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Abstract

In a recent paper del Valle-Inclan and Schlöder argue that bilateral calculi call for

their own notion of proof-theoretic harmony, distinct from the usual (or ‘unilat-

eral’) ones. They then put forward a specifically bilateral criterion of harmony,

and present a harmonious bilateral calculus for classical logic.

In this paper, I show how del Valle-Inclan and Schlöder’s criterion of harmony

suggests a notion of normal form for bilateral systems, and prove normalisation

for two (harmonious) bilateral calculi for classical logic, HB1 and HB2. The

resulting normal derivations have the usual desirable features, like the separation

and subformula properties. HB1-normal form turns out to be strictly stronger

that the notion of normal form proposed by Nils Kürbis, and HB2-normal form

is neither stronger nor weaker than a similar proposal by Marcello D’Agostino,

Dov Gabbay, and Sanjay Modgyl.
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1. Introduction

According to inferentialists the meaning of logical vocabulary is given by
the rules governing its use in inferences. There is nothing more to the
meaning of, for example, disjunction, than the rules governing when to
infer, and what to infer from, certain sentences containing ‘or’. It follows
that one can define a connective by laying down rules that govern it, like
the introduction and elimination rules of natural deduction systems.

Inferentialism faces an objection first posed by Arthur Prior [8]. Con-
sider the binary operator ‘tonk’ defined by the following rules:

A
(tonk I)

A tonk B
A tonk B

(tonk E)
B

By chaining an application of (tonk I) with an application of (tonk
E) one can deduce two arbitrary sentences from each other. According
to Prior, inferentialists have to conclude that any sentence follows from
any other. Inferentialists, on their part, typically reject the assumption
that any set of rules adequately defines a connective. They hold that
there is something wrong with the rules for ‘tonk’, something that makes
it an illegitimate piece of vocabulary. This has given rise to the search for
a criterion to determine which rules are acceptable definitions, a project
which has come to be known, following Dummett [3], as the search for a
criterion of proof-theoretic harmony.

The most common approach to harmony appeals to an intuitive notion
of ‘balance’. A set of introduction and elimination rules is balanced if the
elimination rules are neither too strong nor too weak with respect to the
introductions (and vice versa). The elimination rule for tonk, for instance,
is held to be too strong with respect to its introduction rule. The idea
is that (tonk E) allows one to derive ‘too much’ from ‘A tonk B’, given
what (tonk I) requires in order to derive such a sentence. Over the years a
host of non-equivalent explications of this intuitive notion of balance have
been put forward (see Steinberger [10] for a brief overview). By and large
they all have something in common: the usual formalisations of classical
logic come out disharmonious. Thus, or so it is argued, inferentialism is
incompatible with classical logic.

Ian Rumfitt [9] has argued that bilateralism can solve this incompati-
bility. According to Rumfitt’s bilateralism the speech acts of assertion and
rejection should be taken as primitive, rather than analysed in terms of
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each other. Furthermore, he argues, the meaning of classical connectives
must be given bilaterally, by means of rules governing the assertion and the
rejection of sentences containing them. By stipulating assertive and rejec-
tive rules for each connective, he is able to provide a calculus for classical
logic that satisfies the usual requirements of harmony.

Rumfitt’s position has been recently challenged by del Valle-Inclan and
Schlöder [2]. They argue that bilateral calculi require their own notion of
harmony, distinct from the standard (or ‘unilateral’) ones. Thus, although
Rumfitt’s system is harmonious according to criteria fit for unilateral sys-
tems, this is not enough to vindicate classical logic from an inferentialist
point of view. They propose a bilateral criterion of harmony and show,
using a result by Fernando Ferreira [4], that Rumfitt’s system is not har-
monious according to it. To solve the problem, they put forward a new
Rumfitt-style formalisation of classical logic.

The aim of this paper is to explore the relation between del Valle-Inclan
and Schlöder’s criterion of harmony, on the one hand, and normalisation on
the other. I will first show how their harmony criterion suggests a natural
notion of normal form for bilateral calculi. Then, I will show that their
calculus, as well as a closely related one, normalise. Derivations in nor-
mal form have the usual desirable features; the subformula and separation
properties, in particular, can be obtained as corollaries of normalisation.
Finally, I will briefly compare the present notion of normal form with pro-
posals by Nils Kürbis [6] and Marcello D’Agostino, Dov Gabbay, and Sanjay
Modgyl [1].

The paper is structured as follows: Section 2 recaps Rumfitt’s position
and del Valle-Inclan and Schlöder’s criticism. Sections 3 and 4 prove nor-
malisation and corollaries for two (harmonious) bilateral calculi for classical
logic. Section 5 compares the present normalisation results with previous
ones, and Section 6 concludes.

2. Rumfitt, bilateralism and harmony

There are two core tenets to Rumfitt’s bilateralism. The first is that asser-
tion and rejection are distinct, primitive speech acts that serve to express
different attitudes towards propositional content (assent and dissent, re-
spectively). The second is that both assertion and rejection play a role in
our inferential practice. From an inferentialist point of view, it follows that
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to specify the meaning of a connective one must give rules that govern both
the assertion and rejection of sentences containing it. Rumfitt does this by
means of a natural deduction calculus for signed formulae, that is, standard
formulae preceded by force indicators ‘+’ and ‘−’. If A is a propositional
formula, +A is to be interpreted as the assertion of A, and −A as its rejec-
tion; force indicators cannot be iterated or embedded. Rumfitt proposes
the following operational rules for the classical connectives:2

Conjunction:

+A1 +A2
(+∧I)

+A1 ∧A2

+A1 ∧A2
(+∧E)

+Ai

−Ai
(−∧I)

−A1 ∧A2

−A1 ∧A2

[−A1]
1

D1

φ

[−A2]
1

D2

φ
(−∧E)1φ

Disjunction:

+Ai
(+∨I)

+A1 ∨A2

+A1 ∨A2

[+A1]
1

D1

φ

[+A2]
1

D2

φ
(+∨E)1φ

−A1 −A2
(−∨I)

