# Supporting Information

For

# Axially Chiral Stable Radicals: Resolution and Characterization of Blatter Radical Atropisomers

Agnieszka Bodzioch,<sup>†\*</sup> Anna Pietrzak,<sup> $\perp$ </sup> and Piotr Kaszyński<sup>†‡§\*</sup>

<sup>†</sup> Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-024, Łódź, Poland

<sup>‡</sup>Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland.

<sup>§</sup> Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA

|     | Table of contents                                           | Page        |
|-----|-------------------------------------------------------------|-------------|
| 1.  | Synthetic and characterization details                      | S2          |
| 2.  | NMR spectra                                                 | S6          |
| 3.  | IR spectra                                                  | S10         |
| 4.  | XRD data                                                    | <b>S</b> 11 |
| 5.  | UV-vis spectroscopy                                         | S14         |
| 6.  | EPR spectroscopy                                            | 815         |
| 7.  | Electrochemical results                                     | S17         |
| 8.  | Chiral HPLC analysis and resolution                         |             |
| 9.  | Optical rotation                                            | S21         |
| 10. | Electronic circular dichroism spectroscopy                  | S21         |
| 11. | Determination of absolute configuration of the atropisomers |             |
| 12. | . Kinetic analysis of racemization                          |             |
| 13. | . Computational details                                     | 834         |
| 14. | . Partial output from TD-DFT calculations                   | 834         |
| 15  | . Archive for DFT calculations                              | 840         |
| 16  | . References                                                | S44         |

#### 1. Synthetic and characterization details

Reagents and solvents were obtained commercially.

Heat in reactions involving elevated temperatures was supplied using oil baths, and reported temperature refers to that of the bath.

NMR spectra were obtained at 400 (<sup>1</sup>H) and 100 MHz (<sup>13</sup>C) in CDCl<sub>3</sub> or DMSO- $d_6$ . Chemical shifts were referenced to the solvent (<sup>1</sup>H and <sup>13</sup>C: 7.26 and 77.16 ppm for CDCl<sub>3</sub>, and 2.50 and 39.52 ppm for DMSO- $d_6$ , respectively).<sup>1</sup> Melting points were determined on a Melt-Temp II apparatus in capillaries, and they are uncorrected. The ESI-MS spectra were obtained using a Varian 500 MS LS Ion Trap spectrometer. IR spectra were measured in KBR pellets.

#### Preparation of racemic radicals rac-1. A general procedure.

A solution of an organolithium reagent (generated from 1.3 mmol of appropriate bromonaphthalene and 2.6 mmol *t*-BuLi) in THF (3 mL) was added dropwise at -78 °C to a stirred solution of corresponding benzo[*e*][1,2,4]triazine **2** (1.0 mmol) in dry THF (3 mL). The resulting mixture was stirred for 20 min at -78 °C and at rt for 30 min. Then it was opened to air and stirred overnight at rt. Water and  $CH_2Cl_2$  were added and the organic phase was separated, washed with water and dried (Na<sub>2</sub>SO<sub>4</sub>). After evaporation of solvent the resulting crude product was purified by column chromatography (SiO<sub>2</sub> passivated with 1% Et<sub>3</sub>N in hexane, hexane/AcOEt) to afford radicals *rac-1*. Analytically pure radicals were obtained by recrystallization from *n*-heptane.

**3-Phenyl-1-(8-phenylnaphth-1-yl)-1,4-dihydrobenzo**[*e*][**1,2,4**]**triazin-4-yl** (*rac*-**1aA**). Radical *rac*-**1aA** (161 mg, 0.392 mmol, 62% yield) was obtained from 3-phenylbenzo[*e*][**1**,2,4]triazine<sup>2</sup> (**2a**, 131 mg, 0.632 mmol) and 1-bromo-8-phenylnaphthalene (**3A**, 224 mg, 0.794 mmol) as a dark brown solid. Recrystallization from *n*-heptane gave the analytically pure microcrystalline product in 44% yield: mp 179–180 °C (*n*-heptane); IR v 3047, 1484, 1391, 831, 770, 695 cm<sup>-1</sup>; UV-vis (CH<sub>2</sub>Cl<sub>2</sub>)  $\lambda_{max}$  (log  $\varepsilon$ ) 231 (4.69), 270 (4.48), 370 (3.56), 487 (3.15), 543 (2.81) nm; ESI-MS, *m/z* 411 (100, [M + H]<sup>+</sup>); HRMS (ESI-TOF) *m/z* [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>21</sub>N<sub>3</sub> 411.1735, found 411.1719. Anal. Calcd for C<sub>29</sub>H<sub>20</sub>N<sub>3</sub>: C, 84.85; H, 4.91; N, 10.24. Found: C, 84.72; H, 4.82; N, 10.25. Chiral HPLC: t<sub>R1</sub> = 14.45 min (+), t<sub>R2</sub> = 16.79 min (–).

**1-[8-(4-***tert*-**Butylphenyl)naphth-1-yl)-3-phenyl-1,4-dihydrobenzo**[*e*][**1,2,4**]**triazin-4-yl** (*rac*-**1aB**). Racemic radical *rac*-**1aB** (51.0 mg, 0.109 mmol, 29% yield) was obtained from 3-phenylbenzo[*e*][1,2,4]triazine<sup>2</sup> (**2a**, 78.0 mg, 0.377 mmol) and 1-bromo-8-(4-*tert*-butylphenyl)naphthalene (**3B**, 141 mg, 0.416 mmol) as a dark brown powder: mp 108–109 °C (*n*-

heptane); IR v 3057, 2961, 1485, 1392, 834, 756, 696 cm<sup>-1</sup>; UV-vis (CH<sub>2</sub>Cl<sub>2</sub>)  $\lambda_{max}$  (log  $\varepsilon$ ) 229 (4.75), 269 (4.60), 373 (3.65), 444 (3.40), 490 (3.27) nm; ESI-MS, *m/z* 467 (100, [M+H]<sup>+</sup>); HRMS (ESI-TOF) *m/z* [M+H]<sup>+</sup> calcd for C<sub>33</sub>H<sub>29</sub>N<sub>3</sub>: 467.2361, found 467.2357. Anal. Calcd for C<sub>33</sub>H<sub>28</sub>N<sub>3</sub>: C, 84.95; H, 6.05; N, 9.01. Found: C, 85.01; H, 5.99; N, 9.08. Chiral HPLC: t<sub>R1</sub> = 9.85 min (+), t<sub>R2</sub> = 11.47 min (–).

3-tert-Butyl-1-(8-phenylnaphth-1-yl)-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (rac-1bA). Radical rac-1bA (49.0 mg, 0.126, 45% yield) was obtained from 3-(tertbutyl)benzo[e][1,2,4]triazine (2b, 29.0 mg, 0.155 mmol) and 1-bromo-8-phenylnaphthalene (3A, 53.0 mg, 0.188 mmol) as a dark brown solid. Recrystallization from *n*-heptane gave the analytically pure microcrystalline product in 11% yield: mp 177–178 °C (n-heptane); IR v 3058, 2954, 1481, 1400, 832, 770, 699 cm<sup>-1</sup>; UV-vis (CH<sub>2</sub>Cl<sub>2</sub>)  $\lambda_{max}$  (log  $\varepsilon$ ) 233 (4.69), 296 (3.96), 346 (3.60), 442 (3.33), 544 (2.90) nm; ESI-MS, *m/z* 391 (90, [M+H]<sup>+</sup>), 390 (100, M<sup>+</sup>); HRMS (ESI-TOF) m/z [M+H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>25</sub>N<sub>3</sub> 391.2048, found 391.2032. Anal. Calcd for C<sub>27</sub>H<sub>24</sub>N<sub>3</sub>: C, 83.04; H, 6.19; N, 10.76. Found: C, 83.02; H, 6.07; N, 10.82. Chiral HPLC: t<sub>R1</sub> = 11.55min (+), t<sub>R2</sub>  $= 12.77 \min(-)$ .

3-(tert-Butyl)benzo[e][1,2,4]triazine (2b).<sup>3</sup> Following the method of Koutentis,<sup>4</sup> N<sup>2</sup>-(2nitrophenyl)pivalohydrazide (5, 1.15 g, 4.85 mmol) was dissolved in glacial acetic acid (40 mL), Sn powder (2.30 g, 19.4 mmol) was added, and the solution was left stirring vigorously at room temperature for 1 h. The reaction was then heated at 120 °C for 20 min and cooled. Then, AcOEt (100 mL) and water (200 mL) were added, and the resulting biphasic mixture was passed through a layer of Cellite. The organic layer was separated, and the aqueous layer was extracted with AcOEt (2 x 100 mL). The combined organic extracts were washed with sat. NaHCO<sub>3</sub> and dried (Na<sub>2</sub>SO<sub>4</sub>). The solvent was removed and the solid residue was dissolved in a MeOH/CH<sub>2</sub>Cl<sub>2</sub> mixture (1:1, 20 mL), and solid NaIO<sub>4</sub> (1.16 g, 5.42 mmol) was added. The mixture was stirred until the initial dihydro derivative was no longer observed by TLC (about 30 min). Inorganic salts were filtered, solvents were evaporated, and the resulting yellow solid residue was passed through a short SiO<sub>2</sub> column (petroleum eter/AcOEt) giving 0.659 g (3.52 mmol, 73% yield) of 3-(tertbutyl)benzo[e][1,2,4]triazine (2b) as a yellow microcrystalline solid: mp 72–73 °C (EtOH); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  8.49 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.93 (t, J = 8.2 Hz, 1H), 7.80 (t, J = 7.8 Hz, 1H), 1.63 (s, 9H);  ${}^{13}C{}^{1}H$  NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  172.3, 145.9, 140.7, 135.0, 129.9, 129.5, 129.1, 39.2, 29.8. Anal. Calcd for C<sub>11</sub>H<sub>13</sub>N<sub>3</sub>: C, 70.56; H, 7.00; N, 22.44. Found: C, 70.49; H, 7.28; N, 22.26.

#### Preparation of 8-substituted-1-bromonaphthalenes 3. A general procedure.

Following a literature procedure,<sup>5</sup> 1,8-dibromonaphthalene (715 mg, 2.50 mmol), arylboronic acid (2.53 mmol, 1.01 eqiv), Pd(PPh<sub>3</sub>)<sub>4</sub> (144 mg, 0.125, 5 mol%) were dissolved in deoxygenated 1,2-dimethoxyethane (15 mL). Then, the solution of Na<sub>2</sub>CO<sub>3</sub> (795 mg, 7.5 mmol, 3 equiv) in water (7 mL), which was previously purged with argon for 15 min, was added. The reaction mixture was refluxed overnight, cooled to room temperature, treated with water (15 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 x 20 mL). The extract was dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated to dryness. The resulting residue was purified by column chromatography (SiO<sub>2</sub>, pentane) giving 8-substituted-1-bromonaphthalenes **3**.

**1-Bromo-8-phenylnaphthalene** (**3A**).<sup>6</sup> Following the procedure above, 1-bromo-8-phenylnaphthalene (**3A**, 246 mg, 0.872 mmol, 35% yield) was obtained as a light yellow microcrystalline solid from 1,8-dibromonaphthalene (715 mg, 2.50 mmol) and phenylboronic acid (309 mg, 2.53 mmol): mp 37–38 °C (*n*-pentane); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.89–7.90 (m, 2H), 7.80 (d, J = 7.4 Hz, 1H), 7.52 (t, J = 7.3 Hz, 1H), 7.45 (d, J = 7.0 Hz, 1H), 7.40–7.41 (m, 3H), 7.36–7.37 (m, 2H), 7.30 (t, J = 7.9 Hz, 1H); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  143.0, 140.5, 136.2, 133.9, 131.3, 130.3, 129.7, 129.03, 128.98, 127.5, 127.0, 126.2, 125.4, 120.3; MS (EI) *m/z* 203 (100, [M]<sup>+</sup>). Anal. Calcd for C<sub>16</sub>H<sub>11</sub>Br: C, 67.87; H, 3.92. Found: C, 67.78; H, 4.02.

