2  for  combinatorial  equivalence  of  polytopes  of  class 

Πn
ηk(G)).

If  the  multisets  G  and  G′  have  identical  primary  specifications,  then  the  corresponding
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5.10 Combinatorically equivalent partial multipermutohedra

n-partial multipermutohedra are combinatorically equivalent, i.e. if

G,G′ : [G] = [G′] , (5.122)

than η = η′, n = n′ и Πn
η′k′(G′) = Πn

ηk(G′) ∼= Πn
ηk(G).

On the other hand, it is clear that under the conditions (5.120) and (5.121), multisets

with distinct primary specifications of initial and final submultisets induce polytopes that are

not combinatorically equivalent: if G and G′ such that ([Gmin] , [Gmax]) ̸= (
[
G′min

]
, [G′max]),

then Πn
η′k′(G′) and Πn

ηk(G) are not combinatorically equivalent.

Let us formulate one more condition of combinatorial equivalence.

Proposition 5.12. (A necessary condition for the combinatorial equivalence of polytopes of

class Πn
ηk(G)).

If partial multipermutohedra are combinatorically equivalent, then the primary specifica-

tions of their initial and final submultisets are identical:

[Gmin] = [G′min], [Gmax] = [G′max]. (5.123)

Remark 5.11. It will be shown in Section 5.11 that, on the one hand, there exist non-

combinatorically equivalent polytopes in class Πn
ηk(G) for which the condition (5.123) holds.

On the other hand, combinatorically equivalent polytopes of these classes exist that do not

satisfy the condition (5.123).

Here, we review only the option if the conditions (5.122) and (5.123) are equivalent and,

therefore, they yield a criterion for combinatorial equivalence of two partial permutohedra.

Namely, it concerns Case 5.10.2, where the inequality (5.117), given (5.119), is converted to

equality:

η = 2n. (5.124)

It is easy to see that if (5.124) holds and

(5.125)gn  <  gn+1,
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5.11 Illustration of En
ηk(G) and Πn

ηk(G) (n = 2, 3)

the conditions (5.122) and (5.123) are equivalent. This is because Gmin ∩Gmax = ∅. Respec-

tively, the primary specifications [Gmin] and [Gmax] are independent.

Remark 5.12. The second possible situation under fulfillment of the condition (5.124) is

∃ ei ∈ Jk : gn = gn+1 = ei, (5.126)

when the removal of one of these elements from the inducing multiset does impact the

combinatorial structure of the polytope, according to Proposition 5.10:

Πn
ηk(G) ∼= Πn

η′−1,k′(G\ {ei}).

Removal of multiple elements equal to ei can be continued until the initial and final

submultisets remain unchanged. Respectively, the combinatorial structure of the polytope

does not change.

5.11 Illustration of En
ηk(G) and Πn

ηk(G) (n = 2, 3)

Example 5.1. The following can occur for n = 2 under the condition (5.119):

• two options corresponding to η = n+ 1 = 3. They are represented by the formula (4.105)

and already discussed in Section 5.7);

• three options corresponding to η = 4:

[G3] =
(
22
)
, [G4] =

(
2, 12

)
, [G5] = (1, 2, 1) .

In the first two cases, two polytopes, the partial permutohedron Π2
3 (G1) and the

partial multipermutohedron Π2
32 (G2) = ∆2,0,1 are shown in Figures 4.1 and 4.2. In the third

case, we deal with the set E2
2 (G3) and polytope Π2

2 (G3) shown in Figure 5.1. In the last

two cases, k = 3 ≥ 2 and η = 4 = n + 1, i.e. none of the vertex locality conditions is

satisfied, and we deal with the non-vertex-located sets E2
43 (G4) and E2

43 (G5). The partial
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5.11 Illustration of En
ηk(G) and Πn

ηk(G) (n = 2, 3)

multipermutohedron Π2
43 (G4) and corresponding set E2

43 (G4) are shown in Figure 5.2. Finally,

in the last case, we choose, for example, G5 = {1, 22, 3}. This multiset can be reduced

because the condition (5.126) is satisfied, g2 = g3 = e2 = 2. Applying Remark 5.12, we get

Π2
43 (G5) ∼= Π2

3 (G5\ {2}) = Π2
3 (J3) = Π2

3 (G1), i.e. again we ended with the polytope shown in

Figure 4.1.

