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Abstract

One takes advantage of some basic properties of every homotopic λ-model (e.g.

extensional Kan complex) to explore the higher βη-conversions, which would

correspond to proofs of equality between terms of a theory of equality of any

extensional Kan complex. Besides, Identity types based on computational paths

are adapted to a type-free theory with higher λ-terms, whose equality rules would

be contained in the theory of any λ-homotopic model.
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1. Introduction

In [4] and [5] the initiative is born to search for higher λ-models with
non-trivial structure of ∞-groupoid, by using extensional Kan complexes
K ≃ [K → K]. In [3] the existence of higher non-trivial models is proved
by solving homotopy domain equations.

If we understand an arbitrary higher λ-model as an extensional Kan
complex, the following question arises: What would be the syntactic struc-
ture of the equality theory of any higher λ-model, i.e., is its equality the-
ory a generalization of the βη-conversions to (n)βη-conversions in a set
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Λn−1(a, b) by (n)βη-contractions induced by the extensionality from a Kan
complex?

We shall see some consequences of the equality theory Th(K) of an
extensional Kan complexK with some examples of equality and nonequality
of terms. This paves the way for a definition of the (n)βη-conversions,
which will belong to the set of n-conversions Λn induced by the least theory
of equality on all the extensional Kan complexes, here called Homotopy
Type-Free Theory (HoTFT ).

On the other hand, we define, from the identity types based on compu-
tational paths [1], the untyped theory of higher λβη-equality TH-λβη. We
ask about the relationship between TH-λβη and HoTFT.

In this work we will try to answer these questions according to the fol-
lowing sections: In section 2, we explore the theory of any extensional Kan
complex in order to generalize the βη-conversions to (n)βη-conversions in
a set Λn−1(a, b) by (n)βη-contractions induced by the extensionality from
a Kan complex. In section 3, the identity types IdA(a, b) based on compu-
tational paths are taken into account, to define a type-free theory of higher
λβη-equality TH-λβη with λn-terms and n-redexes in a set Λn−1(a, b) with
n ≥ 1. Finally, we look at the relationship of this TH-λβη with the least
theory of equality on all the extensional Kan complexes HoTFT through
the relationship between the sets Λn and Λn for each n ≥ 0.

2. Theory of extensional Kan complexes

In this section, we shall see some consequences of the equality theory Th(K)
of an extensional Kan complex K with some examples of equality and
nonequality of terms. This shall pave the way for a definition of the (n)βη-
conversions, which will belong to the set of n-conversions Λn induced by
the least theory of equality on all extensional Kan complexes, denoted by
HoTFT.

Definition 2.1 (∞-category [2]). An ∞-category is a simplicial set X
which has the following property: for any 0 < i < n, any map f0 : Λn

i → X
admits an extension f : ∆n → X.

Here the simplicial set K is defined as a presheaf ∆op → Set, with ∆
being the simplicial indexing category, whose objects are finite ordinals
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[n] = {0, 1, . . . , n}, and morphisms are the (non strictly) order preserving
maps. ∆n is the standard n-simplex defined for each n ≥ 0 as the simplicial
set ∆n := ∆(−, [n]). And Λn

i is a horn defined as largest subobject of ∆n

that does not include the face opposing the i-th vertex.

Definition 2.2. From the definition above, we have the following special
cases:

• X is a Kan complex if there is an extension for each 0 ≤ i ≤ n.

• X is a category if the extension exists uniquely [6].

• X is a groupoid if the extension exists for all 0 ≤ i ≤ n and is
unique [6].

In other words, a Kan complex is an ∞-groupoid; composed of objects,
1-morphisms, 2-morphisms, . . . , all those invertible.

Notation. For K a Kan simplex and n ≥ 0, let Kn = Fun(∆n,K) be the
Kan complex of the n-simplexes.

Let V ar be the set of all variables of λ-calculus, for all m,n ≥ 0, each
assignment ρ : V ar → Kn (ρ(t) is an n-simplex of K, for each t ∈ V ar),
x ∈ V ar and f ∈ Km, denote by [f/x]ρ the assignment ρ′ : V ar → K
which coincides with ρ, except on x, where ρ′ takes the value f .

Definition 2.3 (h.p.o. [5]). Let K̂ be an ∞-category. The largest Kan
complex K ⊆ K̂ is a homotopy partial order (h.p.o.), if for every x, y ∈ K
one has that K̂(x, y) is contractible or empty. Hence, the Kan complex K
admits a relation of h.p.o. ≾ defined for each x, y ∈ K as follows: x ≾ y if
K̂(x, y) ̸= ∅, hence the pair (K,≾) is a h.p.o. (we denote simply by K).

Definition 2.4 (c.h.p.o. [5]). Let K be an h.p.o.

1. An h.p.o. X ⊆ K is directed if X ̸= ∅ and for each x, y ∈ X, there
exists z ∈ X such that x ≾ z and y ≾ z.

2. K is a complete homotopy partial order (c.h.p.o.) if

(a) There are initial objects, i.e., ⊥ ∈ K is a initial object if for each
x ∈ K, ⊥ ≾ x.