**1-Bromo-8-(4-***tert***-butylphenyl)naphthalene (3B)**. Following the procedure above, 1-bromo-8-(4-*tert*-butylphenyl)naphthalene (**3B**, 858 mg, 2.53 mmol, 51% yield) was obtained as a white microcrystalline solid from 1,8-dibromonaphthalene (1.410 g, 4.93 mmol) and 4-*tert*-butylphenylboronic acid (885 mg, 4.97 mmol): mp 61–62 °C (EtOH); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.95 (d, J = 7.4 Hz, 1H), 7.82–7.89 (m, 2H), 7.78 (d, J = 7.4 Hz, 1H), 7.40–7.51 (m, 4H), 7.24–7.30 (m, 2H), 1.39 (s, 9H); <sup>13</sup>C {<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  150.2, 140.6, 139.8, 136.2, 133.8, 131.3, 129.9, 129.0, 128.8, 126.8, 126.1, 125.5, 124.4, 120.3, 34.7, 31.7; MS (EI) *m/z* 338 (40, [M]<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>19</sub>Br: C, 70.80; H, 5.64. Found: C, 70.95; H, 5.39.

*N*<sup>•</sup>-(2-Nitrophenyl)pivalohydrazide (5). A solution of 1-fluoro-2-nitrobenzene (1.13 g, 9.94 mmol) and pivalohydrazide (1.41 g, 10.0 mmol, 1.01 eqiv) in dry DMSO (3 mL) was stirred at 70  $^{\circ}$ C for 2 days. After cooling AcOEt (50 mL) followed by H<sub>2</sub>O (70 mL) were added to the reaction mixture and the organic layer was separated. The aqueous layer was extracted twice with small portions of AcOEt. The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), the solvent was evaporated, and the solid residue was recrystallized (EtOH) giving 1.15 g (4.85 mmol, 61% yield)

of hydrazide **5** as yellow microcrystalline solid: mp 143–145 °C (EtOH); <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz)  $\delta$  9.93 (s, 1H), 9.12 (s, 1H), 8.09 (d, J = 8.5 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.02 (d, J = 8.6 Hz, 1H), 6.86 (t, J = 7.8 Hz, 1H), 1.22 (s, 9H); <sup>13</sup>C{<sup>1</sup>H} NMR (DMSO- $d_6$ , 125 MHz)  $\delta$  176.9, 145.9, 136.4, 131.8, 125.8, 117.8, 114.6, 37.6, 27.1. Anal. Calcd for C<sub>11</sub>H<sub>15</sub>N<sub>3</sub>O<sub>3</sub>: C, 55.69; H, 6.37; N, 17.71. Found C, 55.63; H, 6.48; N, 17.74.

## 2. NMR spectra



Figure S1.<sup>1</sup>H NMR (400 MHz) and  ${}^{13}C{}^{1}H$  NMR (100 MHz) spectra of **2b** (CDCl<sub>3</sub>).



Figure S2.<sup>1</sup>H NMR (400 MHz) and  ${}^{13}C{}^{1}H$  NMR (100 MHz) spectra of 3A (CDCl<sub>3</sub>).



Figure S3. <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz) spectra of **3B** (CDCl<sub>3</sub>).



Figure S4. <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz) spectra of 5 (DMSO- $d_6$ ).

# 3. IR spectra

FT-IR spectra were recorded in KBr pellets.



Figure S5. IR spectra for rac-1 recorded in KBr.

### 4. XRD data collection and refinement

Crystals of *rac*-1aA suitable for single crystal X-ray diffraction investigation were grown by slow evaporation of EtOH solutions and were analysed using a Rigaku XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer. The crystal was kept at 100.0(2) K during data collection and measurement was conducted using the CuK $\alpha$  radiation ( $\lambda = 1.54184$  Å). The data were integrated using CrysAlisPro program.<sup>7</sup> Intensities for absorption were corrected using SCALE3 ABSPACK scaling algorithm implemented in CrysAlisPro program.<sup>7</sup> Structure was solved with the ShelXT structure solution program<sup>8</sup> using Intrinsic Phasing and refined in the ShelXle by the full-matrix least-squares minimization on  $F^2$  with the ShelXL refinement package.<sup>9</sup> All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were generated geometrically and refined isotropically using the riding model.

The crystal data and structure refinement descriptors are presented in Table S1, selected interatomic distances and angles are presented in Table S2, while thermal ellipsoid diagrams for single molecule of **1aA**, unit cell, and partial packing are shown in Figures S6.

| CDDC #                                      | 2087259                         |
|---------------------------------------------|---------------------------------|
| Empirical formula                           | $C_{29}H_{20}N_3$               |
| Formula weight                              | 410.48                          |
| Crystal system                              | Triclinic                       |
| Space group                                 | <i>P</i> -1                     |
| <i>a</i> / Å                                | 9.5989(2)                       |
| b/ Å                                        | 11.1996(3)                      |
| c/ Å                                        | 11.5498(3)                      |
| $\alpha /^{\circ}$                          | 72.286(2)                       |
| $\beta'^{o}$                                | 71.372(2)                       |
| $\gamma/^{\circ}$                           | 65.984(2)                       |
| Volume/ Å                                   | 1056.78(5)                      |
| Z                                           | 2                               |
| Goodness-of-fit on F <sup>2</sup>           | 1.085                           |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0337, wR_2 = 0.0945$   |
| Final <i>R</i> indexes [all data]           | $R_1 = 0.0399, \ wR_2 = 0.0985$ |
|                                             |                                 |

Table S1. Crystal data and refinement details for rac-1aA.

| N(1)-Naphth | 1.440(2) | C(7)-C(8)      | 1.373(2)  |
|-------------|----------|----------------|-----------|
| N(1)-N(2)   | 1.365(1) | C(8)-C(8a)     | 1.392(2)  |
| N(2)-C(3)   | 1.336(2) | C(8a)-N(1)     | 1.383(1)  |
| C(3)-N(4)   | 1.333(1) | C(8a)-(C4a)    | 1.414(2)  |
| N(4)-C(4a)  | 1.372(2) | C(3)-Ph        | 1.489(2)  |
| C(4a)-C(5)  | 1.396(1) | N(1)-N(2)-C(3) | 115.44(9) |
| C(5)-C(6)   | 1.372(2) | N(2)-C(3)-N(4) | 127.7(1)  |
| C(6)-C(7)   | 1.392(2) |                |           |
|             |          |                |           |

 Table S2. Selected interatomic distances and angles for radical *rac*-1aA.<sup>a</sup>

<sup>*a*</sup> The numbering system according to the chemical nomenclature.





a)



b)

c)

Figure S6. Clockwise: a) thermal ellipsoid diagram for one molecule of *rac*-1aA; b) The unit cell packing diagram for *rac*-1aA (hydrogen atoms are omitted for clarity); c) partial packing diagram for *rac*-1aA. Thermal ellipsoids at 50% probability level.

#### **5.** UV-vis spectroscopy

Electronic absorption spectra for racemic radicals *rac-1* were recorded on Jasco V-770 UV-Vis-NIR spectrometer in spectroscopic grade  $CH_2Cl_2$  at concentrations in a range  $1.5-10\times10^{-5}$  mol/L and fitted to the Beer–Lambert law. Results are shown in Figures S7-S9.



**Figure S7**. Clockwise: electronic absorption spectra for *rac*-1aA (R = Ph, X = Ph) in CH<sub>2</sub>Cl<sub>2</sub> for four concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda$  = 271 nm (best fit line:  $\varepsilon$  = 32057 × conc,  $r^2$  = 0.9992), and a molar extinction log ( $\varepsilon$ ) plot.





**Figure S8**. Clockwise: electronic absorption spectra for *rac*-1aB (R = Ph, X = 4-*t*-Bu-C<sub>6</sub>H<sub>4</sub>) in CH<sub>2</sub>Cl<sub>2</sub> for four concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda$  = 271 nm (best fit line:  $\varepsilon$  = 40436 × conc,  $r^2$  = 0.9991), and a molar extinction log ( $\varepsilon$ ) plot.



**Figure S9**. Clockwise: electronic absorption spectra for *rac*-1bA (R = *t*-Bu, X = Ph) in CH<sub>2</sub>Cl<sub>2</sub> for four concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda$  = 233 nm (best fit line:  $\varepsilon$  = 47314 × conc,  $r^2$  = 0.9992), and a molar extinction log ( $\varepsilon$ ) plot.

### 6. EPR spectroscopy

EPR spectra for racemic radicals *rac-1* were recorded on an X-band EMX-Nano EPR spectrometer at room temperature on dilute and degassed solutions in benzene. The microwave

power was in a range of 5-15 mW (established with the Power Sweep program below the saturation of the signal) with a modulation frequency of 100 kHz, modulation amplitude of 0.5  $G_{pp}$  and spectral width of 100 G. Accurate g-values were obtained using TEMPO as EMX-Nano internal standard. Simulations of the spectra were performed with the EMX-Nano software using DFT results (*vide infra*) as the starting point including all nitrogen and up to 4 hydrogen atoms. The resulting *hfcc* values were perturbed several times until a global minimum for the fit was achieved. Experimental and simulated spectra are shown in Figures S10–S12 and final *hfcc* are listed in Table S3.



**Figure S10**. Experimental, simulated and difference spectra for Blatter radical *rac*-1aA (R = Ph, X = Ph).



Figure S11. Experimental, simulated and difference spectra for Blatter radical *rac*-1aB (R = Ph, X = 4-t-Bu-C<sub>6</sub>H<sub>4</sub>).



Figure S12. Experimental, simulated and difference spectra for Blatter radical *rac*-1bA (R = t-Bu, X = Ph).

Table S3. Summary of hyperfine coupling constants (G) for radicals rac-1.<sup>a</sup>



| Compound                                        | $a_{N1}$ | a <sub>N2</sub> | a <sub>N4</sub> | $a_{\rm H}$ | $a_{\rm H}$ | $a_{H}$ | $a_{H}$ | $g^{b}$ | - |
|-------------------------------------------------|----------|-----------------|-----------------|-------------|-------------|---------|---------|---------|---|
| Blatter <sup>c</sup>                            | 7.56     | 4.92            | 4.94            | 1.34        | 0.83        | 0.68    | 0.59    | 2.0036  | - |
| rac-1aA, X = Ph, Y = Ph                         | 7.50     | 4.88            | 5.03            | 1.52        | 1.15        | 1.87    | 0.73    | 2.0035  |   |
| rac-1aB, X = t-Bu, Y = Ph                       | 7.58     | 4.90            | 5.22            | -           | -           | -       | -       | 2.0037  |   |
| <i>rac</i> -1bA, $X = Ph$ , $Y = 4-t-Bu-C_6H_4$ | 7.49     | 4.88            | 5.03            | 0.69        | 0.69        | 0.69    | 0.69    | 2.0035  |   |

<sup>*a*</sup> Assignments follow the previous EPR and ENDOR studies on <sup>15</sup>N-labeled derivatives (ref.<sup>10</sup>). <sup>*b*</sup> Referenced to DPPH (g = 2.0036) as the internal standard. <sup>c</sup> Ref.<sup>11</sup>.

### 7. Electrochemical results

The electrochemical characterization of racemic radicals *rac*-1 was conducted using a Autolab PGSTAT 128N potentiostat/galvanostat in dry and degassed CH<sub>2</sub>Cl<sub>2</sub> (conc. 0.5 mM) in the presence of  $[n-Bu_4N]^+[PF_6]^-$  as an electrolyte (conc. 50 mM) using glassy carbon as the working electrode and Ag/AgCl pseudo reference electrode with a scan rate of 50 mV s<sup>-1</sup> at 20 °C. At the end of each measurement ferrocene was added and the peak potentials were referenced to the Fc/Fc<sup>+</sup> couple (0.46 V *vrs* SCE).<sup>12</sup>

CV plots are shown in Figures S13–S15 and numerical result are shown in Table 2 in the main text.



**Figure S13**. Cyclic voltammogram for *rac*-1aA (R= Ph, X =Ph).



**Figure S14**. Cyclic voltammogram for *rac*-1aB (R= Ph, X =4-*t*-BuC<sub>6</sub>H<sub>4</sub>).



Figure S15. Cyclic voltammogram for *rac*-1bA (R= *t*-Bu, X =Ph).

### 8. Chiral HPLC analysis and resolution

Chiral HPLC analyses were performed on Chiralcel OD-H<sup>\*</sup> analytical column (cellulose tris-3,5-dimethylphenylcarbamate,  $250 \times 4.6$  mm) in hexane/*i*-PrOH mixtures (97:3 ratio for radicals **1aA** and **1aB**, and 99:1 ratio for radical **1bA**) at 0.5 mL/min flow and UV detection 254 nm. Retention times t<sub>R</sub> are given in minutes. Separation of enantiomeric was accomplished on a chiral semipreparative column Lux Cellulose-1<sup>\*</sup> (cellulose tris-3,5-dimethylphenylcarbamate, 250  $\times$  10 mm) using a hexane/*i*-PrOH mixture (98:2 ratio) as the liquid phase with the flow of 3.0 mL/min and UV detection at 254 nm.