−A1 ∨A2

−A1 ∨A2
(−∨E)

−Ai

Implication:

[+A1]
1

D
+A2

(+ → I)1
+A1 → A2

+A1 → A2 +A1
(+ →E)

A2

2A note about notation: roman letters range over unsigned formulae, greek letters
over signed formulae, brackets indicate discharged assumptions, and both vacuous and
multiple discharges are allowed. When there are two formulae separated by ‘/’ below the
horizontal line, as in rule (− → E), an application of the rule in question can conclude
either formulae, not both simultaneously (all rules are single-conclusion).
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+A1 −A2
(− →I)

−A1 → A2

−A1 → A2
(− →E)

+A1/−A2

Negation:

−A
(+¬I)

+¬A

+¬A
(+¬E)

−A

+A
(−¬I)

−¬A

−¬A
(−¬E)

+A

In addition to operational rules Rumfitt’s calculus contains coordination
principles. These are rules that govern the interaction between ‘+’ and ‘−’,
rather than specific connectives. They are meant to capture our conven-
tions regarding the assertion and rejection of the same content. Rumfitt’s
coordination principles are (Rejection) and Smilean reductio:

+A −A
(Rejection)

⊥

[+A]1

D
⊥

(SR1)1−A

[−A]1

D
⊥

(SR2)1
+A

The principle of (Rejection) states that the assertion and rejection of
the same content are incompatible.3 The two halves of Smilean reductio
state (respectively) that if the assertion of a formula leads to absurdity
one may reject it, and if the rejection of a formula leads to absurdity,
then one may assert it. On top of this, Smilean reductio also encodes a
form of explosion, through the vacuous discharge of assumptions. A more
perspicuous representation of Rumfitt’s commitments about the interplay
between assertion and rejection can be given by the following coordination
principles of Explosion and Bilateral Excluded Middle:

+A −A
(ex)φ

[+A]1

D1

φ

[−A]1

D2

φ
(bem)1φ

3Note that Rumfitt, following Tennant [11], takes ‘⊥’ as a punctuation sign indicat-
ing a logical dead end. It is not a sentence, and therefore cannot be signed, embedded
in formulae, or appear as a topmost node in derivations.
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It is routine to check that:

Remark 2.1. (Rejection), (SR1) and (SR2) are derivable from (ex) and
(bem) and vice versa.

Rumfitt’s operational rules satisfy all the standard criteria of harmony,
and it is intuitively clear why this should be so. Take the rules for negation:
in order to apply (+¬ I) one needs to derive a sentence of the form −A,
which is exactly what one gets from an application of (+¬ E). Similarly,
in order to apply (−¬ I) one needs to derive a sentence of the form +A,
which is precisely what an application of (+¬ E) yields. In other words,
its operational rules of the same sign are inverses of each other. Something
similar, of course, applies to the other connectives.

Del Valle-Inclan and Schlöder [2] argue that Rumfitt-style bilateral cal-
culi call for a more demanding notion of harmony. In unilateral natural
deduction what one can do with a connective is determined by operational
rules alone; the relation between operational rules, then, is all that uni-
lateral harmony needs to take into account. In bilateral calculi, however,
coordination principles permit further inferential steps. And crucially, this
means that connectives whose operational rules are balanced according
to all the usual standards can become tonk-like when they interact with
coordination principles. They give the following connective ‘bink’ as an
example:

+A −A
(+ bink I)

+binkA
+binkA

(+ bink E1)
+A

+binkA
(+ bink E2)

−A

−A
(− bink I)

−binkA
−binkA

(− bink E)
−A

The assertive introduction and elimination rules of bink are inverses of each
other, and so are its rejective rules. Indeed, bink is harmonious according
to all the usual (unilateral) standards of harmony. If bink interacts with
Smilean reductio, however, it trivialises the calculus it is part of. The
following derivation, for instance, shows that there is a proof of −A for
any A:
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[+binkA]1
(+ bink E1)

+A

[+ binkA]1
(+ bink E2)

−A
⊥

(SR1)1−binkA
(−bink E)

−A

Examples like this show that a bilateral criterion of harmony must take
into consideration both the relation between introduction and elimination
rules, on the one hand, and the relation between operational rules and
coordination principles on the other. Del Valle-Inclan and Schlöder propose
the following criterion of bilateral harmony:

Bilateral harmony: A connective c is bilaterally harmonious
iff (i) (+cI) and (+cE) are unilaterally harmonious; (ii) (−cI)
and (−cE) are unilaterally harmonious; (iii) all coordination
principles are preserved by the rules for c (i.e. when all coor-
dination principles are restricted to atomic sentences, all their
instances for sentences containing c as their main operator are
derivable).

To put it simply: whatever unilateral harmony may be, bilateral har-
mony is that plus preservation of all coordination principles. For further
examples, and a more thorough defence of the criterion, the reader is re-
ferred to [2].

Fernando Ferreira [4] has shown that Rumfitt’s operational rules do not
preserve Smilean reductio. Rumfitt’s system, therefore, is not harmonious.
To solve the problem del Valle Inclan and Schlöder propose slight modi-
fications to the rejective rules for conjunction and the assertive rules for
disjunction. Their rules for rejected conjunctions are:4

[+A]1

D
−B

(−∧I)1−A ∧B
−A ∧B +A

(−∧E)
−B

4These rules for conjunction are also independently discussed in Nils Kürbis’ [5]
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[−A]1

D
+B

(+∨I)1
+A ∨B

+A ∨B −A
(+∨E)

+B

These rules are analogous to the usual rules for the material conditional,
and it is easy to check that they are harmonious according the usual uni-
lateral criteria. In addition, they preserve all the coordination principles
we have considered. More generally, call the set of Rumfitt’s operational
rules with the present modifications B. Then:

Remark 2.2. All the rules in B preserve Smilean reductio, (Rejection), (ex)
and (bem).

Remark 2.2. follows trivially from the normalisation results to be proved
below.