(b) For each directed X ⊆ K the supremum (or colimit)
b

X ∈ K
exists.
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Definition 2.5 (Continuity [3]). Let K and K ′ be c.h.p.o.’s. A functor
F : K → K ′ is continuous if F (

b
X) ≃

b
F (X), where F (X) is the

essential image.

Definition 2.6 (CHPO [3]). Define the subcategory CHPO ⊆ CAT∞
whose objects are the c.h.p.o.’s and the morphisms are the continuous
functors, where CAT∞ is the ∞-category of the ∞-categories [2].

Definition 2.7 (Reflexive Kan complex1 [5]). A quadruple ⟨K,F,G, ε⟩
is called a reflexive Kan complex, if K is a c.h.p.o. such that the full
subcategory [K → K] ⊆ Fun(K,K) of the continuous functors is a retract
of K, via the functors

F : K → [K → K], G : [K → K] → K

and the natural equivalence ε : FG → 1[K→K]. If there is a natural equiv-
alence η : 1K → GF , the quintuple ⟨K,F,G, ε, η⟩ represents an extensional
Kan complex.

Just as the recursive Domain Equation X ∼= [X → X] (in the category
of the c.p.o’s) has an implicit recursive definition of data-types, the “Ho-
motopy Domain Equation” [3] X ≃ [X → X] (in the ∞-category CHPO)
would also have a recursive definition of data-types. A recursively defined
computational object (e.g., a proof by mathematical induction) would be
of a higher order relative to the classical case, whose interpretation would
be recursively defined by a sequence of partial functors Fi : K → K,
over a Kan complex K weakly ordered, which converges to a total functor
F : K → K, whose details are not among the objectives of this work, but
will be developed in future works, when studying the semantics (case of
inductive types) of the version of HoTT based on computational paths.

Example 2.8 ([3]). The c.h.p.o K∞, which generalizes Dana Scott’s c.p.o
D∞, is an extensional Kan complex, since K∞ is a solution for the Ho-
motopy Domain Equation X ≃ [X → X] in the ∞-category CHPO of
c.h.p.o’s and continuous functors.

Thus, intuitively, from the computational point of view, we have that a
Kan complex, which satisfies the Homotopy Domain Equation, is not only

1In [5] one can also see the relationship between the reflexive Kan complexes and
syntactic homotopic λ-models, conceptually introduced in [4], analogously to the seman-
tics of the classic λ-calculus; same for the relationship between complete partial orders
(c.p.o.’s) and syntactic λ-models.
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capable of verifying the computability of constructions typical of classical
programming languages, as D∞ does it, but it also has the advantage
(over D∞) of verifying the computability of higher constructions, such as
a mathematical proof of some proposition, the proof of the equivalence
between two proofs of the same proposition, etc.

Besides, in [3], several examples of extensional objects (Kan complexes)
are presented in the Kleisli ∞-category Kl(P ).

Definition 2.9 ([5]). Let K be a reflexive Kan complex (via the mor-
phisms F , G).

1. For f, g : △n → K (or also f, g ∈ Kn) define the n-simplex

f •△n g = F (f)(g).

In particular for vertices a, b ∈ K,

a • b = a •△0 b = F (a)(b),

besides, F (a) • (−) = a • (−) and F (−)(b) = (−) • b are functors on
K, then for f ∈ Kn one defines the n-simplexes

a • f = F (a)(f), f • b = F (f)(b).

2. For each n ≥ 0, let ρ be a valuation at Kn. Define the interpretation
J Kρ : Λ → Kn by induction as follows

(a) JxKρ = ρ(x),

(b) JMNKρ = JMKρ • JNKρ,
(c) Jλx.MKρ = G(λf.JMK[f/x]ρ), where λf.JMK[f/x]ρ = JMK[−/x]ρ :

K → Kn.

Remark 2.10. Given g ∈ Kn and ρ : V ar → Kn, the higher β-contraction
is interpreted by

Jλx.MKρ • g = G(λf.JMK[f/x]ρ) • g
= F (G(λf.JMK[f/x]ρ))(g)
(ελf.JMK[f/x]ρ

)g
−−−−−−−−−−→ (λf.JMK[f/x]ρ)(g)
= JMK[g/x]ρ,
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where ελf.JMK[f/x]ρ
is the natural equivalence, induced by ε, between the

functors F (G(λf.JMK[f/x]ρ),λf.JMK[f/x]ρ : K → Kn. Hence
(ελf.JMK[f/x]ρ

)g is the equivalence induced by the n-simplex g in K.

Hence, if ⟨K,F,G, ε, η⟩ is extensional and n = 0, so that the β-contrac-
tion is modelled by ε : FG → 1; the (reverse) η-contraction is modelled
by η : 1 → GF . Besides, if n > 0, we have that the natural equivalences
ε and η will induce higher β-contractions and (reverse) η-contractions re-
spectively, as we will see later.