**Figure S16**. Chiral HPLC analysis of racemic radical *rac*-1aA (R = Ph, X = Ph) using Chiralcel OD-H® analytical column. Hexane/*i*-PrOH 97:3 ratio.



**Figure S17**. Chiral HPLC analysis of racemic radical *rac*-1aB (R = Ph, X = 4-t-BuC<sub>6</sub>H<sub>4</sub>) using Chiralcel OD-H® analytical column. Hexane/*i*-PrOH 99:1 ratio.



**Figure S18**. Chiral HPLC analysis of racemic radical *rac*-1bA (R = t-Bu, X = Ph) using Chiralcel OD-H® analytical column. Hexane/*i*-PrOH 97:3 ratio.

### 9. Optical rotation

Determination of specific rotation of individual atropisomers was attempted using Perkin Elmer 241MC polarimeter in  $CH_2Cl_2$  solutions. High optical density of the solutions and consequently low concentrations of the analyte resulted in unreliable measurement in a range 550–800 nm. The analysis gave only the sign of the optical rotation listed in Table S4.

Table S4. Optical rotation sign for atropisomers 1 in CH<sub>2</sub>Cl<sub>2</sub>.

| Compound                                                                                               | Fraction             |                      |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------|----------------------|--|--|
|                                                                                                        | first <sup>[a]</sup> | second <sup>[b</sup> |  |  |
| 1aA X = Ph, Y = Ph                                                                                     | (+)                  | (-)                  |  |  |
| 1aB X = t-Bu, Y=Ph                                                                                     | (+)                  | (-)                  |  |  |
| $\mathbf{1bA}, \mathbf{X} = \mathbf{Ph}, \mathbf{Y} = 4 - t - \mathbf{Bu} - \mathbf{C}_6 \mathbf{H}_4$ | (+)                  | (-)                  |  |  |

<sup>[a]</sup> Shorter retention time. <sup>[b]</sup> Longer retention time.

### 10. Electronic circular dichroism spectroscopy

Electronic circular dichroism spectra of individual atropisomers 1 were recorded on Jasco J-1500 CD spectrometer in spectroscopic grade  $CH_2Cl_2$ , in 1.0 and 0.1 cm cuvettes, at concentrations in a range 2–3×10<sup>-4</sup> mol/L. Results are shown in Figures S19–S21. The notation *first* and *second* refers to the shorter and longer retention times, respectively, of the individual atropisomers. The sign was determined with polarimetric methods (*vide supra*).





**Figure S19**. Clockwise: electronic circular dichroism spectra for *the first* (+) ( $c = 2.66 \times 10^{-4}$  mol L<sup>-1</sup>) and *the second* (-) ( $c = 2.64 \times 10^{-4}$  mol L<sup>-1</sup>) atropisomers of radical **1aA** (R = Ph, X = Ph) in CH<sub>2</sub>Cl<sub>2</sub> in 1 cm (black lines) and 0.1 cm (red lines) cuvettes, combined ECD spectra of both atropisomers.



**Figure S20**. Clockwise: electronic circular dichroism spectra for *the first* (+) ( $c = 2.82 \times 10^{-4}$  mol L<sup>-1</sup>) and *the second* (-) ( $c = 2.77 \times 10^{-4}$  mol L<sup>-1</sup>) atropisomers of radical **1aB** (R = Ph, X = 4-*t*-BuC<sub>6</sub>H<sub>4</sub>) in CH<sub>2</sub>Cl<sub>2</sub> in 1 cm (black lines) and 0.1 cm (red lines) cuvettes, combined ECD spectra of both atropisomers.



**Figure S21**. Clockwise: electronic circular dichroism spectra for *the first* (+) ( $c = 2.29 \times 10^{-4}$  mol L<sup>-1</sup>) and *the second* (-) ( $c = 2.25 \times 10^{-4}$  mol L<sup>-1</sup>) atropisomers of radical **1bA** (R = *t*-Bu, X = Ph) in CH<sub>2</sub>Cl<sub>2</sub> in 1 cm (black lines) and 0.1 cm (red lines) cuvettes; combined ECD spectra of both atropisomers.

### 11. Determination of absolute configuration of the atropisomers

The absolute configuration was assigned to radical atropisomers 1 by comparison of experimental and DFT calculated electronic circular dichroism (ECD) spectra. Theoretical ECD spectra were obtained at the UCAM-B3LYP/Def2SVP // UB3LYP/Def2SVP level of theory in  $CH_2Cl_2$  dielectric medium using the PCM model requested with SCRF(solvent=CH2CL2) keyword, with TD method and 45 or 50 states. Results are shown in Figures S22–S27.

ECD spectra were processed using UV peak half-width at high height set at 0.170 eV



Figure S22. Left: a general scheme for assignment of absolute configuration in series 1. Right: *S* and *R* atropisomers of radical 1aA.



**Figure S23.** ECD spectra of **1aA** atropisomers *R* (black line) and *S* (red line): a) TD-DFT calculated and b) measured in  $CH_2Cl_2$ ; c) chiral HPLC analysis of radical *rac*-**1aA** and absolute configuration assignment.

**Radical 1aB** (R = Ph,  $X = 4-t-Bu-C_6H_4$ )



S isomer

R isomer

Figure S24. Configuration of *S* and *R* atropisomers of radical 1aB.



**Figure S25.** ECD spectra of **1aB** atropisomers *R* (black line) and *S* (red line): a) TD-DFT calculated and b) measured in  $CH_2Cl_2$ ; c) chiral HPLC analysis of radical *rac*-**1aB** and absolute configuration assignment.

**Radical 1bA** (R = t-Bu, X = Ph) 45 states,



S isomer

*R* isomer

Figure S26. Configurations of *S* and *R* atropisomers of radical 1bA.



a) *R***-1b**A



**Figure S27.** ECD spectra of **1bA** atropisomers *R* (black line) and *S* (red line): a) TD-DFT calculated and b) measured in  $CH_2Cl_2$ ; c) chiral HPLC analysis of radical *rac*-**1bA** and absolute configuration assignment.

### 12. Kinetics analysis of racemization

All kinetic experiments were conducted in a closed vessel in 1,2-dichloroethane or cyclohexane. The temperature was controlled using Thermo Scientific dry bath thermostat. For kinetics experiments carried out in 1,2-dichloromethane, samples (15  $\mu$ L) were withdrawn at fixed time intervals (5, 10, 15 or 20 min), diluted with hexane (30  $\mu$ L) and then cooled to 0 °C. The *ee* variation as a function of time was monitored by chiral HPLC (Chiralcel OD-H, hexane/*i*-PrOH, 97:3 ratio for radicals **1aA** and **1aB**, and hexane/*i*-PrOH 99:1 ratio for radical **1bA**, flow 0.5 mL/min). For kinetic experiments carried out in cyclohexane, samples were withdrawn at fixed time intervals (5, 10, 15 or 20 min), cooled to 0 °C, and then analyzed by chiral HPLC as described above without dilution with hexane. The rate constant of enantiomerization,  $k_{en}$ , was determined from first order kinetic line fitting according to equation 1:<sup>13</sup>

$$\ln ee = -2k_{en}t + C \qquad \text{eq 1}$$

where *ee* is an enantiomeric excess defined as (1-R/S)/(1+R/S),  $k_{en}$  is the rate constant of enantiomer interconversion (s<sup>-1</sup>) and *t* is the racemization time (s).

For calculation of activation parameters frequently is used the racemization rate constant  $k_{rac}$ , which is related to  $k_{en}$  by  $k_{rac} = 2 \times k_{en}$ .<sup>13</sup> The constant  $k_{rac}$  is appropriate, however for irreversible processes, not for equilibrium processes, such as this one. Thus, further analyses were conducted using the enantiomer interconversion rate constant,  $k_{en}$ . The use of the  $k_{rac}$  constant instead of  $k_{en}$  affects only the  $\Delta S^{\neq}$  by +1.4 cal mol<sup>-1</sup> K<sup>-1</sup>, which consequently lowers the  $\Delta G_{298}^{\neq}$  by 0.42 kcal mol<sup>-1</sup>.

The half-life of racemization,  $t_{1/2rac}$ , the time during which the enantiomeric excess is reduces to 50%, was calculated using equation 2:

$$t_{1/2rac} = \frac{\ln 2}{2k_{en}} = \frac{\ln 2}{k_{rac}}$$
 eq 2

The experimentally obtained  $k_{en}$  values were analyzed using the Arrhenius equation 3:

$$\ln k_{en} = \ln A - \frac{E_a}{RT} \qquad \text{eq 3}$$

where A is the frequency factor,  $E_a$  is activation energy of enantiomerization, R is the gas constant and T absolute temperature. The value for  $E_a$  and  $\ln A$  were determined from a  $\ln k_{en}$  (1/T) plot.

Temperature-independent thermodynamic parameters  $\Delta H^{\neq}$  and  $\Delta S^{\neq}$  were determined from the Eyring plot according to equation 4:

$$ln(\frac{k_{en}}{T}) = -\frac{\Delta H^{\ddagger}}{RT} + ln\left(\frac{k_B}{h}\right) + \frac{\Delta S^{\ddagger}}{R} \qquad \text{eq } 4$$

Finally, the apparent free energy barrier  $(\Delta G_T^{\neq})$  of enantiomer interconversion was calculated according to equation 5:

$$\Delta G_T^{\neq} = \Delta H^{\neq} - T \Delta S^{\neq} \qquad \text{eq 5}$$

where T is taken as standard temperature (298 K).

Confidence interval, CI, was determined for each parameter using equation 6:

$$CI = 2 \times R \times z \frac{std}{\sqrt{n}} \qquad \text{eq } 6$$

for which confidence z was taken as 95% and R is the gas constant.

The first order kinetics data of racemization of enantiopure radicals 1 are shown at Figures S28-S37 and resulting  $k_{en}$  and racemization activation parameters are presented in Tables S5 and S6. Plotting and statistical analysis were performed with KaleidaGraph 4.5.0 software.



### Kinetics data of racemization in 1,2-dichloroethane

Figure S28. First order kinetics for racemization of radical 1aA in ClCH<sub>2</sub>CH<sub>2</sub>Cl.



Figure S29. Arrhenius (left) and Eyring (right) plots for enantiomerization of radical 1aA in ClCH<sub>2</sub>CH<sub>2</sub>Cl.



Figure S30. First order kinetics for racemization of radical 1aB in ClCH<sub>2</sub>CH<sub>2</sub>Cl.



Figure S31. Arrhenius (left) and Eyring (right) plots for enantiomerization of radical 1aB in ClCH<sub>2</sub>CH<sub>2</sub>Cl.



Figure S32. First order kinetics for racemization of radical 1bA in ClCH<sub>2</sub>CH<sub>2</sub>Cl.



Figure S33. Arrhenius (left) and Eyring (right) plots for enantiomerization of radical 1bA in ClCH<sub>2</sub>CH<sub>2</sub>Cl.