In what follows I will refer to the calculus consisting of B, (SR1), (SR2)
and (Rejection) as HB1, and the calculus consisting of B, (ex) and (bem)
as HB2. It follows from the observation that the modified operational
rules are unilaterally harmonious, combined with Remark 2.2, that HB1

and HB2 are harmonious in del Valle-Inclan and Schlöder’s sense. It is
also routine to check that:

Remark 2.3. HB1 and HB2 are equivalent to Rumfitt’s calculus (i.e. φ is
derivable from Γ in Rumfitt’s calculus iff it is derivable from Γ in HB1 and
HB2).

HB1 and HB2, then, are bilaterally harmonious formalisations of clas-
sical logic. We can finally examine the relation between harmony and
normalisation. I will discuss HB1 first, and deal with HB2 in Section 4.

3. Harmony and normalisation: HB1

All derivations in normal form, according to Dag Prawitz’s original result 
[7], share a central feature: no formula occurrence in them is simultane-
ously the consequence of an introduction rule and the major premise of an 
elimination. This is usually thought to be related to harmony. The idea 
is that if the operational rules of a connective are ‘balanced’, one should 
gain nothing by first introducing and then immediately eliminating a con-

Their rules for asserted disjunctions are:
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a derivation.5 This is the core principle behind normalisation, and so for
normal derivations in HB1 we also require that:

(i) No conclusion of an I-rule is a major premise of an E-rule.

The notion of bilateral harmony proposed by del Valle-Inclan and Schlö-
der suggests a similar principle, this time regarding the interaction between
operational rules and coordination principles. Their idea is that a connec-
tive is ‘balanced’ with respect to a coordination principle if one can lay
down the coordination principle for atoms and prove it for complex sen-
tences. To reflect this at the level of derivations we should, as before,
require that applications of coordination principles to complex formulae
should be eliminable. In other words, that for normal derivations in HB1:

(ii) Coordination principles are applied only to atoms.

Clauses (i) and (ii) are enough to ensure the separation property for
normal derivations. They are not, however, enough to secure the stronger
subformula property, as the following derivation shows:

+p −p
⊥

(SR2)
0

+q

+p −p
⊥

(SR1)
0

−q
⊥

(SR2)
0

+r

The derivation satisfies (i) and (ii), but contains signed formula occur-
rences +q and −q which are subformulae of neither the assumptions nor
the conclusion. This is due to the fact that the form of explosion encoded
by Smilean reductio is used twice, consecutively. To avoid this kind of con-
figuration in normal derivations, and thus ensure the subformula property,
we need only require that:

(iii) No conclusion of Smilean reductio is a premise of (Rejec-
tion).

5This is not the whole story. In the presence of, for example, the usual rules for
disjunction, one can introduce a connective and eliminate it a few steps below in the
derivation, rather than immediately after the introduction. Because of the modified
operational rules of HB1, however, this cannot happen in normal derivations, so we
need not worry about it.

nective. Therefore, it should be possible to eliminate all such steps within
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Putting everything together, we have the following definition.

Definition 3.1. (Normal form)
A derivation in HB1 is in normal form if in it: (i) No conclusion of an
I-rule is a major premise of an E-rule. (ii) Coordination principles are
applied only to atoms. (iii) No conclusion of Smilean reductio is a premise
of (Rejection).

Formula occurrences that infringe clauses (i), (ii) and (iii) are called max-
imal operational formulae, maximal coordination formulae and an-
cillary maximal formulae, respectively.

The rest of this section proves normalisation and corollaries for HB1.
The first step is providing appropriate reduction procedures. Since the
rules for disjunction and conjunction are analogous, I will not explicitly
provide reduction steps involving the latter. It may be useful to keep the
overall normalisation strategy in mind when examining the reduction steps.
Reductions for maximal coordination formulae may create maximal oper-
ational formulae of the same complexity. Reduction steps for maximal
operational formulae, on the other hand, may create new ancillary maxi-
mal formulae only. Finally, reduction steps for atomic ancillary maximal
formulae create no new maximal formulae of any kind. Therefore, the nor-
malisation process reduces maximal coordination formulae first, followed
by maximal operational formulae, and then ancillary maximal formulae.

3.1. Operational reductions

Negation:

D1

−A
(+¬ I)

+¬A
(+¬ E)

−A ⇝
D1

−A

D1

+A
(−¬ I)

−¬A
(−¬ E)

+A ⇝

D1

+A
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Implication:

[+A]1

D1

+B
(+ → I)1

+A→ B

D2

+A
(+ → E)

+B
⇝

D2

+A

D1

+B

D1

+A

D2

−B
(− → I)

−A→ B
(− → E)

+A/−B ⇝

D1/2

+A/−B

Disjunction:

[−A]1

D1

+B
(+∨ I)1

+A ∨B
D2

−A
(+∨ E)

+B ⇝

D2

−A
D1

+B

D1

−A
D2

−B
(−∨ I)

−A ∨B
(−∨ E)

−A/−B ⇝

D1/2

−A/−B

3.2. Reducing (rejection) to atomic applications

Negation:

D1

+¬A
D2

−¬A
(Rej)

⊥ ⇝

D1

+¬A
−A

D2

−¬A
+A

(Rej)
⊥
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Implication:

D1

+A→ B

D2

−A→ B
(Rej)

⊥ ⇝
D1

+A → B

D2

−A → B

+A

+B

D2

−A → B

−B
(Rej)

⊥

Disjunction:

D1

+A ∨B
D2

−A ∨B
(Rej)

⊥ ⇝
D1

+A ∨B

D2

−A ∨B

−A

+B

D2

−A ∨B

−B
(Rej)

⊥

3.3. Reducing Smilean reductio to atomic applications

Negation: (the other case is analogous)

[+¬A]1

D
⊥

(SR1)1−¬A ⇝

[−A]1

+¬A
D
⊥

(SR2)1
+A
−¬A

Implication:

[+A→ B]1

D
⊥

(SR1)1−A→ B ⇝

[+A]1 [−A]2

⊥
(SR2)