Proposition 2.11. Let x, y,M,N, P be λ-terms. The interpretations of
β-reductions

(λx.M)((λy.N)P )

1β

��

1β // [(λy.N)P/x]M

[1β]

��
(λx.M)([P/y]N)

1β
// [([P/y]N)/x]M

are equivalent in every reflexive Kan complex ⟨K,F,G, ε⟩.

Proof: Let a = JP Kρ, Jλy.NKρ • a
f−→ JNK[a/y]ρ, R = FG(λf.JMK[f/x]ρ),

L = λf.JMK[f/x]ρ and ε′ = ελf.JMK[f/x]ρ
. One has that the natural equiva-

lence ε′ : R → L makes the following diagram (weakly) commute:

R(Jλy.NKρ • a)

R(f)

��

ε′Jλy.NKρ•a// L(Jλy.NKρ • a)

L(f)

��
R(JNK[a/y]ρ)

ε′JNK[a/y]ρ

// L(JNK[a/y]ρ)

which, by Remark 2.10, corresponds to the (weakly) commutative diagram

Jλx.MKρ • (Jλy.NKρ • a)

R(f)

��

ε′Jλy.NKρ•a// JMK[Jλy.NKρ•a/x]

L(f)

��
Jλx.MKρ • JNK[a/y]ρ

ε′JNK[a/y]ρ

// JMK[JNK[a/y]ρ/x]
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Example 2.12. The λ-term (λx.u)((λy.v)z) has two β-reductions:

(λx.u)((λy.v)z)

1β

��

1β // [(λy.v)z/x]u

[1β]

��
(λx.u)([z/y]v)

1β
// [v/x]u

making u = M , v = N and z = P , by Proposition 2.11, the interpreta-
tions of these β-reductions are equivalent in all reflexive Kan complexes
⟨K,F,G, ε⟩.

Next, we shall give examples where the reductions of λ-terms are not
equivalent.

Example 2.13. The λ-term (λx.(λy.yx)z)v has the β-reductions

(λx.(λy.yx)z)v

1β

��

1β // (λy.yv)z

1β

��
(λx.zx)v

1β // zv

Given a reflexive Kan complex ⟨K,F,G, ε⟩. Let ρ(v) = c, ρ(z) = d
vertices at K and R = FG. The interpretation of the β-reductions of
(λx.(λy.yx)z)v depends on solving the diagram equation

R(λa.R(λb.b • a)(d))(c)

(R(?))c

��

(εf )c // R(λb.b • c)(d)

(ελb.b•c)d

��
R(λa.d • a)(c)

(εg)c

// d • c

where f = λa.R(λb.b • a)(d) and g = λa.d • a are functors at [K → K].
One has ha = (ελb.b•a)d : f(a) → g(a) for each vertex a ∈ K, but ha

is not necessarily a functorial equivalence in any reflexive Kan complex
⟨K,F,G, ε⟩ to get the diagram to commute:
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R(f)(c)

(R(h?))c

��

(εf )c // f(c)

hc

��
R(g)(c)

(εg)c

// g(c)

Example 2.14. The λ-term (λz.xz)y has the βη-contractions

(λz.xz)y

1β
**

1η

44 xy

Take an extensional Kan complex ⟨K,F,G, ε, η⟩. Let ρ(x) = a and
ρ(y) = b be vertices of K. The interpretation of λ-term is given by:
J(λz.xz)yKρ = Jλz.xzKρ•b = G(λc.F (a)(c))•b = G(F (a))•b = (FGF )(a)(b).
The interpretation of the βη-contractions corresponds to the degenerated
diagrams

(FGF )(a)(b)

(εF (a))b

��

1

((

F (a)(b)

(F (ηa))b

��

1

&&
F (a)(b)

(F (ηa))b

// (FGF )(a)(b) (FGF )(a)(b)
(εF (a))b

// F (a)(b)

But the diagrams do not necessarily commute in every extensional Kan
complex ⟨K,F,G, ε, η⟩.

For examples of higher extensional λ-models see [3].

It is known that the types of HoTT correspond to ∞-groupoids. Taking
advantage of this situation, for a reflexive Kan complex, let us define the
theory of equality on that Kan complex (∞-groupoid) as follows.

Definition 2.15 (Theory of an extensional Kan complex). Let K =
⟨K,F,G, ε, η⟩ be an extensional Kan complex. Define the theory of equality
of K as the class

Th1(K) = {M = N | JMKρ ≃ JNKρ for all ρ : V ar → K}

where JMKρ ≃ JNKρ is the equivalence between vertices of K for some
equivalence JsKρ : JMKρ → JNKρ, and “s” denotes the conversion between
λ-terms M and N induced by JsKρ for all evaluation ρ.
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In the Definition 2.15, notice that the equivalence JMKρ ≃ JNKρ for all
ρ, induces the intentional equality M = N , which can be seen as an identity
type based on computational paths [1]; the conversion s may also be seen
as a computational proof (a finite sequence of basic rewrites [1] induced by
K) of the proposition M = N in the theory Th1(K).

Remark 2.16. If s is a β-contraction or η-contraction and the functor F is
not surjective for objects, the equality M =1β N : K or M =1η N : K
is not necessarily a judgmental equality (as it happens in HoTT); JMKρ
and JNKρ may be different vertices in K. Thus, the theory Th1(K) may
be seen as the family of all the identity types which are inhabited by paths
which are not necessarily equal to the reflexive path reflM .