Figure 5.1: Π2
2 (G3) = PB2 Figure 5.2: Π3

42 (G4)

Example 5.2. The case of n = 3 corresponds to the three-dimensional partial multipermuto-

hedra. All such sets E3
ηk (G) can be divided into two groups:

1. Vertex-located three-dimensional EPMPCs (further referred to as Class 5.11.1);

2. Non-vertex three-dimensional EPMPCs (further referred to as Class 5.11.2).

In turn, in the first group it can be singled out:

(a) vertex-located EPMPCs not belonging to ESPPCs (see Section 5.7) (further referred

to as Class 5.11.1.a) (k > 2, η = n+ 1 = 4);

(b) the three-dimensional ESPPCs (further referred to as Class 5.11.1.b) (k = 2).

Consider first Class 5.11.1.a. In addition to the EPMPC made from 3-dimensional

e-configurations induced by the multisets G1 −G5 of the form (4.106), the following situation

can occur:

[G6] = (3, 2) , [G7] =
(
32
)
. (5.127)
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5.11 Illustration of En
ηk(G) and Πn

ηk(G) (n = 2, 3)

By analogy with Example 4.3, we introduce the notation: ∀ i ∈ J7,

Ei = E3
ηiki

(Gi) , ηi = |Gi| , ki = |S (Gi)| , P i = conv Ei. (5.128)

It is seen,

• ηi = 4, i ∈ J5; η6 = 5, η7 = 6;

• k1 = 4, k2 = k3 = 3; ki = 2, i = 4, 7.

Thus, Class 5.11.1.a includes

E1 = E3
4 (G1) , E2 = E3

43 (G2) , E3 = E3
43 (G3) ,

shown in Figures 4.3-4.5 along with the polytopes P 1 − P 3.

The remaining sets (5.128) belong to Class 5.11.1.b. Two of them are

E4 = E3
42 (G5) = B3 (1, 2) , E5 = E3

42 (G6) = B3 (0, 1) .

Along with the corresponding (0 − 1)-partial permutohedra ∆3,1,2 and ∆3,0,1, they are

shown in the Figures 4.6 and 4.7.

The following two figures, Figures 5.3 and 5.4), depict the EBPPCs induced by the

below multisets given in the form of (5.127):

E6 = E3
52 (G6) = B3 (0, 2) , E7 = E

3
2 (G7) = B3,

and their corresponding polytopes.

In particular, Figure 5.3 depicts that P 6 = ∆3,0,2 has vertices of the degrees 3 and

4, i.e. this polytope has irregular vertices. The last set of this class is E7, the set B3 of

three-dimensional (0 − 1)-vectors, which corresponds to the polytope that is the hypercube

PB3 shown in Figure 5.4.

Let us move on to Class 5.11.2. By (5.119), now, the search is limited to considering
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5.11 Illustration of En
ηk(G) and Πn

ηk(G) (n = 2, 3)

Figure 5.3: E6 and P 6 Figure 5.4: E7 and P 7

Gi:

n+ 2 = 5 ≤ |Gi| ≤ 2n = 6, 3 ≤ |S(Gi)| ≤ 6. (5.129)

In Table 5.1, twelve possible primary specifications of multisets are listed that satisfy

the conditions (5.120) and (5.129), with the numbering continued from i = 8. The main

parameters of the multisets Gi are ηi, ki and the value Ri of the regularity degree of P i-vertices

(or all possible degrees of the vertices) and the figure number with the image of Ei and P i,

i = 8, 19.

i [Gi] Gi ηi ki Ri Figure
8. (15) G8 = J5 5 5 3 5.5
9. (2, 13) G9 = {02, 1, 2, 3} 5 4 3 5.6
10. (2, 1, 2) G10 = {02, 1, 22} 5 3 3 5.7
11. (3, 12) G11 = {03, 1, 2} 5 3 3 5.8
12. (1, 2, 12) G12 = {0, 12, 2, 3} 5 4 3,4 5.9
13. (22, 1) G13 = {02, 12, 2} 5 3 3,4 5.10
14. (1, 3, 1) G14 = {0, 13, 2} 5 3 4 5.11
15. (1, 22, 1) G15= {0, 12, 22, 3} 6 4 3,4 5.12
16. (3, 2, 1) G16= {03, 12, 2} 6 3 3,4 5.13
17. (2, 1, 2, 1) G17= {02, 1, 22, 3} 6 4 3,4 5.14
18. (23) G18= {02, 12, 22} 6 3 3 5.15
19. (3, 1, 2) G19= {03, 1, 22} 6 3 3 5.16

Table 5.1: Class 5.11.2: parameters of the sets Ei and polytopes P i, i = 8, 19

Below are images of the polytopes and sets of this class.