0

+B
(+ → I)1

+A→ B

D
⊥

(SR2)
2

+A

[+B]3

+A→ B

D
⊥

(SR1)
3

−B
−A→ B
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[−A→ B]1

D
⊥

(SR2)1
+A→ B

⇝

[+A]1 [−B]2

−A→ B

D
⊥

(SR1)
1

−A [+A]3

⊥
(SR2)

2

+B
(+ → I)3

+A→ B

Disjunction:

[+A ∨B]1

D
⊥

(SR1)1−A ∨B ⇝

[−A]1 [+A]2

⊥
(SR2)0

+B
(+∨ I)1

+A ∨B
D
⊥

(SR2)2−A

[+B]3

+A ∨B
D
⊥

(SR1)3−B
−A ∨B

[−A ∨B]1

D
⊥

(SR2)1
+A ∨B ⇝

[−A]2 [−B]1

−A ∨B
D
⊥

(SR1)
1

+B
(−∨ I)2

+A ∨B

3.4. Ancillary reductions

Ancillary reductions eliminate formulae that are consequences of Smilean
reductio and premises of (Rejection). Because of the way the normalisation
process takes place, we need only give them for atomic formulae. In what
follows, then, α ranges over arbitrary atoms, and α denotes the conjugate
of α.6 There are three cases to consider:

6The conjugate of a signed formula +A is −A and vice versa.
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Case 1: One of the premises of (Rejection) is not the conclusion of Smilean
Reductio. Suppose, without loss of generality, that it is the left one:

D1

α

[α]1

D2

⊥
(SR)1

α
(Rejection)

⊥ ⇝

D1

α
D2

⊥

Note that since α is an atom, this eliminates the ancillary maximal formula
in question whilst introducing no further maximal formulae of any kind.

Case 2: Both premises of (Rejection) are the conclusion of Smilean Re-
ductio, and at least one of the applications of Smilean Reductio discharges
no premises of (Rejection). Suppose, without loss of generality, that the
rightmost application is of this type:

D1

α

[α]1

D2

⊥
(SR)1

α
(Rejection)

⊥ ⇝

D1

α
D2

⊥

Note that again this reduces the number of ancillary maximal formulae and
gives rise to no maximal formulae of any other type.

Case 3: Both premises of (Rejection) are conclusions of Smilean reduc-
tio and discharge some premise of (Rejection).

[α]1
D0

α

⊥
D1

⊥
(SR)1

α
D2

α
(Rejection)

⊥
⇝

D2

α

D0

α
(Rejection)

⊥
D1

⊥
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Suppose we apply this reduction to an ancillary maximal formula such
that there are no ancillary maximal formulae above it or above a formula
side connected with it. In the original derivation there may be further oc-
currences of α with discharge label 1 besides the one explicitly represented
above. We also replace them with a copy of D2 ending in α. Those oc-
currences that were not premises of (Rejection) are unproblematic. Those
that were, on the other hand, become new ancillary maximal formulae of
the same complexity. By assumption, though, they are ancillary maximal
formulae of the type covered in Case 1. We eliminate them as part of
the current reduction step, and as a result the number of ancillary maxi-
mal formulae decreases, and we give rise to no maximal formulae of other
kinds.

3.5. Normalisation and corollaries

Theorem 3.2 (Normalisation). If there is a derivation D of φ from Γ then
there is a normal derivation D′ of φ from Γ′ ⊆ Γ.

Proof: To each derivationD we assign a coordination rank (n,m) ∈ N×N,
where n is the highest complexity of a maximal coordination formula, and
m the number of maximal coordination formulae of maximal complexity.
A derivation without maximal coordination formulae has rank (0, 0), and
coordination ranks are ordered lexicographically. We also assign it an
operational rank (j, k) ∈ N × N defined analogously but with respect to
maximal operational formulae, and order operational ranks with their own
lexicographical order. The following is an effective procedure to normalise
derivations:

1. Take a maximal coordination formula of the highest complexity such
that there are no coordination formulae of the highest complexity
above it or above a formula side-connected with it. Apply the appro-
priate reduction from Sections 3.2 and 3.3. The coordination rank
strictly decreases. Thus, after a finite number of steps, our derivation
has coordination rank (0,0).

2. Take a maximal operational formula of the highest complexity such
that there are no maximal operational formulae of the highest com-
plexity above it or above a formula side-connected with it. Apply
the appropriate reduction from Section 3.1. The operational rank
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strictly decreases, and the coordination rank stays (0, 0). Thus, after
a finite number of steps, our derivation has coordination and opera-
tional ranks (0,0).

3. Take an ancillary maximal formula (note that it must be atomic) such
that that there are no ancillary maximal formulae above it or above a
formula side-connected with it. Apply the appropriate reduction from
Section 3.4. The number of ancillary maximal formulae goes down,
and the coordination and operational ranks stay the same. After a
finite number of steps, the derivation is in normal form.

Definition 3.3. (Branch)
A branch π in a derivation D is a sequence φ1, ..., φn of occurrences of
formulae or of ⊥ such that: (i) φ1 is a leaf (an assumption), discharged
or not. (ii) φi+1 stands immediately below φi. (iii) φn is either the
conclusion of D or the first formula occurrence in the sequence that is
the minor premise of (+ → E), (+∨ E) or (−∧E).

Lemma 3.4. Every formula in a derivation belongs to some branch.

Proof: By induction on derivations.

The following theorem characterises the shape of normal derivations
(see also Remark 3.6 for a comparison with Prawitz’s normal form).

Theorem 3.5 (Shape of normal derivations). Let D be a normal deriva-
tion, π = φ1, ..., φn a branch in it. Then there is a minimum formula φi

dividing π into two (possibly empty) parts, the E part and the I-part, such
that:
(i)Each φj in the E-part (i.e. j < i) is the major premise of an E-rule.
(ii) If i ̸= n then φi is a premise of (Rejection) or an I-rule.
(iii) Each φk in the I-part (i.e. i < k) is a premise of an I-rule, except
φi+1, which may be a premise ⊥ of Smilean reductio.