Notation. Let M and N be λ-terms (M,N ∈ Λ0) and K be an extensional
Kan complex. Denote by Λ0(K)(M,N) the set of all the 1-conversions
from M to N induced by K. We write Λ1(K) :=

⋃
M,N∈Λ0

Λ0(K)(M,N)
for the family of all 1-conversions induced by K.

Let s, t ∈ Λ0(K)(M,N). Denote by Λ0(K)(M,N)(s, t) the set of
all the 2-conversions from s to t. And let Λ2(K) :=⋃

s,t∈Λ1

⋃
M,N∈Λ0

Λ0(K)(M,N)(s, t) be the family of all 2-conversions in-
duced by K, and so on we keep iterating for the families Λ3(K), Λ4(K), . . .

Since K is a reflexive Kan complex, Th1(K) is an intentional λ-theory
of 1-equality which contains the theory λβη. Iterate again, we have the
λ-theory of 2-equality

Th2(K) = {r = s | ∀ρ (JrKρ ≃ JsKρ) and r, s ∈ Λ0(K)(M,N)}.

If we keep iterating, we can see that the reflexive Kan complex K will
certainly induce a λ-theory of higher equality given by the inverse and
direct limit

Th(K) =
⋃
n≥1

Thn(K).

Just as Th1(K) contains λβη, Th(K) will contain a (simple version of)
‘Homotopy Type-Free Theory’, defined as follows.

Definition 2.17 (Homotopy Type-Free Theory). A Homotopy Type-Free
Theory (HoTFT) consists of the least theory of equality, that is

HoTFT :=
⋂

{Th(K) | K is an extensional Kan complex}.
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And for each n ≥ 0 let

Λn :=
⋂

{Λn(K) | K is an extensional Kan complex}

be the set of nβη-conversions.

For example, let K = ⟨K,F,G, ε, η⟩ be an extensional Kan complex and

x, M and N λ-terms. By Definition 2.17, the β-contraction (λx.M)N
1β−→

[N/x]M inhabits the set Λ0((λx.M)N, [N/x]M);

J1βKρ = (εJMK[−/x]ρ
)JNKρ ∈ K(J(λx.M)NKρ, J[N/x]MKρ),

and the η-contraction λx.Mx
1η−→ M , x /∈ FV (M), belongs to

Λ0(K)(λx.Mx,M);

J1ηKρ = ηJMKρ ∈ K(Jλx.MxKρ, JMKρ).

If t is a βη-conversion from λ-term M to N , by Definition 2.17, t ∈
Λ0(M,N). For x, P λ-terms, we have the vertices Jλx.P Kρ ∈ K and
JtKρ ∈ K(JMKρ, JNKρ). Thus, J(λx.P )tKρ = Jλx.P Kρ•JtKρ ∈ K(J(λx.P )MKρ,
J(λx.P )NKρ) and JP K[JtKρ/x]ρ ∈ K(JP K[JMKρ/x]ρ, JP K[JNKρ/x]ρ), where
[JtKρ/x]ρ : V ar → K1 is an evaluation ρ′(x) = JtKρ and (n-times degenera-
tion of vertex ρ(r)) ρ′(r) = sn(ρ(r)) if r ̸= x. By Definition 2.17, (λx.P )t ∈
Λ0((λx.P )M, (λx.P )N) and JP K[JtKρ/x]ρ ∈ K(JP K[JMKρ/x]ρ, JP K[JNKρ/x]ρ).
But

J(λx.P )tKρ
(εJPK[−/x]ρ

)JtKρ
−−−−−−−−−−→ JP K[JtKρ/x]ρ,

So (λx.P )t = [t/x]P and induces the 2β-contraction

(λx.P )t
2βP,t−−−→ [t/x]P,

corresponding to a similar diagram to that of Proposition 2.11, i.e.,

(λx.P )M

(λx.P )t

��

1βM //

=⇒2βt

[M/x]P

[t/x]M

��
(λx.P )N

1βN

// [N/x]P
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Hence 2βt ∈ Λ0((λx.P )M, [N/x]P )(τ(1βM , [t/x]M), τ((λx.P )t, 1βN )),
where τ(r, s) is the concatenation of the conversions r ∈ Λ(a, b) and s ∈
Λ(b, c). On the other hand, for y /∈ FV (t) one has the equivalence

JtKρ
ηJtKρ−−−→ Jλy.tyKρ,

that is, (λy.ty) = t and induces the 2η-contraction

(λy.ty)
2ηt−−→ t,

which corresponds to the diagram

λy.My

λy.ty

��

nηr //

=⇒2ηt

M

t

��
λy.Ny

nηs

// N

In general, if t ∈ Λn−1, the equivalences

J(λx.P )tKρ
(εJPK[−/x]ρ

)JtKρ
−−−−−−−−−−→ JP K[JtKρ/x]ρ, JtKρ

ηJtKρ−−−→ Jλy.tyKρ

in every extensional Kan complex K, induce the (n)βη-contractions

(λx.P )t
nβt−−→ [t/x]P, (λy.ty)

nηt−−→ t.

which explains the following Corollary.