Let us analyze and compare the results with the ones obtained above. It is easy to

see that some of the polytopes of Class 5.11.2 are combinatorically equivalent to those of
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5.11 Illustration of En
ηk(G) and Πn

ηk(G) (n = 2, 3)

Figure 5.5: E8 and P 8 Figure 5.6: E9 and P 9 Figure 5.7: E10 and P 10

Figure  5.8:  E11  and  P  11  Figure  5.9:  E12  and  P  12  Figure  5.10:  E13  and  P  13

Class  5.11.1.  Namely,

1. The  polytopes  of  both  classes  are  combinatorically  equivalent  polytopes  P  1  ∼=  P  8.

Moreover,  sufficient  conditions  1  and  2  do  not  detect  this.

2. P  3  ∼=  P  14.  Since  G3=  {0,  12,  2},  G14=  {0,  13,  2},  here,  the  sufficient  condition  1  of 

combinatorial  equivalence  is  satisfied,  and  applying  Remark  5.12,  we  obtain

P  14  =  Π3
53(G14)  ∼=  Π3

43(G14\  {1})  =  Π3
43(G3)  =  P  3;

3. P  10  ∼=  P  18.  Here,  the  combinatorial  equivalence  is  established  similarly  to  the  previous 

case,  taking  into  account  that

P  18  =  Π3
63(G18)  ∼=  Π3

53(G18\  {1})  =  Π3
53(G10)  =  P  10.

4. P  13  ∼=  P  17.  For  the  inducing  multisets  G13=  {02,  12,  2},  G17  =  {02,  1,  22,  3}  [Gmin]  =
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5.11 Illustration of En
ηk(G) and Πn

ηk(G) (n = 2, 3)

Figure 5.11: E14 and P 14 Figure 5.12: E15 and P 15 Figure 5.13: E16 and P 16

Figure 5.14: E17 and P 17 Figure 5.15: E18 and P 18 Figure 5.16: E19 and P 19

[Gmax] = (2, 1), i.e. the necessary condition of combinatorial equivalence holds, while

both the sufficient conditions are violated.

Finally, we check the condition (5.123) for the multisets:

G = G3, G
′ = G15.

Given that G3= {0, 12, 2}, G15= {0, 12, 22, 3}, we have

[
Gmin

]
=
[
G′min] = (1, 2) , [Gmax] =

[
G′max] = (2, 1) ,

therefore, the necessary condition (5.123) is satisfied, while P 3 and P 15 are not combinatorically

equivalent. Note that the multiset G15 satisfies the conditions (5.124) and (5.125). Respectively,

its reduction changes the combinatorial structure of the polytope, according to Remark 5.12.

This can be seen in the example of P 3 and P 15.
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ηk(G) and Πn

ηk(G) (n = 2, 3)

Thus, seven different types of polytopes were found in class Π2
ηk(G). For dimension

three, taking into account the combinatorically equivalent polytopes among those listed, it is

established that there are fifteen non-combinatorically equivalent types of Π3
ηk(G).
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Conclusion

The main result of the presented monographic research is the study of combinatorial

point configurations formed from mapping a set of combinatorial configurations into Euclidean

space. The identification of combinatorial point configurations into a special class became

possible thanks to an integrated approach. On the one hand, the approach is based on the

peculiarities of finite point configurations in Euclidean space. On the other hand, it utilizes

properties of combinatorial configurations. Therefore, the monograph pays special attention

to deriving and systematizing these properties.

The concept of combinatorial point configuration is introduced as mapping a finite

abstract set of a certain structure into Euclidean space. Algebro-topological and topological-

metric properties of combinatorial point configurations and corresponding combinatorial

polytopes are derived. A bijective mapping of finite point configurations with specific sets of

combinatorial configuration sets is established. The class of so-called Euclidean combinatorial

sets is further studied using specifics of their immersion into Euclidean space.

A general approach is proposed to decompose finite point configurations into hyperplanes

and partition them into pairwise disjoint subsets. A typology of surface-located sets is proposed

based on the properties of strictly convex surfaces, including classes of ellipsoidally, spherically

and super spherically located sets. Classes of vertex-located and polyhedral-surface sets

are singled out, and their properties are explored. Approaches to decomposing finite point

configurations into vertex-located subsets are offered. Polyhedral combinatorics have been

further developed in the study of convex hulls of finite-point configurations. Analytical forms

for describing the corresponding combinatorial polytopes, including multi-level ones, are
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found. Approaches to the functional-analytic representation of various classes of finite point

configurations are proposed and theoretically substantiated.