**Table S5**. Kinetic data for enantiomerization of radicals 1 in 1,2-dichloroethane obtained by integrations of HPLC signals and Arrhenius and Eyring analyses.

|     |     |                        |                  | Arrhenius ar            | nalysis (eq 3) | Eyring analysis (eq 4)  |                          |                         |
|-----|-----|------------------------|------------------|-------------------------|----------------|-------------------------|--------------------------|-------------------------|
|     | Т   | $k_{en} \cdot 10^{-4}$ | $t_{1/2rac}^{a}$ | $E_a$                   | lnA            | $\Delta H^{\neq}$       | $\Delta S^{\neq}$        | $\Delta G_{298}^{\neq}$ |
|     | /K  | /s <sup>-1</sup>       | /min             | /kcal mol <sup>-1</sup> |                | /kcal mol <sup>-1</sup> | /cal(mol K) <sup>-</sup> | /kcal mol <sup>-1</sup> |
|     |     |                        |                  |                         |                |                         | 1                        |                         |
| 1aA | 313 | 0.326±0.005            | 177±1.4          | 23.27±0.3               | 27.08±0.48     | 22.64±0.3               | -6.8±1.0                 | 24.7±0.3                |
|     | 318 | $0.59 \pm 0.01$        | 97±0.1           | CI=0.33                 | CI=0.53        | CI=0.33                 | CI=1.1                   |                         |
|     | 323 | 1.04±0.02              | 56±0.1           |                         |                |                         |                          |                         |
| 1aB | 323 | 0.336±0.003            | 172±7            | 24.43±0.2               | 27.76±0.35     | 23.8±0.2                | -5.6±0.7                 | 25.4±0.2                |
|     | 328 | 0.595±0.018            | 97±1.4           | CI=0.25                 | CI=0.38        | CI=0.25                 | CI=0.75                  |                         |
|     | 333 | 1.055±0.025            | 55±0.7           |                         |                |                         |                          |                         |
| 1bA | 328 | 0.241±0.006            | 239±3            | 22.49±0.55              | 23.9±0.8       | 21.8±0.55               | -13.3±1.6                | 25.8±0.55               |
|     | 333 | 0.388±0.03             | 148±5            | CI=0.60                 | CI=0.90        | CI=0.60                 | CI=1.80                  |                         |
|     | 338 | 0.675±0.02             | 86±1.3           |                         |                |                         |                          |                         |
|     | 343 | 1.075±0.04             | 54±1             |                         |                |                         |                          |                         |

<sup>*a*</sup> Racemization half-time (not enantiomerization) calculated using eq 2 and  $k_{rac}$  obtained back from the kinetic fitting line parameters (eq 3). Confidence integral CI calculated at confidence level of 95% according to eq. 6.

Kinetics data for racemization in cyclohexane



Figure S34. First order kinetics for enantiomerization of radical 1aA in cyclohexane.



Figure S35. Arrhenius (left) and Eyring (right) plots for enantiomerization of radical 1aA in cyclohexane.

|     |         |                        | Arrhenius analysis (eq 3) |                               | Eyring analysis (eq 4) |                   |                   |                         |
|-----|---------|------------------------|---------------------------|-------------------------------|------------------------|-------------------|-------------------|-------------------------|
|     | Т<br>/К | $k_{en} \cdot 10^{-4}$ | $t_{1/2rac}^{a}$ /min     | $E_a$ /kcal mol <sup>-1</sup> | lnA                    | $\Delta H^{\neq}$ | $\Delta S^{\neq}$ | $\Delta G_{298}^{\neq}$ |
|     | ,       |                        | ,                         | ,                             |                        | / Keur mor        |                   | 1                       |
| 1aA | 323     | 0.594±0.006            | 97±0.5                    | 39.5±1.4                      | 51.8±2.3               | 38.8±1.5          | 42.2±4.5          | 26.3±1.5                |
|     | 328     | 1.43±0.03              | 40±0.5                    | CI=1.61                       | CI=2.52                | CI=1.6            | CI=4.9            |                         |
|     | 333     | 3.77±0.08              | 15.3 + 0.04               |                               |                        |                   |                   |                         |

**Table S6**. Kinetic data for enantiomerization of radicals **1** in cyclohexane obtained by integrations of HPLC signals and Arrhenius analysis.

<sup>*a*</sup> Racemization half-time (not enantiomerization) calculated using eq 2 and  $k_{rac}$  obtained back from the kinetic fitting line parameters (eq 3). Confidence integral CI calculated at confidence level of 95% according to eq. 6.

### **13.** Computational details

Quantum-mechanical calculations were carried out using Gaussian 09 suite of programs.<sup>14</sup> Geometry optimizations were undertaken at the UB3LYP/Def2SVP level of theory using tight convergence limits. TD-DFT calculations were conducted at the UCAM-B3LYP/Def2SVP // UB3LYP/Def2SVP level of theory in  $CH_2Cl_2$  dielectric medium using the PCM model requested with SCRF(solvent=CH2CL2) keyword, with TD method and 45 or 50 states.

### 14. Partial output from TD-DFT calculations

| <i>S</i> -1aA |           |       |        |                     |            |           |
|---------------|-----------|-------|--------|---------------------|------------|-----------|
| Rotatory      | Strengths | (R)   | in cgs | ; (10** <b>-</b> 40 | erg-esu-cm | /Gauss)   |
| st            | tate      | Х     | Х      | YY                  | ZZ         | R(length) |
|               | 1         | 0.51  | 33     | -1.2034             | 1.8455     | 0.3851    |
|               | 2 .       | -2.97 | 48     | -49.2836            | 32.5979    | -6.5535   |
|               | 3         | 27.58 | 01     | -23.7557            | -50.5580   | -15.5779  |
|               | 4 .       | -0.79 | 82     | -21.0566            | 12.7433    | -3.0372   |
|               | 5 4       | 46.82 | 18     | 12.5288             | 2.6754     | 20.6753   |
|               | 6         | 12.47 | 83     | 6.7407              | -19.8085   | -0.1965   |
|               | 7         | 7.57  | 07     | 0.7528              | -2.1152    | 2.0694    |
|               | 8 –2      | 21.95 | 09     | 74.0979             | -36.0628   | 5.3614    |
|               | 9 –       | 10.57 | 51     | 39.4017             | -50.9173   | -7.3635   |
|               | 10 -      | 62.81 | 19     | 1.3229              | -33.1073   | -31.5321  |
|               | 11 ·      | -0.83 | 47     | 2.3420              | 0.7710     | 0.7594    |
|               | 12        | 10.24 | 24     | 2.1961              | -10.9302   | 0.5028    |
|               | 13 –      | 39.96 | 48     | 31.0941             | -17.9127   | -8.9278   |
|               | 14        | 11.04 | 83     | 6.3176              | -12.6504   | 1.5718    |
|               | 15        | 3.31  | 60     | 38.6209             | -48.0856   | -2.0496   |
|               | 16 ·      | -0.92 | 51     | 60.3141             | 0.7409     | 20.0433   |
|               | 17 ·      | -6.85 | 62     | 15.8191             | -0.8499    | 2.7043    |
|               | 18        | 1.13  | 28     | 150.0041            | -68.6351   | 27.5006   |
|               | 19 –18    | 84.13 | 82     | 8.4468              | -47.4470   | -74.3795  |

| 20 | -43.1420  | 42.8513  | -37.5679   | -12.6195  |
|----|-----------|----------|------------|-----------|
| 21 | 96.8979   | 89.0340  | -2.7284    | 61.0678   |
| 22 | -3.2076   | -0.2693  | -4.9162    | -2.7977   |
| 23 | 19.6431   | 6.1934   | -1.2831    | 8.1845    |
| 24 | -7.6099   | 45.6161  | -51.6567   | -4.5501   |
| 25 | -19.0597  | -3.1200  | -30.1299   | -17.4366  |
| 26 | -35.2889  | 36.2107  | 2.7422     | 1.2213    |
| 27 | -51.6484  | 74.0560  | 25.3950    | 15.9342   |
| 28 | -0.5165   | -11.6171 | -2.0013    | -4.7116   |
| 29 | 14.2600   | 402.0719 | -25.3534   | 130.3262  |
| 30 | -4.0068   | 109.9438 | -23.9800   | 27.3190   |
| 31 | 124.9404  | 235.8284 | -1.6037    | 119.7217  |
| 32 | -106.1655 | -0.7834  | -79.7770   | -62.2420  |
| 33 | 4.8512    | 1.2238   | -17.4784   | -3.8011   |
| 34 | -1.3138   | 121.6686 | 1.4840     | 40.6129   |
| 35 | -60.9000  | 138.7981 | -307.3033  | -76.4684  |
| 36 | -5.2200   | 415.6012 | -138.4897  | 90.6305   |
| 37 | -210.9622 | -10.8450 | -265.7061  | -162.5044 |
| 38 | 3.7744    | -5.6019  | -0.7066    | -0.8447   |
| 39 | -13.6000  | 46.3105  | -111.6190  | -26.3028  |
| 40 | 39.6600   | -13.5934 | 6.0794     | 10.7153   |
| 41 | 24.3326   | 8.6651   | -10.5060   | 7.4972    |
| 42 | -57.2027  | 22.3557  | 32.8673    | -0.6599   |
| 43 | -2.1188   | 1.7784   | -4.1190    | -1.4865   |
| 44 | 33.4247   | 84.1474  | -3.6830    | 37.9630   |
| 45 | 22.8363   | 76.8294  | -248.4131  | -49.5825  |
| 46 | 10.0825   | 237.4273 | -374.7849  | -42.4251  |
| 47 | 147.7654  | 579.3100 | -900.5243  | -57.8163  |
| 48 | 472.4565  | 626.2200 | -1968.4808 | -289.9348 |
| 49 | -0.5027   | 391.9224 | -155.9675  | 78.4841   |
| 50 | 10.1720   | 77.8371  | -6.5763    | 27.1443   |

#### *R*-1aA

| Rotatory | Strengths (R) | in cgs (10**-40 | erg-esu- | cm/Gauss) |
|----------|---------------|-----------------|----------|-----------|
| state    | XX            | YY              | ZZ       | R(length) |
| 1        | -0.5133       | 1.2030 -        | 1.8451   | -0.3851   |
| 2        | 2.9752        | 49.2845 -3      | 2.5996   | 6.5534    |
| 3        | -27.5808      | 23.7522 5       | 0.5587   | 15.5767   |
| 4        | 0.7983        | 21.0591 -1      | 2.7434   | 3.0380    |
| 5        | -46.8212      | -12.5287 -      | 2.6760   | -20.6753  |
| 6        | -12.4784      | -6.7410 1       | 9.8089   | 0.1965    |
| 7        | -7.5704       | -0.7529         | 2.1152   | -2.0694   |
| 8        | 21.9508       | -74.0971 3      | 6.0623   | -5.3613   |
| 9        | 10.5767       | -39.4014 5      | 0.9176   | 7.3643    |
| 10       | 62.8097       | -1.3225 3       | 3.1057   | 31.5310   |
| 11       | 0.8346        | -2.3418 -       | 0.7710   | -0.7594   |
| 12       | -10.2423      | -2.1967 1       | 0.9311   | -0.5026   |
| 13       | 39.9649       | -31.0932 1      | 7.9128   | 8.9282    |
| 14       | -11.0481      | -6.3177 1       | 2.6502   | -1.5719   |
| 15       | -3.3154       | -38.6173 4      | 8.0867   | 2.0513    |
| 16       | 0.9255        | -60.3166 -      | 0.7414   | -20.0442  |
| 17       | 6.8531        | -15.8194        | 0.8488   | -2.7059   |
| 18       | -1.1344       | -150.0039 6     | 8.6362   | -27.5007  |
| 19       | 184.1480      | -8.4464 4       | 7.4498   | 74.3838   |
| 20       | 43.1360       | -42.8502 3      | 7.5658   | 12.6172   |
| 21       | -96.8975      | -89.0363        | 2.7282   | -61.0686  |
| 22       | 3.2076        | 0.2690          | 4.9162   | 2.7976    |
| 23       | -19.6425      | -6.1930         | 1.2831   | -8.1842   |

| 24 | 7.6106    | -45.6170  | 51.6572   | 4.5503    |
|----|-----------|-----------|-----------|-----------|
| 25 | 19.0604   | 3.1200    | 30.1296   | 17.4367   |
| 26 | 35.2887   | -36.2102  | -2.7421   | -1.2212   |
| 27 | 51.6451   | -74.0545  | -25.3963  | -15.9352  |
| 28 | 0.5181    | 11.6170   | 2.0018    | 4.7123    |
| 29 | -14.2640  | -402.0811 | 25.3534   | -130.3306 |
| 30 | 4.0050    | -109.9462 | 23.9803   | -27.3203  |
| 31 | -124.9366 | -235.8197 | 1.6040    | -119.7175 |
| 32 | 106.1681  | 0.7833    | 79.7841   | 62.2451   |
| 33 | -4.8484   | -1.2242   | 17.4764   | 3.8013    |
| 34 | 1.3142    | -121.6772 | -1.4801   | -40.6144  |
| 35 | 60.8996   | -138.7788 | 307.2872  | 76.4693   |
| 36 | 5.2283    | -415.6151 | 138.4986  | -90.6294  |
| 37 | 210.9662  | 10.8491   | 265.7013  | 162.5055  |
| 38 | -3.7864   | 5.5997    | 0.7021    | 0.8384    |
| 39 | 13.6011   | -46.3058  | 111.6204  | 26.3052   |
| 40 | -39.6585  | 13.5933   | -6.0857   | -10.7170  |
| 41 | -24.3351  | -8.6670   | 10.4988   | -7.5011   |
| 42 | 57.2011   | -22.3505  | -32.8604  | 0.6634    |
| 43 | 2.1194    | -1.7787   | 4.1174    | 1.4860    |
| 44 | -33.4268  | -84.1461  | 3.6821    | -37.9636  |
| 45 | -22.8379  | -76.8306  | 248.4209  | 49.5842   |
| 46 | -10.0820  | -237.4119 | 374.7673  | 42.4245   |
| 47 | -147.7363 | -579.2336 | 900.3707  | 57.8003   |
| 48 | -472.4845 | -626.3002 | 1968.6572 | 289.9575  |
| 49 | 0.5019    | -391.9272 | 155.9785  | -78.4823  |
| 50 | -10.1726  | -77.8424  | 6.5767    | -27.1461  |