Corollary 2.18. If x, y, P be λ-terms, n ≥ 1 and t ∈ Λn(r, s) with y /∈
FV (t), then the interpretation from diagrams

(λx.P )r

(λx.P )t

��

nβr // [r/x]P

[t/x]M

��

λy.ry

λy.ty

��

nηr // r

t

��
(λx.P )s

nβs

// [s/x]P λy.sy
nηs

// s

commutes in every extensional Kan complex K.

Thus, any reflexive Kan complex inductively induces, for each n ≥ 1,
from an (n)βη-conversion t to the (n+ 1)βη-contractions
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(λx.P )r

(λx.P )t

��

nβr //

=⇒(n+1)βt

[r/x]P

[t/x]M

��

λy.ry

λy.ty

��

nηr //

=⇒(n+1)ηt

r

t

� �
(λx.P )s

nβs

// [s/x]P λy.sy
nηs

// s

and these, in their turn, define the (n+1)βη-conversions, of (n)βη-conversion,
which would inhabit the set Λn+1.

3. Extensional Kan complexes and Identity types
based on higher λ-terms

In this section, we use the extensionality of any extensional Kan com-
plex K to define the set of λn-terms Λn−1(a, b) induced by the space
Kn−1(JaKρ, JbKρ), which would be a type-free version of the identity type
IdA(a, b) based on computational paths of [1]. And finally we see the re-
lationship between the set Λn of all the λn-terms and the set Λn from the
previous section.

By Definition of Cartesian product of simplicial sets one has that for
each n ≥ 0, (K ×K)n = Kn ×Kn. If K = ⟨K,F,G, ε, η⟩ is an extensional
Kan complex, then Kn × Kn ≃ Kn, that is Kn ≃ [Kn → Kn]. Hence
Kn = ⟨Kn, F,G, ε, η⟩ is an extensional Kan complex for each n ≥ 0.

For example the case n = 1, one has that J1βKρ, J1ηKρ ∈ K1, that
is 1β, 1η would be ‘λ1-terms’. Hence, for any βη-conversion r between
λ-terms, JrKρ ∈ K1, i.e., r would be also a ‘λ1-term’ (denoted by r ∈
Λ1). If h(r) is a βη-conversion which depends on the βη-conversion r, by
extensionality of K1, one has

Jλ1r.h(r)Kρ := G(Jh(r)K[−/r]ρ) ∈ K1,

where Jh(r)K[−/r]ρ : K1 → K1.

Thus, for m, r ∈ Λ0(c, d) (λ1-terms from c to d) the ‘λ1-term’ λ1r.h(r)
can define the β2-contraction

(λ1r.h(r))m
β2−→ h(m/r)
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where

J(λ1r.h(r))mKρ := Jλ1r.h(r)Kρ •∆1 JmKρ = F (Jλ1r.h(r)Kρ)(JmKρ) ∈ K1,

hence, (λ1r.h(r))m can be seen as a λ1-term.

The question arises: Jβ2Kρ ∈ K2? To answer this question, let us first
prove the following proposition.

Proposition 3.1. Let K = ⟨K,F,G, ε, η⟩ be an extensional Kan complex.
For each vertex a, b, c, d ∈ K one has an equivalence of homotopy

K(a, b) ≃ [K(c, d) → K(a • c, b • d)],

and in general, for n ≥ 1 and the vertices ai+1, bi+1 ∈ K(a0, b0) · · · (ai, bi)
and ci+1, di+1 ∈ K(c0, d0) · · · (ci, di) with 0 ≤ i ≤ n− 1, there is an equiv-
alence

K(a0, b0) · · · (an, bn) ≃ [K(c0, d0) · · · (cn, dn) →
K(a0 • c0, b0 • d0) · · · (an • cn, bn • dn)]

Proof: Since K is extensional, there is the equivalence F ′ : K ×K → K.
Hence

K(a, b)×K(c, d) = (K ×K)((a, c), (b, d)) ≃ K(F ′(a, c), F ′(b, d)),

that is,

K(a, b) ≃ [K(c, d) → K(F (a)(c), F (b)(d))] = [K(c, d) → K(a • c, b • d)].

Let Kn(pn, qn) = K(p0, q0) · · · (pn, qn) for each pi, qi ∈ Ki with 0 ≤ i ≤ n.
Given the Induction Hypothesis (IH)

Kn(an, bn)×Kn(cn, dn) ≃ Kn(F
′(an, cn), F

′(bn, dn)),

for the case (n+ 1) one has

Kn+1(an+1, bn+1)×Kn+1(cn+1, dn+1) =

= Kn(an, bn)(an+1, bn+1)×Kn(cn, dn)(cn+1, dn+1)

= (Kn(an, bn)×Kn(cn, dn))((an+1, cn+1), (bn+1, dn+1))

≃ Kn(F
′(an, cn), F

′(bn, dn))(F
′(an+1, cn+1), F

′(bn+1, dn+1)) (by I.H)

= Kn+1(F
′(an+1, cn+1), F

′(bn+1, dn+1)).
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Thus,

Kn+1(an+1, bn+1)

≃ [Kn+1(cn+1, dn+1) → Kn+1(F (an+1)(cn+1), F (bn+1)(dn+1))]

= [Kn+1(cn+1, dn+1) → Kn+1(an+1 • cn+1, bn+1 • dn+1)].