The main attention in the monographs is paid to the study of permutation point

configurations, multipermutation point configurations, partial permutation point configu-

rations, and partial multipermutation point configurations. The configuration found mul-

tiple applications as a search domain in operations research, optimization and polyhedral

combinatorics. First of all, we refer to problems of combinatorial and discrete optimiza-

tion [25,32, 37, 38, 70,72, 73, 110]. If a search domain of such problems is a combinatorial point

configuration, we deal with the so-called Euclidean combinatorial optimization problem is

identified. The fundamental principles of Euclidean combinatorial optimization are discussed

in detail in [18,39,40,48,49,79,83–85,90,92–96,98,104].

Indeed, the feasible domain of discrete optimization problems is a set of isolated

points in Euclidean space, that is, a finite point configuration. This means every finite point

configuration is combinatorial since the coordinates of each its point form an ordered sequence

of real numbers taken from a finite set. Therefore, when formalizing the feasible domain,

one can use the functional-analytic representations of finite point configurations offered in

Chapters 1 and 2.

Most techniques for solving discrete optimization problems utilize decompositions of

discrete sets into subsets, particularly partitions. Among these methods are branches and

bounds, sequential analysis of variants, cutting-plane methods, etc. General approaches

to decomposing finite point configurations proposed in this monograph can be used when

implementing these methods. The contributions concerning discrete sets’ decompositions

enable the extension of the class of combinatorial optimization problems solvable through the

decomposition of search domains.

Let Π be a finite set whose elements are combinatorial configurations and on which the

functional

ξ : Π → R1

is given.
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The objective is to find

π∗ = arg min
π∈P ⊆Π

ξ(π),

where P ⊆ Π is the feasible domain.

We establish the bijection mapping φ : Π → E between the combinatorial configurations

π constituting the set Π and a point x = (x1, x2, ..., xn) of a certain set E ⊂ Rn by setting

x = φ(π), π = φ−1(x).

Let the function f : E → R1 be such that f(x) = ξ(φ−1(x)) for all x ∈ E. Then the

original problem can be equivalently formulated as finding

x∗ = arg min
x∈X⊆E

f(x),

where X = φ(P ) is an image of P in Rn.

Note that when formalizing the mapping φ : Π → E ⊂ Rn, one can use the basic

schemes for the formation of various classes of combinatorial point configurations described in

Chapters 3-5.

Let E (A) ⊂ Rn be a set of points of the form x = (x1, x2, ..., xn), where xi ∈ A, i ∈ Jn.

Then each point x ∈ E is a combinatorial configuration under the mapping φ : Π → E ⊂ Rn.

The condition X = ϕ(P ) specifies the corresponding class of combinatorial point configurations.

The above reasoning allows considering the optimization problem over the set Π of

combinatorial configurations under the mapping φ : Π → E ⊂ Rn as a discrete optimization

problem on the combinatorial point configuration, i.e. on a finite set of vectors in Euclidean

space.

A specific form of constraints on mappings φ for some classes of combinatorial point

configurations is proposed in Chapters 4 and 5 of the monograph. To describe the set X ⊂ E,

general approaches to the functional-analytic representation of combinatorial point config-

urations proposed in Chapters 1, 2 are applicable. Moreover, from the point of view of
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such a description, of particular interest are vertex-located and polyhedral-spherical com-

binatorial point configurations [39–42, 45, 48, 49, 51, 52, 86]. Such sets laid the foundations

for the theory of convex extensions of functions defined on the vertices of convex poly-

topes [83, 84, 90, 91]. The current state of the theory of convex extensions and continuous

functional representations of combinatorial point configurations are presented in the pa-

pers [18, 39–42, 44, 48, 50, 98, 98, 105, 105]. The properties of such sets underlie methods of

polyhedral-spherical optimization, the main ideas of which are described in [86,90]. and further

developed in [30,43,46,47,53–62,77,78,87,89,98–104].

For vertex-located combinatorial point configurations, the theory of convex extensions

of functions is developed [83,84,90,91], and the current state is covered in the publications

[18,40,48,49,98,105]. General approaches to continuous functional representation of various

classes of combinatorial point configurations are presented in [39–41,48–50].

In summary, the monograph offers an in-depth exploration of trends and processes

that are effectively modeled through diverse combinatorial point configurations. The unique

properties inherent in these configurations present valuable opportunities for innovating new

optimization methods across a broad spectrum of application domains.
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