Proof: Let π = φ1, ..., φn be a branch in a normal derivation D. Then in
π there are a) no applications of an E-rule after an I-rule, b) no applications
of Smilean reductio after an I-rule, c) no applications of (Rejection) after
an I-rule and d) no applications of an E-rule after Smilean reductio. I will
prove a) as an example; b)-d) are proved analogously.

No applications of an E-rule after an I-rule: suppose for a contra-
diction that there are, let φk be the first consequence of an E-rule applied
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after an I-rule, consider φk−1. Since the derivation is normal, φk−1 is not
the consequence of an I-rule. It cannot be the consequence of Smilean re-
ductio or (Rejection) either, as then we couldn’t obtain φk from it through
an E-rule. Thus, φk−1 must be the consequence of an E-rule, contradicting
the assumption that φk was first.

The remainder of the theorem is easy to prove: consider the last rule 
applied in π: if it is an E-rule, let φi = φn. If it is Smilean reductio, let 
φi = φn−2. If it is (Rejection), let φi = φ1. Finally, if the last rule is an 
I-rule, let φi be the only formula occurrence in π that is a premise of 
(Rejection) – if there is one –, or else let φi be the first premise of an I-rule.

Remark 3.6. An alternative way of phrasing Theorem 3.5 is to say that a
branch in a normal derivation consists of three (possibly empty) parts: an
E-part, where every formula occurrence is the major premise of an E-rule,
a C-part, where every formula occurrence is atomic and a premise of a
coordination principle, and an I-part, where every formula occurrence is
a premise of an I-rule. Branches in Prawitz’s classical normal derivations
(see [7]) consist of an E-part and an I-part, joined together by a (possibly
empty) part where classical reductio is applied to an atom.

We can now obtain the subformula and separation properties as corol-
laries.

Definition 3.7. (Subformula)
Signed formula ψ is a subformula of signed formula φ if the unsigned part of
ψ is a subformula (in the standard sense) of the unsigned part of φ. Thus,
for example, all of +p, −p, +q, −q are signed subformulae of +p→ q. Note
that ⊥ is not a formula but a punctuation sign.

Definition 3.8 (Order of a branch). A branch π = φ1, ..., φn in a deriva-
tion D is of order 0 if φn is the conclusion of D, and of order k+1 if it ends
on the minor premise of an E-rule the major premise of which belongs to
a branch π′ order k.

Corollary 3.9 (Subformula property). All the formulae that occur in a
normal derivation of φ from Γ are subformulae of some γ ∈ Γ or of φ.

Proof: By induction on the order of branches. Let π = φ1, ..., φn be a
branch of order k and assume the result for branches of order j < k. We
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will think of the E, C and I-parts of a branch as defined in Remark 3.6. The
result is obvious for the I-part: if k = 0 all formulae in it are subformulae of
φn = φ. Similarly, if k > 0 then all formulae in the I-part are subformulae
of φn, which is in its turn a subformula of the major premise ψ of an
elimination rule that belongs to a branch of lower order. By inductive
hypothesis ψ is itself subformula of some γ ∈ Γ or of φ, and therefore so
are all the formulae in the I-part.

It remains to show the result for the E and C-parts. Note that all
remaining formulae are subformulae of φ1, the first formula of the branch.
Now, if φ1 is an undischarged assumption the result follows trivially. If φ1

is a discharged assumption, there are two cases to consider:
Case 1: If φ1 is discharged by Smilean reductio then φ1 must be an

atom, and so the E-part of our branch π is empty. Moreover, the application
of Smilean reductio in question concludes φ1, the conjugate of φ1. Note
that φ1 is a subformula of φ1, and that φ1 must be a subformula of φn, the
last formula of the branch. Thus, φ1 is a subformula of φn. If the branch
π is of order 0 this means that φ1 is a subformula of the conclusion, and if
π is of order > 0 then the result follows by inductive hypothesis.

Case 2: If φ1 is discharged by an I-rule, then it is a subformula of the
consequence φk of that application, and φk is in its turn a subformula of
φn, the last formula in the branch. Once again, if the branch π is of order
0 this means that φ1 is a subformula of the conclusion, and if π is of order
> 0 then the result follows by inductive hypothesis.

Corollary 3.10 (Separation property). In a normal derivation of φ from
Γ only operational rules for connectives in φ and Γ (and perhaps coordi-
nation principles) are used.

Proof: Follows immediately from Corollary 3.9.

4. Harmony and normalisation: HB2

The first two clauses of the definition of normal form for HB2 are identical
to those of HB1. In other words, we require that for all normal derivations
of HB2:

(i) No conclusion of an I-rule is a major premise of an E-rule.
(ii) Coordination principles are applied only to atoms.



Harmony and Normalisation in Bilateral Logic 395

The motivation behind them remains the same: (i) is taken from
Prawitz, and (ii) is its analogue for bilateral systems, suggested by del
Valle-Inclan and Schlöder’s notion of harmony. This is, as before, enough
to ensure that normal derivations satisfy the separation property. Once
again, however, it is not enough to obtain the subformula property, as the
following derivation shows:

+p −p
(ex)

+q
+p −p

(ex)−q
(ex)

+r

In order to secure the subformula property we follow the same strategy
as before: imposing constraints on the way coordination principles interact
with each other. These constraints are given by clause (iii) of Definition
4.1.

Definition 4.1. (Normal form)
A derivation in HB2 is in normal form if in it: (i) No conclusion of an
I-rule is a major premise of an E-rule. (ii) Coordination principles are
applied only to atoms. (iii) (a) No conclusion of (ex) is a premise of (ex),
(b) no application of (ex) has both premises discharged by (bem) and,
(c) no conclusion of (bem) is a premise of (ex).

Formula occurrences that infringe clauses (i) and (ii) are called maxi-
mal operational formulae and maximal coordination formulae, respectively.
Formula occurrences that infringe clause (iii) are called ancillary maximal
formulae.