#### *S*-1aB

Rotatory Strengths (R) in cgs (10\*\*-40 erg-esu-cm/Gauss)

| -     | J ()      | 2 (      |           | ,         |
|-------|-----------|----------|-----------|-----------|
| state | XX        | YY       | ZZ        | R(length) |
| 1     | 0.0546    | -3.0072  | 4.3065    | 0.4513    |
| 2     | -1.4786   | -76.1054 | 53.6402   | -7.9813   |
| 3     | 58.5558   | -4.2650  | -111.5007 | -19.0700  |
| 4     | -5.3281   | -18.8137 | 18.7492   | -1.7975   |
| 5     | 66.5499   | -8.6811  | 1.3524    | 19.7404   |
| 6     | 27.0422   | 2.6922   | -31.6728  | -0.6461   |
| 7     | 19.7764   | -2.1968  | -7.6780   | 3.3005    |
| 8     | -46.2331  | 61.8432  | 1.7019    | 5.7707    |
| 9     | 45.9842   | -0.8850  | -12.0496  | 11.0165   |
| 10    | -137.1471 | 0.1650   | -5.0095   | -47.3305  |
| 11    | -4.4897   | 0.8733   | 5.3469    | 0.5768    |
| 12    | 2.3732    | 5.0071   | -13.4971  | -2.0389   |
| 13    | -49.8412  | 12.2761  | 14.9434   | -7.5406   |
| 14    | 12.0320   | 10.7975  | -18.4343  | 1.4651    |
| 15    | -0.0093   | 13.1174  | -57.2312  | -14.7077  |
| 16    | 20.0886   | 16.3952  | 99.1225   | 45.2021   |
| 17    | -277.4652 | -6.1047  | 3.3017    | -93.4227  |
| 18    | 89.2772   | 34.0318  | 33.5792   | 52.2961   |
| 19    | -47.4206  | 3.9994   | 1.8246    | -13.8655  |
| 20    | -1.3688   | 3.6759   | 5.1480    | 2.4850    |
| 21    | 16.1298   | 120.9571 | 39.5482   | 58.8784   |
| 22    | -1.7809   | -4.3524  | -0.5135   | -2.2156   |
| 23    | -1.4978   | -0.0296  | -8.6233   | -3.3836   |
| 24    | 2.2910    | 22.6382  | 11.3637   | 12.0976   |
| 25    | -73.9452  | 40.7699  | -8.7308   | -13.9687  |
| 26    | 0.3309    | -0.5641  | -1.0216   | -0.4183   |
| 27    | -19.6832  | -73.6900 | 62.2607   | -10.3708  |

| 28 | -65.3587  | 13.1947   | 69.4030    | 5.7463    |
|----|-----------|-----------|------------|-----------|
| 29 | -443.9611 | 935.1155  | 317.0327   | 269.3957  |
| 30 | 0.1916    | 2.2157    | -18.9283   | -5.5070   |
| 31 | 13.4299   | 65.6174   | 13.5083    | 30.8519   |
| 32 | -90.5256  | 1.8248    | -38.5920   | -42.4309  |
| 33 | -62.6578  | 2.0417    | -27.8354   | -29.4838  |
| 34 | 1.8240    | 22.7607   | 1.2872     | 8.6240    |
| 35 | -240.7230 | 224.0092  | -93.2160   | -36.6433  |
| 36 | -123.1505 | 431.6988  | 57.7491    | 122.0991  |
| 37 | -515.8913 | 53.3844   | -264.3819  | -242.2963 |
| 38 | 55.3619   | 15.6121   | 0.5457     | 23.8399   |
| 39 | 1.3545    | 2.4180    | 0.4196     | 1.3974    |
| 40 | 14.9498   | -61.1141  | 128.3191   | 27.3850   |
| 41 | -19.2071  | 0.5615    | -48.1483   | -22.2646  |
| 42 | -60.5271  | -7.4427   | 98.5767    | 10.2023   |
| 43 | -0.8285   | 0.6181    | 0.1896     | -0.0069   |
| 44 | -10.2632  | 20.2313   | -48.7297   | -12.9205  |
| 45 | 45.9794   | 3.5248    | 8.8865     | 19.4636   |
| 46 | -10.7859  | 40.5000   | -32.1881   | -0.8247   |
| 47 | -28.3063  | 229.0530  | -119.7671  | 26.9932   |
| 48 | -183.0232 | 1275.6874 | -2371.0599 | -426.1319 |
| 49 | 93.5066   | -5.9965   | 157.0231   | 81.5110   |
| 50 | 8.7880    | 73.0594   | 5.9058     | 29.2511   |

#### *R*-1aB

| Rotatory | Strengths | (R) in  | cgs (10**-40 | erg-esu-cm/G | Gauss)    |
|----------|-----------|---------|--------------|--------------|-----------|
| st       | tate      | XX      | YY           | ZZ           | R(length) |
|          | 1         | -0.0546 | 3.0072       | -4.3064      | -0.4513   |
|          | 2         | 1.4786  | 76.1054      | -53.6402     | 7.9813    |
|          | 3 –       | 58.5558 | 4.2650       | 111.5008     | 19.0700   |
|          | 4         | 5.3281  | 18.8137      | -18.7492     | 1.7975    |
|          | 5 –       | 66.5499 | 8.6811       | -1.3524      | -19.7404  |
|          | 6 –       | 27.0422 | -2.6922      | 31.6728      | 0.6461    |
|          | 7 –       | 19.7764 | 2.1968       | 7.6780       | -3.3005   |
|          | 8         | 46.2331 | -61.8432     | -1.7020      | -5.7707   |
|          | 9 –       | 45.9842 | 0.8850       | 12.0496      | -11.0165  |
| -        | 10 1      | 37.1472 | -0.1650      | 5.0095       | 47.3306   |
| -        | 11        | 4.4897  | -0.8733      | -5.3469      | -0.5768   |
| -        | 12        | -2.3731 | -5.0071      | 13.4971      | 2.0389    |
| -        | 13        | 49.8413 | -12.2761     | -14.9434     | 7.5406    |
| -        | 14 –      | 12.0320 | -10.7975     | 18.4343      | -1.4651   |
| -        | 15        | 0.0093  | -13.1174     | 57.2313      | 14.7077   |
| -        | 16 –      | 20.0885 | -16.3951     | -99.1227     | -45.2021  |
| -        | 17 2      | 77.4647 | 6.1047       | -3.3019      | 93.4225   |
| -        | 18 –      | 89.2767 | -34.0318     | -33.5790     | -52.2958  |
| -        | 19        | 47.4206 | -3.9994      | -1.8246      | 13.8656   |
| 2        | 20        | 1.3688  | -3.6759      | -5.1480      | -2.4850   |
| 2        | 21 -      | 16.1299 | -120.9571    | -39.5483     | -58.8784  |
| 2        | 22        | 1.7809  | 4.3524       | 0.5135       | 2.2156    |
| 2        | 23        | 1.4978  | 0.0296       | 8.6233       | 3.3836    |
| 2        | 24        | -2.2910 | -22.6381     | -11.3637     | -12.0976  |
| 2        | 25        | 73.9455 | -40.7700     | 8.7307       | 13.9687   |
| 2        | 26        | -0.3311 | 0.5642       | 1.0216       | 0.4182    |
| 2        | 27        | 19.6833 | 73.6900      | -62.2608     | 10.3708   |
| 2        | 28        | 65.3587 | -13.1948     | -69.4030     | -5.7463   |
| 2        | 29 4      | 43.9613 | -935.1153    | -317.0331    | -269.3957 |
|          | 30        | -0.1916 | -2.2158      | 18.9283      | 5.5070    |
|          | 31 –      | 13.4298 | -65.6170     | -13.5081     | -30.8516  |

| 32 | 90.5258  | -1.8248    | 38.5920   | 42.4310   |
|----|----------|------------|-----------|-----------|
| 33 | 62.6573  | -2.0417    | 27.8353   | 29.4836   |
| 34 | -1.8241  | -22.7606   | -1.2872   | -8.6240   |
| 35 | 240.7233 | -224.0090  | 93.2159   | 36.6434   |
| 36 | 123.1506 | -431.6985  | -57.7493  | -122.0991 |
| 37 | 515.8912 | -53.3844   | 264.3814  | 242.2961  |
| 38 | -55.3619 | -15.6122   | -0.5457   | -23.8399  |
| 39 | -1.3544  | -2.4180    | -0.4195   | -1.3973   |
| 40 | -14.9498 | 61.1142    | -128.3191 | -27.3849  |
| 41 | 19.2071  | -0.5615    | 48.1483   | 22.2646   |
| 42 | 60.5270  | 7.4428     | -98.5766  | -10.2023  |
| 43 | 0.8285   | -0.6181    | -0.1897   | 0.0069    |
| 44 | 10.2631  | -20.2314   | 48.7298   | 12.9205   |
| 45 | -45.9794 | -3.5248    | -8.8864   | -19.4635  |
| 46 | 10.7859  | -40.5000   | 32.1882   | 0.8247    |
| 47 | 28.3065  | -229.0540  | 119.7679  | -26.9932  |
| 48 | 183.0231 | -1275.6840 | 2371.0566 | 426.1319  |
| 49 | -93.5065 | 5.9968     | -157.0231 | -81.5109  |
| 50 | -8.7882  | -73.0592   | -5.9058   | -29.2511  |

#### S-1bA

| Rotatory Strengt | hs (R) in | cgs (10**-40 | era-esu-cm/G | auss)     |
|------------------|-----------|--------------|--------------|-----------|
| state            | XX        | YY           | ZZ           | R(length) |
| 1                | 0.6956    | -0.0591      | 0.9812       | 0.5392    |
| 2                | 64.0358   | -91.2870     | 39.9864      | 4.2451    |
| 3                | -13.3077  | -30.6084     | 2.2864       | -13.8766  |
| 4                | 9.5089    | 30.5653      | -68.3024     | -9.4094   |
| 5                | 65.0425   | 42.0359      | -42.2013     | 21.6257   |
| 6                | 8.4335    | 4.7727       | -7.8168      | 1.7965    |
| 7                | -0.2840   | -1.0777      | 4.5384       | 1.0589    |
| 8                | 48.6257   | 67.8354      | -61.5200     | 18.3137   |
| 9                | -14.8017  | 13.6878      | -89.3094     | -30.1411  |
| 10               | -19.4425  | 53.0441      | -142.5855    | -36.3279  |
| 11               | -48.7844  | 14.8050      | -14.5124     | -16.1639  |
| 12               | 3.4696    | 13.0231      | 1.7163       | 6.0696    |
| 13               | -27.5194  | 70.2914      | -51.6695     | -2.9658   |
| 14               | 7.8139    | 49.6980      | -6.3276      | 17.0614   |
| 15               | 20.8728   | 140.8170     | -56.6962     | 34.9979   |
| 16               | -1.4970   | 36.9350      | -11.6923     | 7.9152    |
| 17               | -46.2623  | 80.1299      | 15.5619      | 16.4765   |
| 18               | 3.0065    | -0.3348      | -31.5917     | -9.6400   |
| 19               | 17.6682   | -0.2659      | -63.8067     | -15.4681  |
| 20               | 0.2381    | 1.0491       | -11.8322     | -3.5150   |
| 21               | -5.0215   | 9.2628       | -26.6699     | -7.4762   |
| 22               | 9.8461    | 1.7299       | 2.1918       | 4.5893    |
| 23               | -13.3514  | 54.9690      | 14.0212      | 18.5463   |
| 24               | 6.5579    | -3.4598      | 4.0219       | 2.3733    |
| 25               | -0.1711   | 0.9605       | -3.8505      | -1.0204   |
| 26               | 6.7790    | 8.9604       | -22.0464     | -2.1023   |
| 27               | -1.6324   | 16.4612      | -26.1871     | -3.7861   |
| 28               | 1.2807    | 92.1262      | -94.8960     | -0.4963   |
| 29               | -17.2258  | 64.8689      | -292.4797    | -81.6122  |
| 30               | 0.6365    | 2.9409       | -7.9778      | -1.4668   |
| 31               | 0.0250    | 3.2474       | -0.0270      | 1.0818    |
| 32               | 1.9083    | 10.0315      | -25.7797     | -4.6133   |
| 33               | -35.4518  | -0.7632      | -0.4476      | -12.2209  |
| 34               | -31.2817  | 109.4601     | -538.9196    | -153.5804 |
| 35               | 2.1542    | 221.2694     | 3.2131       | 75.5456   |