Therefore, the Proposition 3.1 allows the following definition.

Definition 3.2. Let K = ⟨K,F,G, ε, η⟩ be an extensional Kan complex
and ρ be a valuation in K. For the βη-conversions r, s, h(r) such that
JrKρ ∈ K(c, d), JsKρ ∈ K(a, b) and Jh(r)Kρ ∈ K(a • c, b • d), define the
interpretation by induction as follows

1. JrKρ ∈ K(c, d) is a concatenation of morphisms

c
f1−→ c1

f2−→ c2
f3−→ · · · fm−−→ d

where each fi depends on: (εg)a : F (G(g))(a) → g(a) (interprets
each β-contraction of r) or ηb : b → G(F (b)) (interprets each inverted
η-contraction of r), with g ∈ [K → K] and a, b ∈ K,

2. JsrKρ = JsKρ •∆1 JrKρ = F (JsKρ)(JrKρ) ∈ K(a • c, b • d),

3. Jλ1r.h(r)Kρ = G(Jh(r)K[−/r]ρ) ∈ K(a, b) where Jh(r)K[−/r]ρ : K(c, d) →
K(a • c, b • d).
Take n ≥ 2. For the (βη)n-conversions (Definition 3.4) r, s and h(r)
such that JrKρ ∈ Kn−1(cn−1, dn−1), JsKρ ∈ Kn−1(an−1, bn−1) and
Jh(r)Kρ ∈ Kn−1(an−1 • cn−1, bn−1 • dn−1), define the interpretation

4. JrKρ ∈ Kn−1(cn−1, dn−1) is a concatenation of n-simplexes

cn−1
f1−→ s1

f2−→ s2
f3−→ · · · fm−−→ dn−1

where each fi depends on: (εg)e : F (G(g))(e) → g(e) (interprets each
βn-contraction of r) or ηe′ : e

′ → G(F (e′)) (interprets each inverted
ηn-contraction of r), with

g : Kn−1(cn−1, dn−1) → Kn−1(an−1 • cn−1, bn−1 • dn−1), e ∈
Kn−1(cn−1, dn−1) and e′ ∈ Kn−1(an−1, bn−1),

5. JsrKρ = JsKρ •∆n JrKρ = F (JsKρ)(JrKρ) ∈ K(a • c, b • d),



The Theory of an Arbitrary Higher λ-Model 53

6. Jλnr.h(r)Kρ = G(Jh(r)K[−/r]ρ) ∈ K(a, b) where

Jh(r)K[−/r]ρ : Kn−1(cn−1, dn−1) → Kn−1(an−1 • cn−1, bn−1 • dn−1).

Going back to the question: Jβ2Kρ ∈ K2? Since Jλ1r.h(r)Kρ ∈ K1, so
there are vertices a, b ∈ K such that Jλ1r.h(r)Kρ ∈ K(a, b). If JrKρ, JmKρ ∈
K(c, d), by Definition 3.2 (2), J(λ1r.h(r))mKρ, Jh(m/r)Kρ ∈ K(a • c, b • d).
Hence,

Jβ2Kρ ∈ K(a • c, b • d)(a1, b1) ⊆ K2,

where a1 = J(λ1r.h(r))mKρ and b1 = Jh(m/r)Kρ.

For the question: Jη2Kρ ∈ K2? Let e ∈ K(a, b) which does not depend
on r ∈ K(c, d). By Definition 3.2 (2), JerKρ ∈ K(a • c, b • d). By Definition
3.2 (3), Jλ1r.erKρ ∈ K(a, b). Then,

Jη2Kρ ∈ K(a, b)(a1, b1) ⊆ K2,

where a1 = Jλ1r.erKρ and b1 = JeKρ.

Therefore, the (βη)2-conversions are λ2-terms, which in turn define in-
ductively other λ2-terms by application and abstraction. We can continue
iterating and have the following proposition, to prove that the Definition
3.2 (4) is well defined for all n ≥ 2.

Proposition 3.3. LetK be an extensional Kan complex and ρ : V ar → K
be an evaluation. For each n ≥ 1, JβnKρ, JηnKρ ∈ Kn.