HB1 and HB2 share the same operational rules, so the reduction steps
for operational maximal formulae are identical. The obvious similarity
between the rules (Rejection) and (ex) means that the reduction steps
to restrict (ex) to atomic premises are analogous to the steps restricting
(Rejection) to atomic premises; I will omit this type of reduction as well,
for reasons of space. The remaining reduction steps are as follows.
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4.1. Reducing (ex) to atomic conclusions

Negation:

D1

+A

D2

−A
(ex)

+¬B ⇝

D1

+A

D2

−A
(ex)

−B
(−¬ I)

+¬B

D1

+A

D2

−A
(ex)

−¬B ⇝

D1

+A

D2

−A
(ex)

+B
(−¬ I)

−¬B

Implication:

D1

+A

D2

−A
(ex)

+B → C
⇝

D1

+A

D2

−A
(ex)

+C
(+ → I)0

+B → C

D1

+A

D2

−A
(ex)

−B → C
⇝

D1

+A

D2

−A
(ex)

+B

D1

+A

D2

−A
(ex)

−C
(− → I)

−B → C
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Disjunction:

D1

+A

D2

−A
(ex)

+B ∨ C ⇝

D1

+A

D2

−A
(ex)

+C
(+∨ I)0

+B ∨ C

D1

+A

D2

−A
(ex)

−B ∨ C ⇝

D1

+A

D2

−A
(ex)

−B

D1

+A

D2

−A
(ex)

−C
(−∨ I)

−B ∨ C

4.2. Reducing assumptions to atoms in (bem)

Negation:

[+¬A]1

D1

φ

[−¬A]1

D2

φ
(bem)1φ ⇝

[−A]1

+¬A
D1

φ

[+A]1

−¬A
D2

φ
(bem)1φ

Implication:

[+A→ B]1

D1

φ

[−A→ B]1

D2

φ
(bem)1φ ⇝

[+B]3

+A→ B

D1

φ

[−B]3 [+A]2

−A→ B

D2

φ

[−A]2 [+A]1
(ex)

+B
(+ → I)1

+A→ B

D1

φ
(bem)2φ

(bem)3φ
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Disjunction:

[+A ∨B]1

D1

φ

[−A ∨B]1

D2

φ
(bem)1φ

⇝

[+B]3

+A ∨B
D1

φ

[−B]3 [−A]2

−A ∨B
D2

φ

[−A]1 [+A]2
(ex)

+B
(+∨ I)1

+A ∨B
D1

φ
(bem)2φ

(bem)3φ

4.3. Reducing conclusions to atoms in (bem)

Negation:

[+A]1

D1

+¬B

[−A]1

D2

+¬B
(bem)1

+¬B ⇝

[+A]1

D1

+¬B
(+¬ E)

−B

[−A]1

D2

+¬B
(+¬ E)

−B
(bem)1−B

(+¬ I)
+¬B

The case where φ = −¬B is analogous.
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Implication:

[+A]1

D1

+B → C

[−A]1

D2

+B → C
(bem)1

+B → C ⇝

[+A]1

D1

+B → C [+B]2

+C

[−A]1

D2

+B → C [+B]2

+C
(bem)1

+C
(+ → I)2

+B → C

[+A]1

D1

−B → C

[−A]1

D2

−B → C
(bem)1−B → C ⇝

[+A]1

D1

−B → C
(− → E)

+B

[−A]1

D2

−B → C
(− → E)

+B
(bem)1

+B

[+A]2

D1

−B → C
(− → E)

−C

[−A]2

D2

−B → C

−C
(bem)2−C

(− → I)
−B → C

Disjunction: Analogous to implication.
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4.4. Ancillary reductions

As before, the αi range over arbitrary atoms, and αi denotes the conjugate
of αi.
Clause (iii)(a):

D1

+p
D2

−p
(ex)α1

D3

α1
(ex)α2 ⇝

D1

+p
D2

−p
(ex)α2

Clause (iii)(b):

[α1]
1 [α1]

n

(ex)α2

D1

α3

[α1]
1

D2

α3
(bem)1α3

D3

α4

[α1]
n

D4

α4
(bem)n α4

⇝

[α1]
1

D2

α3

D3

α4

[α1]
1

D4

α4
(bem)1α4

Note that in this last reduction we have assumed that the left premise of
the application of (ex) is discharged before the right one. This is unimpor-
tant: if it is the other way around, the appropriate reduction is analogous.

Clause (iii)(c):

[+p]1

D1

α1

[−p]1

D2

α1
(bem)1α1

D3

α1
(ex) α2

⇝

[+p]1

D1

α1

D3

α1
(ex)α2

[−p]1

D2

α1

D3

α1
(ex)α2

(bem)1α2

Applications of (ex) like the one above on the left, where at least one of the
premises is a conclusion of (bem), are called peaks. The size of a peak is
the sum of the length of the maximal segments that the premises of (ex)
belong to (if a premise is not part of a maximal segment, we assign it length
0). In the normalisation process we will assign to each derivation a peak
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rank (j, k), where j is the greatest size of a peak in the derivation, k the
number of peaks of greatest size. The reader can check that the reduction
above, when applied to a maximal segment such that there are no longer
maximal segments above it, side connected with it, or above a formula side
connected with it, strictly reduces the peak rank of a derivation.

4.5. Normalisation and corollaries

Definition 4.2 (Segment). A segment σ in a branch π is a sequence of
formula occurrences σ1, ..., σn in π such that: (i) σ1 is not the conclusion
of an application of (bem). (ii) Each σi for i < n is a premise of (bem),
and σi+1 stands immediately below σi. (iii) σn is not a premise of an
application of (bem).

Definition 4.2 entails that all the elements of a segment are occurrences
of the same formula. The length of a segment is the number of formula
occurrences in it. A segment is called maximal if it ends in an application
of (ex). This means that maximal coordination formulae that infringe
clause (iii)(c) of Definition 4.1 are always final formula occurrences in
maximal segments of length ≥ 1, and maximal coordination formulae that
infringe clauses (iii)(a) and (iii)(b) are always maximal segments of length
1. There are no maximal segments of other types.

Lemma 4.3. Every branch can be uniquely divided into consecutive seg-
ments.