| 36 | 167.4442  | 585.3511  | -2131.3942 | -459.5330 |
|----|-----------|-----------|------------|-----------|
| 37 | 82.9637   | 29.9098   | -462.0832  | -116.4032 |
| 38 | -140.5379 | 1307.5050 | 346.7345   | 504.5672  |
| 39 | 3.1783    | 15.1403   | -265.1027  | -82.2614  |
| 40 | 380.0752  | 369.9128  | -119.0886  | 210.2998  |
| 41 | -2.9510   | 156.9990  | -42.9014   | 37.0489   |
| 42 | -5.4210   | 65.7937   | 12.2261    | 24.1996   |
| 43 | -0.2793   | 1.4703    | -13.9138   | -4.2410   |
| 44 | 2.0671    | -2.1535   | -199.2690  | -66.4518  |
| 45 | -71.3845  | 151.0469  | -144.2315  | -21.5230  |

#### R-1bA

| Rotatory Stren | ngths (R) in | cgs (10**-40 | erg-esu-cm/ | Gauss)    |
|----------------|--------------|--------------|-------------|-----------|
| state          | XX           | YY           | ZZ          | R(length) |
| 1              | -0.6956      | 0.0591       | -0.9811     | -0.5392   |
| 2              | -64.0307     | 91.2829      | -39.9857    | -4.2445   |
| 3              | 13.3052      | 30.6093      | -2.2898     | 13.8749   |
| 4              | -9.5088      | -30.5661     | 68.3064     | 9.4105    |
| 5              | -65.0421     | -42.0342     | 42.1984     | -21.6260  |
| 6              | -8.4324      | -4.7721      | 7.8160      | -1.7962   |
| 7              | 0.2841       | 1.0798       | -4.5383     | -1.0581   |
| 8              | -48.6260     | -67.8409     | 61.5263     | -18.3135  |
| 9              | 14.7999      | -13.6841     | 89.2943     | 30.1367   |
| 10             | 19.4419      | -53.0458     | 142.5889    | 36.3283   |
| 11             | 48.7869      | -14.8052     | 14.5153     | 16.1656   |
| 12             | -3.4691      | -13.0214     | -1.7154     | -6.0686   |
| 13             | 27.5178      | -70.2890     | 51.6706     | 2.9665    |
| 14             | -7.8128      | -49.7037     | 6.3249      | -17.0639  |
| 15             | -20.8732     | -140.8071    | 56.6929     | -34.9958  |
| 16             | 1.4973       | -36.9425     | 11.6943     | -7.9170   |
| 17             | 46.2630      | -80.1230     | -15.5632    | -16.4744  |
| 18             | -3.0044      | 0.3347       | 31.5803     | 9.6369    |
| 19             | -17.6692     | 0.2657       | 63.8189     | 15.4718   |
| 20             | -0.2385      | -1.0483      | 11.8365     | 3.5166    |
| 21             | 5.0213       | -9.2618      | 26.6634     | 7.4743    |
| 22             | -9.8459      | -1.7320      | -2.1891     | -4.5890   |
| 23             | 13.3514      | -54.9672     | -14.0238    | -18.5465  |
| 24             | -6.5581      | 3.4602       | -4.0213     | -2.3731   |
| 25             | 0.1709       | -0.9600      | 3.8501      | 1.0203    |
| 26             | -6.7781      | -8.9591      | 22.0446     | 2.1025    |
| 27             | 1.6326       | -16.4570     | 26.1825     | 3.7861    |
| 28             | -1.2809      | -92.1284     | 94.8974     | 0.4960    |
| 29             | 17.2246      | -64.8653     | 292.4650    | 81.6081   |
| 30             | -0.6365      | -2.9397      | 7.9763      | 1.4667    |
| 31             | -0.0248      | -3.2497      | 0.0263      | -1.0827   |
| 32             | -1.9085      | -10.0301     | 25.7786     | 4.6133    |
| 33             | 35.4393      | 0.7616       | 0.4439      | 12.2149   |
| 34             | 31.2923      | -109.4610    | 538.9297    | 153.5870  |
| 35             | -2.1551      | -221.2800    | -3.2107     | -75.5486  |
| 36             | -167.4546    | -585.3752    | 2131.4146   | 459.5283  |
| 37             | -82.9714     | -29.8705     | 462.1553    | 116.4378  |
| 38             | 140.5234     | -1307.4828   | -346.7073   | -504.5556 |
| 39             | -3.1565      | -15.1703     | 265.0356    | 82.2363   |
| 40             | -380.0530    | -369.9316    | 119.0405    | -210.3147 |
| 41             | 2.9518       | -156.9866    | 42.9106     | -37.0414  |
| 42             | 5.4195       | -65.7863     | -12.2245    | -24.1971  |
| 43             | 0.2776       | -1.4700      | 13.9379     | 4.2485    |
| 44             | -2.0662      | 2.1523       | 199.2399    | 66.4420   |

#### **15. Archive for DFT calculations**

#### *S*-1aA

1\1\GINC-LOCALHOST\FOpt\UB3LYP\def2SVP\C29H20N3(2)\PIOTR\23-Mar-2021\0 \\#P UB3LYP/Def2SVP FOpt(tight) Geom=(NoDistance,NoAngle) fcheck\\naph thalene-1-(3-Ph-benzotrizin-1-yl)-8-Ph, S isomer\\0,2\C,2.3850213091, -2.0653649206,-4.4073410291\C,1.514347509,-1.6268161742,-3.4165419869\ C,1.8299647371,-1.9148564336,-2.0376937433\C,2.9639991794,-2.768109332 9,-1.7629014183\C,3.8005608068,-3.2043597351,-2.8270929334\C,3.5356632 957,-2.8329287421,-4.1238061288\C,1.1237354112,-1.4122174345,-0.890653 8844\C,3.2531727569,-3.1739771077,-0.4308997631\C,2.4833435044,-2.7455 941589,0.6262176834\C,1.4285242294,-1.8406263579,0.3895179661\H,2.1355 746495,-1.8465894929,-5.4480755584\H,4.6582706598,-3.8390233771,-2.590 2228073\H,4.1839002653,-3.1592493975,-4.9406569167\H,4.1062245125,-3.8 36727857,-0.264315606\H,2.7033890384,-3.068328535,1.6463096849\H,0.845  $1259006, -1.4416115275, 1.2209460891 \\ \texttt{C}, 0.3999826696, 0.9266247706, -1.2594$ 390699\C,1.6924260035,1.3894224777,-1.5526391971\C,-0.7002573755,1.835 2197308,-1.2037717732\C,-2.0851815791,0.126530214,-0.5320083055\C,1.89 43721183,2.7424123252,-1.825320852\C,-0.4598557965,3.1967685037,-1.492 1770585\C,0.8184728126,3.6450637968,-1.8031114501\H,2.5325498625,0.695 6830657,-1.5683016506\H,2.9020359192,3.0972704032,-2.0545502196\H,-1.3 142699633,3.8747322047,-1.4490665468\H,0.9888748451,4.7021116178,-2.02 11472144\C,0.2550972909,-0.9693095904,-3.8842037366\C,-0.9985241705,-1 .5514701966,-3.6256887456\C,-2.1644146309,-1.0015737837,-4.1624576619\ C,-0.8599195264,0.7248108504,-5.2371763813\N,-1.1236205108,-0.80118268 91,-0.5671944939\N,-1.9513439615,1.4147633311,-0.8548733044\C,-2.09993 96016,0.1390389291,-4.9689195938\C,0.3071837868,0.1727096466,-4.702959 0691\H,-0.7989316606,1.6196515641,-5.86188821\H,-1.0595909489,-2.44376 65404,-2.9992415563\H,-3.1292581805,-1.4672442319,-3.9468722653\H,-3.0  $141456344, 0.5704217201, -5.3842508095 \\ \text{H}, 1.27339169, 0.6391215738, -4.9095 \\ \text{H}, 1.27339169, 0.9095 \\ \text{H}, 1.273912, 0.9095 \\ \text{H}, 1.27392, 0.9095 \\ \text{H}, 1.27392, 0.9095 \\ \text{H}, 1.27392, 0.909$ 421444\C,-3.4270509759,-0.3478345373,-0.0875462573\C,-4.495087125,0.56 17480875,-0.006701898\C,-3.6489774725,-1.6932651177,0.2558269357\C,-5. 7576696311,0.1346643701,0.4079371499\C,-4.9126944497,-2.1165741016,0.6 699221891\C,-5.9716406777,-1.2051662929,0.7475771679\H,-4.3106351682,1 .6025426429,-0.2752755018\H,-2.8186955236,-2.3976202792,0.1935066798\H ,-6.5803870743,0.8522210869,0.4668105906\H,-5.0731014199,-3.1651515387 ,0.9345230763\H,-6.9607544123,-1.5389258995,1.0724311329\N,0.099768156 8,-0.4093295091,-0.9916089734\\Version=ES64L-G09RevD.01\State=2-A\HF=-1280.4476115\S2=0.767213\S2-1=0.\S2A=0.75017\RMSD=3.207e-09\RMSF=1.031 e-06\Dipole=1.1545611,-0.3164027,-0.2473488\Quadrupole=4.8123307,-0.62 84905,-4.1838402,-2.5024791,-0.2509008,-4.964137\PG=C01 [X(C29H20N3)]\ 10

#### R-1aA

1\1\GINC-LOCALHOST\FOpt\UB3LYP\def2SVP\C29H20N3(2)\PIOTR\23-Mar-2021\0
\\#P UB3LYP/Def2SVP FOpt(tight) Geom=(NoDistance,NoAngle) fcheck\\naph
thalene-1-(3-Ph-benzodiazen-1-yl)-8-Ph\\0,2\C,3.7871370394,0.210134227
4,1.6362607251\C,2.5464759932,0.0154631392,1.0404888235\C,2.4037868211
,-1.0354680197,0.0612097592\C,3.5225959468,-1.926304713,-0.1491728061\
C,4.7579979433,-1.6856654341,0.5130421521\C,4.8990766767,-0.6169572342
,1.3660112109\C,1.2425300658,-1.2752400968,-0.7518684806\C,3.398517207
6,-3.0443885934,-1.0192710668\C,2.2279526966,-3.2895402893,-1.69995205
86\C,1.1560911674,-2.3817950524,-1.5785094114\H,3.8843485816,1.0048529
685,2.3793535721\H,5.5914744069,-2.3677718949,0.3269799436\H,5.8510163
968,-0.4255389474,1.8671213205\H,4.2590396772,-3.7079682644,-1.1369533
266\H,2.1342626645,-4.1554061644,-2.3592422096\H,0.2418377019,-2.52505
47108,-2.1568315401\C,0.2034005541,0.8602636579,-1.4517512887\C,1.3797
823259,1.36267364,-2.0299101341\C,-1.0149226083,1.6014273975,-1.526162