Proof: If n = 1, one has that Jβ1Kρ = J1βKρ ∈ K1 and Jη1Kρ = J1ηKρ ∈
K1. Suppose that JβnKρ, JηnKρ ∈ Kn. So, induce the λn-terms: r,m ∈
Λn−1(cn−1, dn−1) and λnr.h(r) ∈ Λn−1(an−1, bn−1). By Proposition 3.1
and Definition 3.2 (5), J(λnr.h(r))mKρ, Jh(m/r)Kρ ∈ Kn−1(an−1 • cn−1,
bn−1 • dn−1). Thus,

Jβn+1Kρ ∈ Kn−1(an−1 • cn−1, bn−1 • dn−1)(an, bn) ⊆ Kn+1,

where an = J(λnr.h(r))mKρ and bn = Jh(m/r)Kρ.
By I.H, let the λn-term: JeKρ ∈ Kn−1(an−1, bn−1) which does not de-

pend on JrKρ ∈ Kn−1(cn−1, dn−1). By Definition 3.2 (5), JerKρ ∈
Kn−1(an−1 • cn−1, bn−1 • dn−1). By Definition 3.2 (6), Jλnr.erKρ ∈
Kn−1(an−1, bn−1). So,

Jηn+1Kρ ∈ Kn−1(an−1, bn−1)(an, bn) ⊆ Kn+1,

where an = Jλnr.erKρ and bn = JeKρ.
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Of course, Definition 3.2 depends on the syntax of higher lambda-terms.
Next, we define a ‘Theory of higher λβη-equality’ as a type-free version of
the computational paths of [1].

Definition 3.4 (Theory of higher λβη-equality). A theory of higher λβη-
equality (TH-λβη) consists of rules and axioms of the theory of βη-equality
(βη-conversions or in our case we write (βη)1-conversions) between λ-terms,
whose set we denote here by Λ0, and the rules which define the higher βη-
conversions in the following sense:

• (1-introduction and 1-formation rules). s is a (βη)1-conversion from
λ-term a to λ-term b (denoted by a =s b ∈ Λ0) if s is a usual (βη)-
conversion from a to b, and we say that all (βη)1-conversion is a
λ1-term.

Let c =m d ∈ Λ0 and [c =r d ∈ Λ0] ac =h(r) bd ∈ Λ0. Then λ1r.h(r)
is a λ1-term from a to b, i.e., λ1r.h(r) ∈ Λ0(a, b) and (λ1r.h(r))m is
a λ1-term from ac to bd, i.e., (λ1r.h(r))m ∈ Λ0(ac, bd). Let Λ1 the
set of the λ1-terms.

• (Reduction rule). Let the λn+1-terms m ∈ Λn(c, d), [r ∈ Λn(c, d)]
and h(r) ∈ Λn(ac, ad). Define the λn+1-term: λn+1r.h(r) ∈ Λn(a, b)
and the βn+2-contraction

(λn+1r.h(r))m
βn+2−−−→ h(m/r) ∈ Λn(ac, bd).

• (Induction rule). If t ∈ Λn(c, d) and e ∈ Λn(a, b), then ηn+2-contraction
is given by

λn+1t.et
ηn+2−−−→ e ∈ Λn(a, b),

where e does not depend on t.

• ((n+2)-Introduction and (n+2)-formation rules). If s is a (βη)n+2-
conversion (sequence, it can be empty, of βn+2-contractions or re-
versed βn+2-contractions or ηn+2-contractions or reversed ηn+2-con-
tractions) from a to b in Λn+1, that is a =s b ∈ Λn+1, then s ∈
Λn+1(a, b). We say that s is a λn+2-term if it is a (βη)n+2-conversion.

Let m ∈ Λn+1(c, d) and [c =r d ∈ Λn+1]. Then one has the λn+2-
terms: λn+2r.h(r) ∈ Λn+1(a, b) and (λn+2r.h(r))m ∈ Λn+1(ac, bd).
Let Λn+2 be the set of the λn+2-terms.
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Proposition 3.5. Let K = ⟨K,F,G, ε, η⟩ be an extensional Kan com-
plex and ρ : V ar → K be an evaluation. The (n + 1)-simplexes space
Kn(JpKρ, JqKρ) models the set of λn+1-terms Λn(p, q).

Proof:

• (1-Formation and 1-introduction rules). Since K is a Kan complex
and p, q ∈ Λ0, then JpKρ, JqKρ ∈ K (vertices of K) and K(p, q) is also
a Kan complex.

Let p =s q ∈ Λ0 be a (βη)1-conversion. Since K is an extensional
Kan complex, by Definition 3.2 the interpretation

JsKρ : JpKρ
f1−→ Jp1Kρ

f2−→ Jp2Kρ
f3−→ · · · fm−−→ JqKρ

is a concatenation of morphisms inK such that each fi corresponds to
a morphism which depends on a map of the form: (εg)a :F (G(g))(a)→
g(a) (models the β1-contraction) or ηb : b → G(F (b)) (models the re-
versed η1-contraction), where a, b ∈ K and g ∈ [K → K]. Thus
JsKρ ∈ K(JpKρ, JqKρ).

Let m ∈ Λ0(s, t) and [s =r t ∈ Λ0] λ1r.h(r) ∈ Λ0(p, q). Since K is
extensional, by Definition 3.2

J(λ1r.h(r))mKρ = F (G(Jh(r)K[−/r]ρ))(JmKρ) ∈ K(JpsKρ, JqtKρ).