Proof: By induction on the length of branches.

Theorem 4.4 (Normalisation). If there is a derivation D of φ from Γ then
there is a normal derivation D′ of φ from Γ′ ⊆ Γ.

Proof: Analogous to the previous proof of normalisation. Derivations are
assigned a coordination and an operational rank, defined as before. We
apply first the coordination reductions (Sections 4.1–4.3) and then the op-
erational reductions (Section 3.1), starting always from maximal formulae
of maximal complexity such that there are no maximal formulae of maxi-
mal complexity above them or above a formula side connected with them.
Once a derivation has no coordination or operational maximal formulae we
assign it a peak rank, as defined at the end of Section 4.4, and apply the
reduction for ancillary formulas of type (iii)(c) as indicated there. Once
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there are no peaks left, the only remaining maximal formulae are those
that infringe clauses (iii)(a) and (iii)(b). They can be eliminated in any
order using the appropriate reduction from Section 4.4.

Theorem 4.5 (Shape of normal derivations). Let D be a derivation in
normal form, π a branch in D, and let σ1, ...σn be the segments in π. Then
there is a segment σi in π, called the minimum segment, which separates
/pi into two (possibly empty) parts, the E-part and the I-part, with the
properties:

1. For each σj in the E-part (i.e. j < i), σj is a major premise of an
E-rule, except possibly σi−1, which may be a premise of (ex).

2. If i ̸= n, then each formula in the segment σi is a premise of (bem)
except the last one, which may be a premise of an I-rule.

3. For each σj in the I-part (i.e. i < j < n), σj is a premise of an
I-rule.

Proof: It is easy to see that, in a branch π = φ1, ..., φn of a normal
derivation, no formula occurrences that are premises of an Introduction rule
precede formula occurrences that are major premises of an Elimination rule,
(bem) or (ex), no formula occurrences that are premises of (bem) precede
formula occurrences that are premises of (ex) or major premises of an E-
rule, and no formula occurrences that are premises of (ex) precede formula
occurrences that are major premises of an E-rule or (ex). Now:

If there is no formula occurrence that is a premise of an I-rule or (bem),
let σi = φn. If there is a formula occurrence that is a premise (bem), let φi

be the first such formula, and let σi be the segment starting at φi. Finally,
if there is no formula occurrence that is a premise (bem), but there is a
formula occurrence that is a premise of an I-rule, let φi be the first such
formula, and let σi = φi.

Remark 4.6. An alternative way of phrasing Theorem 4.5 is to say that a
branch in a normal derivation consists of three (possibly empty) parts: an
E-part, where every formula occurrence is the major premise of an E-rule,
a C-part, where every formula occurrence is a premise of a coordination
principle – and within which (ex) is applied before (bem) – and an I-part,
where every formula occurrence is a premise of an I-rule.
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Corollary 4.7 (Subformula property). All the formulae that occur in a
normal derivation of φ from Γ are subformulae of some γ ∈ Γ or of φ.

Proof: By induction on the order of branches. Let π = σ1, ...σn be a
branch of order p, let σi be its minimum segment, and assume the result
for branches of lower order. Consider first all σj with i ≤ j ≤ n. All
such formulae are subformulae of φn, the formula in the last segment σn of
the branch. If the branch in question is of order 0 the result immediately
follows. If the branch is of order > 0 then φn is the minor premise of an
application of an E-rule, the major premise ψ of which belongs to a branch
of order p− 1. But by induction hypothesis the result holds for ψ, and φn

is a subformula of ψ, so the result follows.
It remains to account for all the σj with j < i. Note that all such

formulae are subformulae of φ1, the first formula of the branch. If φ1 is an
undischarged assumption the result immediately follows. Similarly, if φ1 is
discharged by an application of an I-rule, then it is a subformula of some
formula in an I-part, and the result follows by the above. Finally, suppose
that φ1, is discharged by an application of (bem). Now, φ1 cannot be the
major premise of an elimination rule, since it is an atom. If it is the minor
premise of an E-rule, or a premise of an I-rule or (bem), then there are no σj
with j < i and we are done. The only remaining possibility is that φ1 is a
premise of (ex). Then φ1 is the only formula before the minimum segment
σi (in other words, φ1 is the only formula we still need to account for).
Now, φ1 is a subformula of the other premise φ1 of the application of (ex)
in question, and φ1 cannot be discharged by (bem). Moreover, φ1 belongs
to a branch of the same order as π. If φ1 is undischarged, or discharged by
a I-rule, the result immediately follows. If it is a consequence of an E-rule,
then it is a subformula of the initial formula ψ of its branch. But then ψ
is not atomic, and so can only be undischarged or discharged by an I-rule.
In either case, the result follows.

Corollary 4.8 (Separation property). In a normal derivation of φ from Γ
only operational rules for connectives in φ and Γ (and perhaps coordination
principles) are applied.

Proof: Follows immediately from the previous corollary.
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5. Comparison with other normalisation results

In this section I will briefly compare the present normalisation results with
those obtained by Nils Kürbis [6] and Marcello D’Agostino, Dov Gabbay,
and Sanjay Modgyl [1], so as to outline the similarities and differences
between them.

5.1. HB1 and Kürbis-normal form

Kürbis proves his normalisation result for Rumfitt’s original calculus,7

which makes the comparison with normal form for HB1 straightforward.
The respective definitions of normal form are:

Kürbis-normal form: HB1-normal form:

(a) No conclusion of an I-rule is a
major premise of an E-rule.

(i) No conclusion of an I-rule is a
major premise of an E-rule.

(b) No conclusion of Smilean re-
ductio is a major premise of an
E-rule.

(ii) Coordination principles are
applied only to atoms.

(c) No conclusion of an I-rule is
a premise of an application of
(Rejection) the other premise of
which is also the conclusion of an
I-rule.
(d) No conclusion of Smilean re-
ductio is a premise of (Rejection).

(iii) No conclusion of Smilean re-
ductio is a premise of (Rejection).

(e) There are no maximal seg-
ments.