5394\C,-2.1367728131,-0.1287912949,-0.5079787892\C,1.3632826434,2.6115 691106,-2.6509637815\C,-0.9927756342,2.8651446247,-2.1564913438\C,0.18 03125195,3.3666618382,-2.707960218\H,2.3004747389,0.7810674384,-1.9926 604954\H,2.2819954403,2.9988130858,-3.0980269527\H,-1.932778361,3.4183 978282,-2.1991809319\H,0.1806703229,4.3448772381,-3.1948084246\C,1.425 8808671,0.8648213904,1.5499900439\C,0.3233587515,0.284669826,2.2020466 184\C,-0.6641570796,1.0840848262,2.7813183524\C,0.5247079106,3.0671586 628,2.0804973497\N,-1.0474635905,-0.8926934681,-0.3801330591\N,-2.1829 550272,1.0993242554,-1.0288455225\C,-0.5681518353,2.4779171226,2.72173 99923\C,1.5147218197,2.267409109,1.5037761086\H,0.606622457,4.15563318 34,2.0235984086\H,0.2401923089,-0.8027558126,2.2563307169\H,-1.5147739 517,0.6135786887,3.2806417545\H,-1.3445192729,3.1016620292,3.171806108 1\H,2.3631999902,2.733201754,0.9969264085\C,-3.4095110095,-0.727386823 ,-0.0130018297\C,-4.6078036544,-0.0012444906,-0.1197203865\C,-3.438063  $0623, -2.0108446819, 0.5608106068 \\ C, -5.8082964213, -0.5467891188, 0.338142 \\ C, -5.8082964213, -0.54678918 \\ C, -5.808296421, -0.568881 \\ C, -5.808296421, -0.58881 \\ C, -5.80829642, -0.588829642, -0.58881 \\ C, -5.80829642, -0.58881 \\ C, -5.80829844, -0.58881 \\ C, -5.80844, -0.58881 \\ C, -5.808484, -0.588881 \\ C, -5.80844, -0.5888$ 9128\C,-4.6402209404,-2.5529742998,1.0174920576\C,-5.8295235197,-1.823 7970068,0.908305496\H,-4.5730663175,0.992897304,-0.5668031076\H,-2.507 3119942,-2.573424019,0.6418967515\H,-6.7338485499,0.0282465276,0.24923 3076\H,-4.6500016051,-3.5519197074,1.4616441457\H,-6.7701843939,-2.250 5290907,1.2665350318\N,0.1286780054,-0.3686366452,-0.7953547428\\Versi on=ES64L-G09RevD.01\State=2-A\HF=-1280.4476115\S2=0.767213\S2-1=0.\S2A =0.75017\RMSD=4.801e-09\RMSF=1.045e-06\Dipole=1.2060089,-0.151047,-0.1 305194\Quadrupole=3.7838909,2.9959064,-6.7797973,-1.8424531,-3.6132424 ,0.646579\PG=C01 [X(C29H20N3)]\\

#### S−1aB

1\1\GINC-LOCALHOST\FOpt\UB3LYP\def2SVP\C33H28N3(2)\PIOTR\24-Mar-2021\0 \\#P UB3LYP/Def2SVP FOpt(tight) Geom=(NoDistance,NoAngle) fcheck\\naph thalene-1-(3-Ph-benzoTriazin-1-yl)-8-Ph-Bu opt in vac isomer S\\0,2\C ,3.7912198874,0.1821963189,-1.6842824909\C,2.5552331524,-0.0124334448,  $-1.0787750873 \ C, 2.4312366202, -1.0360488312, -0.0680710032 \ C, 3.560292298$ 4,-1.9094733661,0.1587130718\C,4.7893925338,-1.6723622186,-0.516172676 1\C,4.9142519163,-0.6237212957,-1.3965207984\C,1.2787896717,-1.2634224 164,0.7621698323\C,3.45198016,-3.0067270312,1.0573185743\C,2.288368319 8,-3.2449552176,1.7522054492\C,1.2080049357,-2.3490260095,1.6175241633 \H,3.8751916878,0.957224549,-2.4495441346\H,5.6312962932,-2.340492969, -0.3176806612\H,5.8618227815,-0.4344638837,-1.9067365287\H,4.319228535 5,-3.6595739517,1.1855141862\H,2.2072289398,-4.0947839601,2.4336801493 \H,0.3004404424,-2.4835229548,2.2083096255\C,0.2441672541,0.896071433, 1.3920274747\C,1.4225854727,1.4141656831,1.952128441\C,-0.9671887045,1 .6513763617,1.4252988623\C,-2.1035482441,-0.1238357666,0.5050085858\C, 1.4156325871,2.6918267897,2.5114623464\C,-0.9355122064,2.9441265858,1. 9928749916\C,0.2401354665,3.4604821733,2.5249596155\H,2.337796849,0.82 2865691,1.9472986904\H,2.3359242052,3.0913068434,2.9442645897\H,-1.870 0411107,3.5079880323,2.0062720552\H,0.2481563125,4.461260159,2.9634934 112\C,1.4175431365,0.801601415,-1.6025075463\C,0.3121153647,0.19283805 24,-2.2136560741\C,-0.7092258659,0.9558983153,-2.7851970127\C,0.445607 5981,2.9624267645,-2.1733630048\N,-1.0206779325,-0.9017917263,0.419326 8713\N,-2.1380677293,1.1361243351,0.9465704792\C,-0.6760289441,2.35942 68036,-2.7723834462\C,1.4703811083,2.2062243396,-1.606174372\H,0.52300  $60297, 4.0513973381, -2.1327320675 \ \ b, 0.2430089591, -0.8967546597, -2.24333361, -2.1327320675 \ \ b, 0.2430089591, -0.8967546597, -2.24333361, -2.1327320675 \ \ b, 0.2430089591, -0.8967546597, -2.2433361, -2.2433361, -2.1327320675 \ \ b, 0.2430089591, -0.8967546597, -2.2433361, -2.2433361, -2.2433361, -2.2433361, -2.2433361, -2.2433361, -2.2433361, -2.2433361, -2.243361, -2.243361, -2.243361, -2.243361, -2.243361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24361, -2.24461, -2.24461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461, -2.2461,$ 61944\H,-1.5474735237,0.4280981971,-3.2398233266\H,2.3178062805,2.7127 402476,-1.1377727293\C,-3.3824601216,-0.7423873525,0.0514761597\C,-4.5 817051339,-0.0159685747,0.1483549844\C,-3.4158879624,-2.0471954556,-0. 4719402417\C,-5.7868641457,-0.5811660764,-0.2727333294\C,-4.6226179627 ,-2.6090116407,-0.8912267949\C,-5.812242706,-1.8787101857,-0.794154129 5\H,-4.5456444512,0.9926305933,0.5615793501\H,-2.4846711248,-2.6100882 881,-0.5446914654\H,-6.7129646345,-0.0058800453,-0.1916128933\H,-4.635

6092022,-3.6239876777,-1.2972637025\H,-6.756493667,-2.3205780239,-1.12 33886798\N,0.1608491553,-0.3616361384,0.7943315738\C,-1.8074555867,3.2 297266969,-3.3513252107\C,-2.9240662561,2.3828812588,-3.9885250425\C,-2.4287492055,4.0674728547,-2.2088042856\C,-1.2371827189,4.1730040759,-4.4351695941\H,-2.5483979679,1.7663555507,-4.8204386496\H,-3.403031317 5,1.7157037656,-3.2554214007\H,-3.7065537099,3.0437503788,-4.393972759 8\H,-1.6912166312,4.7447602042,-1.751363906\H,-3.2586035521,4.68522825 61,-2.590780717\H,-2.8206085959,3.4143159987,-1.4133339404\H,-2.036838 0327,4.8071135592,-4.8524407284\H,-0.4600315524,4.8411375575,-4.033579 3188\H,-0.7911868055,3.5996811831,-5.2637519499\\Version=ES64L-G09RevD .01\State=2-A\HF=-1437.5884562\S2=0.766954\S2-1=0.\S2A=0.750166\RMSD=3 .005e-09\RMSF=9.176e-07\Dipole=1.0716333,-0.0970197,0.1289794\Quadrupo le=4.6898285,2.5197957,-7.2096242,-2.9221643,4.8636504,-1.2265251\PG=C 01 [X(C33H28N3)]\\

#### *R*-1aB

1\1\GINC-LOCALHOST\FOpt\UB3LYP\def2SVP\C33H28N3(2)\PIOTR\24-Mar-2021\0 \\#P UB3LYP/Def2SVP FOpt(tight) Geom=(NoDistance,NoAngle) fcheck\\naph thalene-1-(3-Ph-benzoTriazin-1-yl)-8-Ph-Bu opt at Def2SVP in vac\\0,2\ C,3.791176666,0.1820582953,1.6843979278\C,2.5552057995,-0.0125148173,1 .0788399788\C,2.431217778,-1.0360853685,0.0680894788\C,3.5602587823,-1 .9095296188,-0.1586916572\C,4.7893418675,-1.672477825,0.5162461601\C,4 .9141978847,-0.6238763245,1.3966417126\C,1.2787936076,-1.2633950813,-0 .7622004492\C,3.4519493485,-3.006743535,-1.0573460186\C,2.2883553044,-3.2449131814,-1.7522827642\C,1.2080103611,-2.3489616602,-1.6176018694\ H,3.8751420167,0.9570528589,2.4496943563\H,5.6312352989,-2.3406220399, 0.3177556633\H,5.8617560558,-0.4346642535,1.9068978244\H,4.3191853349, -3.6596075089,-1.1855386113\H,2.2072175064,-4.0947118092,-2.43379522\H ,0.3004627785,-2.4834108889,-2.2084241838\C,0.2442488491,0.8961513764, -1.3920051877\C,1.4226998626,1.4142381241,-1.9520440454\C,-0.967086430 9,1.6514889768,-1.4252876259\C,-2.1035237663,-0.1237315451,-0.50510952 48\C,1.4157993807,2.6919223266,-2.5113258125\C,-0.9353568576,2.9442616 373,-1.9928096696\C,0.2403226047,3.4606086385,-2.5248323609\H,2.337895 7822,0.8229142973,-1.9472067903\H,2.3361163226,3.0913963395,-2.9440797 543\H,-1.869870728,3.5081477847,-2.0062160476\H,0.2483845232,4.4614043 753,-2.9633248735\C,1.4175185802,0.8015275485,1.6025667993\C,0.3120542 154,0.1927672076,2.2136521162\C,-0.7092871601,0.9558299678,2.785189440 2\C,0.4456187022,2.9623541604,2.173478114\N,-1.0206765116,-0.901718997 9,-0.4194221598\N,-2.1379953965,1.136247571,-0.9466209725\C,-0.6760538 95,2.3593581497,2.7724350458\C,1.470392364,2.2061489595,1.6062934725\H ,0.5230463994,4.0513244391,2.1328948817\H,0.2429189359,-0.896824957,2. 2432848667\H,-1.5475639503,0.4280324942,3.2397651364\H,2.317846637,2.7 126625159,1.1379419667\C,-3.3824673467,-0.74226866,-0.0516467621\C,-4. 5816902928,-0.0158150261,-0.1485375911\C,-3.4159470059,-2.047097269,0. 4717152249\C,-5.7868785022,-0.5809986783,0.272485752\C,-4.6227060466,-2.6088994697,0.8909369093\C,-5.8123086028,-1.8785634133,0.7938527017\H ,-4.545589285,0.9928000968,-0.5617195325\H,-2.4847471939,-2.6100170557 ,0.5444758357\H,-6.7129613557,-0.0056854811,0.1913566007\H,-4.63573754 22,-3.6238917382,1.2969319348\H,-6.7565823856,-2.3204203657,1.12303639 09\N,0.160877524,-0.3615785525,-0.7943637531\C,-1.8074781209,3.2296630 442,3.351373996\C,-2.4287109404,4.0674725763,2.2088664522\C,-2.9241324 325,2.382819829,3.9885003012\C,-1.237218312,4.1728808458,4.4352771425\ H,-1.6911452563,4.7447600518,1.7514796319\H,-2.8205596461,3.4143587989 ,1.4133554569\H,-3.2585626235,4.6852333491,2.590839981\H,-2.5485085584 ,1.7662499214,4.8204012073\H,-3.7066168391,3.0436922286,4.3939485538\H ,-3.4030894561,1.7156850746,3.2553524952\H,-2.0368716946,4.8069936463, 4.8525469342\H,-0.7912657805,3.5995121289,5.2638511454\H,-0.460036058, 4.8410109057,4.0337413378\\Version=ES64L-G09RevD.01\State=2-A\HF=-1437

.5884562\S2=0.766954\S2-1=0.\S2A=0.750166\RMSD=2.828e-09\RMSF=9.175e-0 7\Dipole=1.071635,-0.0970422,-0.1289462\Quadrupole=4.6900142,2.5198432 ,-7.2098574,-2.9220625,-4.8633283,1.22695\PG=C01 [X(C33H28N3)]\