• (Reduction rule). Let m ∈ Λn(s, t) and [s =r t ∈ Λn] λn+1r.h(r) ∈
Λn(p, q). Since K is extensional, the βn+2-contraction

(λn+1r.h(r))m
βn+2−−−→ h(m/r) ∈ Λn(ps, qt)

corresponds to morphism in Kn(JpsKρ, JqtKρ) ((n+2)-simplex at K):

F (G(Jh(r)K[−/r]ρ))(JmKρ)
(εJh(r)K[−/r]ρ

)JmKρ
−−−−−−−−−−−−→ Jh(m/r)Kρ.

• (Induction rule). Let r ∈ Λn(p, q) and e ∈ Λn(p, q). Since K is
extensional, the ηn+2-contraction

λn+1t.et
ηn+2−−−→ e ∈ Λn(p, q)

corresponds to morphism in Kn(JpKρ, JqKρ):
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G(F (JeKρ))
η̃JeKρ−−−→ JeKρ,

where η̃JeKρ is an inverse (up to homotopy) from (n+2)-simplex ηJeKρ
in K.

• ((n+2)-Introduction and (n+2)-Formation rules). Take the (βη)n+2-
conversion s =r t ∈ Λn+1. Since K is an extensional Kan complex,
by Definition 3.2 the interpretation

JrKρ : JsKρ
f1−→ Js1Kρ

f2−→ Js2Kρ
f3−→ · · · fm−−→ JtKρ

is a concatenation of morphisms in Kn+1 such that each fi corre-
sponds to a morphism which depends on a map of the form: (εg)e :
F (G(g))(e) → g(e) (models the βn+2-contraction) or ηe′ : e′ →
G(F (e′)) (models the reversed ηn+2-contraction), where e ∈
Kn+1(cn, dn), e

′ ∈ Kn+1(an, bn) and g : Kn+1(cn, dn) → Kn+1(an •
cn, bn • dn). Thus Jr(s, t)Kρ ∈ Kn+1(JsKρ, JtKρ).

Let m ∈ Λn+1(s, t) and [s =r t : A] λn+2r.h(r) ∈ Λn+1(p, q). Since K
is extensional, by Definition 3.2

J(λn+2r.h(r))mKρ = F (G(Jh(r)K[−/r]ρ))(JmKρ) ∈ Kn+1(JpsKρ, JqtKρ).

Example 3.6. Let c =m d ∈ Λ0 and [c =r d ∈ Λ0] ac =h(r) bd ∈ Λ0,
thus λ1r.h(r) ∈ Λ0(a, b). The β2-contraction is 2-dimensional. It can be
represented by the diagram

ac

(λ1r.h(r))m
��

1 //

=⇒β2

ac

h(m/r)
��

bd
1
// bd

Since the interpretation of λ1r.h(r) ∈ Λ0(a, b) is given by

Jλ1r.h(r)Kρ = G(Jh(r)K[−/r]ρ) ∈ K(JaKρ, JbKρ)

for every extensional Kan complex K and ρ, by Definition 2.17 one has
λ1r.h(r) ∈ Λ0(a, b). And the interpretation of the application λ1r.h(r))m
is given by
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J(λ1r.h(r))mKρ = Jλ1r.h(r)Kρ •∆1 JmKρ
= F (Jλ1r.h(r)Kρ)(JmKρ) ∈ K(JacKρ, JbdKρ)

for all extensional Kan complex K and ρ. By Definition 2.17 (λ1r.h(r))m ∈
Λ0(ac, bd). Therefore Λ1 = Λ1.

Follow the question: β2 ∈ Λ2? By Proposition 3.5 (Reduction rule for
n = 0) the β2-contraction is interpreted by the 2-simplex

F (G(Jh(r)K[−/r]ρ))(JmKρ)
(εJh(r)K[−/r]ρ

)JmKρ
−−−−−−−−−−−−→ Jh(m/r)Kρ ∈ K(JacKρ, JbdKρ)

for all extensional Kan complex K and evaluation ρ. By Definition 2.17
one has β2 ∈ Λ0(ac, bd)(λ

1r.h(r))m,h(m/r)). Hence β2 ∈ Λ2.

One the other hand, by Proposition 3.5 (Induction rule for n = 0) and
the same reasoning from previous example, it can be proved that η2 ∈ Λ2,
so Λ2 ⊆ Λ2. Thus making use of Definitions 2.9 and 2.17 and Proposition
3.5 we can prove in the same way as the previous example, the following
proposition.

Proposition 3.7. For each n ≥ 0, Λn ⊆ Λn. Hence TH-λβη ⊆ HoTFT .

4. Conclusion

We define the interpretation of the βη-contractions in an extensional Kan
complex, whose ∞-groupoid structure induces higher βη-contractions,
which consolidate a type-free version of HoTT, which we call HoTFT (Ho-
motopy Type-Free Theory), which could have the advantage of rescuing
the βη-conversions as relations of intentional equality and not as relations
of judgmental equality as is the case in HoTT.

Besides, we define, from the identity types based on computational
paths, the untyped theory of higher λβη-equality TH-λβη, which is con-
tained in HoTFT.
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