Clause (a) of Kürbis-normal form is identical to clause (i) of HB1-normal
form, and the same goes for clauses (d) and (iii). The correlate of clauses
(b) and (c) of Kürbis-normal form is clause (ii). Crucially, though, (ii) is
strictly stronger that (b) and (c) combined: all derivations that satisfy (ii)
satisfy (b) and (c), but the converse does not hold. The segments referred
to in clause (e) are defined as usual: sequences of occurrences of the same

7That is, the calculus comprising the operational rules without del Valle-Inclan and
Schlöder’s modifications, plus (Rejection) and Smilean reductio as coordination princi-
ples.
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formula that end in a maximal formula. Because of the modified oper-
ational rules of HB1, maximal segments simply cannot arise in normal
derivations. Thus, clause (e) has no correlate in HB1-normal form. It
follows that HB1-normal form is stronger than Kürbis-normal form, in the
sense that all derivations in HB1-normal form are Kürbis-normal, but
the converse does not hold. Rumfitt’s calculus, for instance, can be Kürbis-
normalised but not HB1-normalised.

5.2. HB2 and C-intelim normal form

Marcello D’Agostino, Dov Gabbay, and Sanjay Modgyl prove their normal-
isation result for a calculus they call C-intelim.8 The crucial difference be-
tween C-intelim andHB2 is that no operational rule of C-intelim discharges
any premises. More precisely, their rules for disjunction are Rumfitt’s
(−∨ I), (−∨ E), (+∨ I) plus the following two:

+A ∨B −A
+B

+A ∨B −B
+A

Their rules for conjunction are Rumfitt’s (+∧ I), (+∧ E), (−∧ I) and:

−A ∧B +A
−B

−A ∧B +B
−A

And their rules for conditionals are Rumfitt’s (− → I), (− → E), (+ → E)
and:

−A
+A→ B

+B
+A→ B

+A→ B −B
−A

The coordination principles in C-intelim are essentially Explosion and
Bilateral Excluded Middle, but there is an additional consideration to keep
in mind. In C-intelim Explosion is reformulated as two distinct rules,
namely:

−A +A

⊥
⊥
φ

with the proviso that ‘⊥’ can only occur in the context of these rules, as a
punctuation sign [1, p. 302]. Clearly, this makes the difference between (ex)

8They present two versions of C-intelim: a bilateral version and a unilateral one,
which they regard as a ‘practically convenient translation of the rules for signed formulae
into an ordinary logical language’ ([1], p. 303-4). Here I will only consider the bilateral
formulation of the calculus.
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and their two-rule combination strictly notational. In order to simplify the
comparison with HB2, then, I will take C-intelim to contain Explosion in
its single-rule presentation (ex). Nothing substantial hinges on this.

We can finally compare both notions of normal form. Normal deriva-
tions in C-intelim have the following shape:

D1

φ
D2

φ
(bem)φ

T1
φ

. . .

. . .

Dn−1

φ
Dn

φ
(bem)φ

Tk
φ

(bem)φ

where in the Di only operational rules are used, except possibly at the
last step, which may be an application of Explosion, and the (possibly
empty) Ti consist exclusively of applications of Bilateral Excludded Middle.
Moreover, in normal derivations the assumptions discharged by (bem) are
always subformulae of undischarged premises of the derivation or of its
conclusion.

It is obvious that normal HB2 derivations need not be of this form.
More importantly, derivations in HB2 cannot, in general, be put in C-
intelim normal form. The reason is that certain operational rules of HB2

discharge premisses, which means that it is sometimes unavoidable to use
them after an application of Explosion, as in the (HB2-normal) derivation
below:

+¬p
−p [+p]1

(ex)
+q

(+ → I)1
+p→ q

Conversely, derivations in C-intelim cannot in general be put in HB2-
normal form. This is due to the fact that several operational rules of
C-intelim do not preserve the coordination principle of Bilateral Excluded
Middle, and hence are not harmonious in del Valle-Inclan and Schlöder’s
sense. The following, for instance, is a C-intelim normal derivation where
(bem) is applied to complex formulae in a way that cannot be eliminated:
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[+p]1

+p ∨ ¬p

[−p]1
+¬p

+p ∨ ¬p
(bem)1

+p ∨ ¬p

In summary: C-intelim normal form and HB2-normal form are neither
stronger nor weaker than each other.

Of course, normal forms for different but related calculi need not coin-
cide on every point, so the fact that Rumfitt’s calculus and C-intelim do
not HB1 and HB2-normalise (respectively) is not particularly surprising.
Still, given the close connection between the present notions of normal form
and bilateral harmony, this can be seen as a symptom of the underlying
disharmony of these calculi. Conversely, the results shown by Kürbis and
D’Agostino, Gabbay and Modgyl show that, despite their disharmony, C-
intelim and Rumfitt’s calculus are relatively well-behaved. This emphasises
the fact that del Valle-Inclan and Schlöder’s notion of bilateral harmony
rules out more than the glaring problems raised by connectives like tonk
and bink.9

6. Concluding remarks

The idea that the operational rules for each connective should be ‘balanced’ 
underlies most approaches to proof-theoretic harmony. This idea has a cor-
relate in normalisation proofs, in the requirement that formula occurrences 
that are the consequence of an introduction rule and the major premise 
of an elimination should be removed. Del Valle-Inclan and Schlöder’s bi-
lateral criterion of harmony suggests a similar requirement for bilateral 
systems, namely that normal proofs should apply coordination principles 
to atomic formulae only. These two requirements are enough for a weak 
notion of normality that remains stable across calculi HB1 and HB2, and 
which guarantees the separation but not the subformula property. In order 
to guarantee the subformula property a third kind of constraint, regulat-
ing how coordination principles are allowed to interact with each other, is 
needed. These constraints vary across HB1 and HB2, as the two calculi 

9Thanks to an anonymous referee for prompting me to say more about this.
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is strictly stronger than Kürbis-normal form in the case of HB1, and nei-
ther stronger nor weaker than C-intelim normal form in the case of HB2.
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