#### S-1bA

1\1\GINC-LOCALHOST\FOpt\UB3LYP\def2SVP\C27H24N3(2)\PIOTR\24-Mar-2021\0 \\#P UB3LYP/Def2SVP FOpt(tight) Geom=(NoDistance,NoAngle) fcheck\\naph thalene-1-(3-tBu-benzoTriazin-1-yl)-8-Ph opt in vac\\0,2\N,-0.26317277 59,-0.8640481569,-0.6847128834\N,-2.5997748409,0.5737328331,-0.8229142 361\C,-2.4695825804,-0.5578829578,-0.1247260552\N,-1.3668824891,-1.292 8257606,-0.0167343628\C,0.856682456,2.1337400688,-2.5852277776\C,0.929 7008971,0.914153555,-1.913364575\C,-0.2327639051,0.3590617826,-1.35297 16209\C,-1.4769784322,1.056271611,-1.4310962966\C,-1.5150561122,2.2852 723713,-2.1274225966\C,-0.3664156094,2.8154795638,-2.7014687465\H,-2.4 770669122,2.798411499,-2.1804533099\H,-0.4109847408,3.768617766,-3.233 9785418\H,1.7638954897,2.5594529455,-3.0207730612\H,1.8826768402,0.393 3612715,-1.8257148871\C,0.9319127993,-1.609570572,-0.4060437072\C,1.68 2974274,-2.2849852604,-1.4296443805\C,1.3536980654,-1.6082010421,0.912 6344592\C,1.273725713,-2.4556749248,-2.8032368461\C,2.9662287527,-2.81 84536735,-1.0317519742\C,2.5658707559,-2.2173688299,1.2949526471\H,0.7 329467101,-1.1005079594,1.6523955852\C,2.1797122622,-2.9938815483,-3.7 097205846\C,3.836013634,-3.3816046044,-2.0059951398\C,3.3692662041,-2. 7830788927,0.3314915775\H,2.8745891233,-2.2014276681,2.342667014\C,3.4 64476116,-3.4380867022,-3.3281832844\H,1.8594995451,-3.1232421138,-4.7 460311256\H,4.8056121368,-3.7663180527,-1.6796919264\H,4.3366106749,-3 .2164577025,0.5980857042\H,4.1365241542,-3.8610458532,-4.0787705994\C, -0.103999984,-2.1933038261,-3.3215985595\C,-1.2104981285,-2.8869706015 ,-2.8006528093\C,-0.3029200619,-1.3506694726,-4.4297166481\C,-2.476403 4655,-2.7391793122,-3.3710357754\H,-1.0749840877,-3.5529514203,-1.9458 275126\C,-1.5715653838,-1.1963461356,-4.9944398755\H,0.5458787963,-0.8 003690683,-4.8424075306\C,-2.6630382831,-1.8921002433,-4.4680353686\H, -3.3222433819,-3.294994827,-2.9584313832\H,-1.7067466206,-0.5272654019 ,-5.8480813917\H,-3.6559017515,-1.7750112447,-4.9094507708\C,-3.706014  $1215, -1.0432197679, 0.6462191867 \backslash C, -3.4638244466, -2.4034704887, 1.317742 \backslash C, -3.4638244466, -2.4034704887, 1.317742 \backslash C, -3.4638244466, -2.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.4034704887, -1.40347048867, -1.4034704887, -1.4034704887, -1.40347048867, -1.40347048866, -1.4034704886, -1.403867, -1.40347048866, -1.40347048866, -1.4037666, -1.4038666, -1.403666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.4038666, -1.403866, -1.4038666, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.403866, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.4038666, -1.40386666, -1.4038666, -1.40386666, -1.4038666, -1.40386666, -1.40386666, -1.40386666666666, -1.40386666666$ 5541\C,-4.0337269659,0.0158704708,1.7230402792\C,-4.8895946741,-1.1518  $052052, -0.3379609098 \ \ \ -3.2176907866, -3.1798548794, 0.5781652789 \ \ \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.179866, -3.1798548794, 0.5781652789 \ \ +, -2.68966, -3.179866, -3.1798548794, 0.5781652789 \ \ +, -2.69666, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.1798666, -3.179866, -3.179866, -3.179866, -3.179866, -3.179866, -3.179$ 308667785,-2.3604369779,2.0339184571\H,-4.3711207958,-2.7170786408,1.8 58814816\H,-4.1958338496,1.0017823409,1.2634598686\H,-4.944592886,-0.2 687279654,2.2747274072\H,-3.2117568675,0.1079440787,2.4518777401\H,-5. 8074066593,-1.437675683,0.2011972985\H,-5.0621385439,-0.1935833571,-0. 8476291434\H,-4.6948624681,-1.916036824,-1.1071401461\\Version=ES64L-G 09RevD.01\State=2-A\HF=-1206.6960057\S2=0.765122\S2-1=0.\S2A=0.750145\ RMSD=5.240e-09\RMSF=7.322e-07\Dipole=1.1431731,-0.1474806,-0.2662631\Q uadrupole=3.3129541,-4.4013141,1.08836,-1.1791148,1.9081413,-2.7590704 \PG=C01 [X(C27H24N3)]\\

#### R-1bA

1\1\GINC-LOCALHOST\FOpt\UB3LYP\def2SVP\C27H24N3(2)\PIOTR\24-Mar-2021\0
\\#P UB3LYP/Def2SVP FOpt(tight) Geom=(NoDistance,NoAngle) fcheck\\naph
thalene-1-(3-tBu-benzoTriazin-1-yl)-8-Ph opt in vac\\0,2\N,0.743186327
4,1.5307766481,-0.5587825749\N,3.4367982174,1.253267972,-0.0967673734\
C,2.8560212465,2.4175492617,-0.4002839117\N,1.5625657831,2.6126789274,
-0.638289164\C,1.0286843371,-2.1636042793,-0.2083361523\C,0.4482177599
,-0.9174277042,-0.4412023283\C,1.238006308,0.2418761615,-0.3654403677\
C,2.6370933389,0.1469853566,-0.0937254439\C,3.1890334487,-1.1315690213
,0.1459082071\C,2.3964280707,-2.2713901292,0.0948276842\H,4.2587566302
,-1.180871111,0.3576878208\H,2.8383665947,-3.2536044579,0.2791403038\H
,0.4087910146,-3.0615437643,-0.2666771146\H,-0.6126354715,-0.843067953
4,-0.6781226695\C,-0.6092561164,1.7727309529,-0.9759778463\C,-1.738844

7442,1.5612676181,-0.1114853529\C,-0.7746674973,2.1849598098,-2.287283 5923\C,-1.67770255,1.2556210764,1.29784596\C,-3.0416597858,1.650354337 3,-0.7314735846\C,-2.0575754697,2.3564277332,-2.8452815899\H,0.1178763 045,2.3533554257,-2.8917171821\C,-2.8525770812,0.9236405754,1.96241353 23\C,-4.208253882,1.3229813136,0.013308305\C,-3.1674311361,2.062503752 6,-2.0866261585\H,-2.1590424963,2.6826219822,-3.8828596855\C,-4.113943 0409,0.9332691628,1.3280862977\H,-2.7970033919,0.6981074457,3.02977299 \H,-5.179601066,1.3868962072,-0.4836816\H,-4.1701815247,2.1399970551,-2.5145648461\H,-5.0088563376,0.6715192954,1.8977718815\C,-0.449182311, 1.3687581131,2.1425970675\C,0.2171942034,2.5993913577,2.2781688048\C,-0.0159023505,0.2828618043,2.9240208983\C,1.2851071686,2.7366395323,3.1 672247136\H,-0.1098579797,3.4570723835,1.686526729\C,1.0584705693,0.41 84669481,3.8069273176\H,-0.5197988313,-0.6815291199,2.8258263936\C,1.7 118122537,1.6471594341,3.933213824\H,1.783685759,3.7042315783,3.266235 5972\H,1.3869819979,-0.4413128079,4.3964236786\H,2.5508500798,1.756485 4464,4.6248776249\C,3.7747126371,3.6435647083,-0.5078101624\C,2.979227 5081,4.9346067855,-0.7533616728\C,4.5826116586,3.770708495,0.800774594 1\C,4.7459962953,3.4008466052,-1.685228281\H,2.3972257892,4.8823249843 ,-1.6845534657\H,2.2694643526,5.1321669368,0.0636675853\H,3.6712644819 ,5.7892413547,-0.8239317698\H,5.1392878799,2.8458422472,1.006821445\H, 5.2973302391,4.6064587004,0.7266749162\H,3.91838591,3.9660599365,1.657 65831\H,5.457279597,4.2383251212,-1.7731921402\H,5.3151131983,2.471703 7002,-1.5358469528\H,4.1999729334,3.3192004147,-2.6394340588\\Version= ES64L-G09RevD.01\State=2-A\HF=-1206.6960057\S2=0.765122\S2-1=0.\S2A=0. 750145\RMSD=5.155e-09\RMSF=7.386e-07\Dipole=-1.085578,-0.4578361,-0.10 67894\Quadrupole=1.4266966,-1.5679419,0.1412453,1.2988195,4.1127601,-2 .7479019\PG=C01 [X(C27H24N3)]\\

### 16. References

(1) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist, *Organometallics* **2010**, *29*, 2176-2179.

(2) Constantinides, C. P.; Obijalska, E.; Kaszyński, P. Access to 1,4dihydrobenzo[e][1,2,4]triazin-4-yl derivatives, *Org. Lett.* **2016**, *18*, 916-919.

(3) Zhou, Y.; Zhang, Z.; Jiang, Y.; Pan, X.; Ma, D. Synthesis of 1,2,4-benzotriazines via copper(I) iodide/1H-pyrrole-2-carboxylic acid catalyzed coupling of o-haloacetanilides and N-Boc hydrazine, *Synlett* **2015**, 1586-1590.

(4) Berezin, A. A.; Zissimou, G.; Constantinides, C. P.; Beldjoudi, Y.; Rawson, J. M.; Koutentis,
P. A. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl-N'-[2-nitro(het)aryl]hydrazides, *J. Org. Chem.* 2014, *79*, 314-327.

(5) Dominguez, Z.; Lopez-Rodriguez, R.; Alvarez, E.; Abbate, S.; Longhi, G.; Pischel, U.; Ros, A. Azabora[5]helicene charge-transfer dyes show efficient and spectrally variable circularly polarized luminescence, *Chem. Eur. J.* **2018**, *24*, 12660-12668.

(6) Romero-Nieto, C.; López-Andarias, A.; Egler-Lucas, C.; Gebert, F.; Neus, J.-P.; Pilgram, O. Paving the way to novel phosphorus-based architectures: A noncatalyzed protocol to access six-membered heterocycles, *Angew. Chem. Int. Ed.* **2015**, *54*, 15872-15875.

(7) PK, Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, 2018.

(8) Sheldrick, G. M. *SHELXT* – Integrated space-group and crystal- structure determination, *Acta Cryst., Sect. A* **2015**, *A71*, 3-8.

(9) Sheldrick, G. M. Crystal structure refinement with *SHELXL*, *Acta Cryst.*, *Sect. C* 2015, *C71*, 3-8.

(10) Neugebauer, F. A.; Rimmler, G. ENDOR and triple resonance studies of 1,4-dihydro-1,2,4-benzotriazinyl radicals and 1,4-dihydro-1,2,4-benzotriazine radical cations, *Magn. Reson. Chem* **1988**, *26*, 595-600.

(11) Hande, A. A.; Darrigan, C.; Bartos, P.; Baylère, P.; Pietrzak, A.; Kaszyński, P.; Chrostowska, A. UV-Photoelectron spectroscopy of stable radicals: The electronic structure of planar Blatter radicals as materials for organic electronics, *Phys. Chem. Chem. Phys.* **2020**, *22*, 23637–23644.

(12) Connelly, N. G.; Geiger, W. E. Chemical redox agents for organometallic chemistry, *Chem. Rev.* **1996**, *96*, 877-910.

(13) Reist, M.; Testa, B.; Carrupt, P.-A.; Jung, M.; Schurig, V. Racemization, enantiomerization, diastereomerization, and epimerization: Their meaning and pharmacological significance, *Chirality* **1995**, *7*, 396-400.

(14) Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.