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Abstract
A nanocomposite consisting of platinum particles, polyaniline and Ti3C2MXene (Pt/PANI/MXene) was used tomodify a screen-
printed carbon electrode (SPCE) to obtain sensors for hydrogen peroxide and lactate. This nanocomposite was characterized by
scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM)
and X-ray powder diffraction (XRD) to determine the physical morphologies and the nanocomposite elements. The modified
electrode exhibited the improved current response towards hydrogen peroxide (H2O2) compared with an unmodified electrode
and provided a low detection limit of 1.0 μM. When lactate oxidase was immobilized on the modified electrode, the electrode
responded to lactate via the H2O2 generated in the enzymatic reaction. The lactate assay was performed by amperometry at a
constant potential of +0.3 V (vs. Ag/AgCl). The linear range was found to be from 0.005 to 5.0 mM with a detection limit of
5.0 μM for lactate. Ultimately, this biosensor was used for the determination of lactate in milk samples with high stability and
reliability.
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Introduction

MXenes are materials consisting of transition metal carbide
and nitride. They have attracted interest because of their

unique properties, such as high chemical stability, excellent
electrical conductivity, large hydrophilic surface area, bio-
compatibility and easy dispersion in aqueous solutions
[1–4]. In general, MXene is synthesized by selectively remov-
ing the BA^ layer from MAX (Mn+ 1AXn) phase by exfolia-
tion using hydrofluoric acid [5] (whereM is an early transition
metal (e.g. Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo), A is an element
from groups 13 and 14 of a periodic table, and X is C and/or
N) resulting in the formula of MXene (Mn+ 1Xn). MXene has
been used as a promising material for various applications,
such as energy storage [6], supercapacitors [7], gas sensors
[8], catalytic material [9], and chemical and biological sen-
sors [10–19]. For sensor applications, MXene patterned
field-effect transistor for label-free measurement of do-
pamine was developed [20]. Furthermore, MXene was
applied for specific adsorption of NH3 in a gas sensor
indicating the potential application of MXene for gas
sensors [21].

The pristine and composited forms of MXene have been
used in electrochemical sensors. Pristine MXene was used to
modify glassy carbon electrodes and applied for the sensitive
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detection of H2O2 and NADH [13]. However, it was found
that the oxidation peak of MXene is irreversible and the elec-
trodes possesses a low stability in the oxidation window [13].
Thus, the nanocomposites of MXene with other materials
have been investigated to solve these problems. MXene
coupled with TiO2 was reported to entrap and immobilize
hemoglobin for mediator-free detection of H2O2. This system
can improve the stability of sensing compared to pristine
MXene [22]. This platform was used for NO2 detection with
high stability [12]. Moreover, the composites of MXene with
metallic nanoparticles including gold nanoparticles (AuNPs)
have been developed for glucose biosensor with high specificity
[11]. MXene composite was used to enhance electron transfer
kinetics between electrode and enzyme [11]. A highly stable
MXene/Pt electrode was also applied for small molecule detec-
tion to improve the stability in an ideal potential window (0 mV
vs. Ag/AgCl). Pt has become a common material for electro-
chemical H2O2 detection. Pt can increase the specific electrode
surface area and mass transport characteristic towards H2O2 over
a wide concentration range. To improve electrode conductivity, a
conducting polymer, polyaniline (PANI), was selected because
of its properties, which include high electrochemical conductiv-
ity, biocompatibility and functionality [23]. Thus, the nanocom-
posites of MXene with metal particle and conducting polymer
have potential for electrochemical sensor applications.

There are no previous reports using Pt/PANI/MXene nano-
composite electrodes in electrochemical biosensors. Herein,
lactate oxidase (LOx) immobilized on Pt/PANI/MXene nano-
composite modified SPCE was created for H2O2 and lactate
detection. The analytical performance of this biosensor was
investigated and showed high sensitivity towards H2O2 and
lactate detection with high selectivity and stability. Thus, this
platform represents a novel tool for H2O2 and lactate biosen-
sor in various applications.

Experimental

Chemicals and materials

MAX (Ti3AlC2) powders were synthesized according to the pre-
vious report, with a slight modification [24]. 50% hydrogen fluo-
ride (HF) was obtained from Ajax Finechem Pty Ltd. (www.
npchemsupply.com). 30% hydrogen peroxide (H2O2) was
purchased from Merck Schuchardt OHG 85662 Hohenbrunn
Germany (http://www.merckmillipore.com). Aniline monomer,
chloroplatinic acid (H2PtCl6), potassium ferricyanide
(K3[Fe(CN6)]), potassium ferrocyanide (K4[Fe(CN6)]),
phosphate buffer (PB, 0.1 M, pH 7.4), lactate standard solution,
and 50.0 U·mL−1 lactate oxidase (LOx) were purchased from
Sigma–Aldrich (St. Louis, MO, USA, https://www.
sigmaaldrich.com/). All solutions were prepared in deionized
(DI) water (Millipore, USA, R ≥ 18.2 MΩ cm−1).

Apparatus

The morphologies and elemental composition ofMXene were
characterized by using scanning electron microscopy (SEM)
and energy dispersive X-ray spectroscopy (EDX) (JSM-6400;
Japan Electron Optics Laboratory Co., Ltd., Japan, https://
www.jeol.co.jp/en/), respectively. Transmission electron
microscopy (TEM) was used for investigating MXene disper-
sion and polyaniline/MXene (PANI/MXene) nanocomposites.
X-ray diffractometer (XRD) was used to identify the structural
composition of MXene. All electrochemical measurements
were performed using CHI 1240B potentiostat (CH
Instruments, Inc., USA, https://www.chinstruments.com/)
and controlled with CHI 1240b software. All standard
solutions were prepared in 0.1 M PB (pH 7.4).

Synthesis of MXene

MAX was pounded into powder, sieved, and dispersed in
20.0 mL of 50% HF. Then, the dispersed MAX solution was
sonicated for 3 h using an ultrasonicator and followed by
neutralizing with DI water. After that, MAX solution was
centrifuged at 3000 rpm for 10 min. The supernatants were
kept for freeze-dry. The black powders were collected and
used as MXene for all further experiments.

Modification of Pt/PANI/MXene on screen-printed
carbon electrode

The dispersion solution of MXene was prepared by adding
0.5 mg MXene in 1.0 mL of DI water. The mixture solution
was dispersed by using a probe ultrasonicator for 1 h to obtain
a well dispersed MXene solution. 1.0 μL of MXene was
dropped on the surface of SPCE and dried at a room temper-
ature. After that, 0.1 M aniline was used to produce the nano-
structure of PANI onMXene surface by electropolymerization
by using CV with a scanning potential in a range from −0.5 to
+1.0 V (vs. Ag/AgCl) for 2 cycles and 100 mV·s−1 of scan
rate. Finally, 10 mM H2PtCl6 was used to perform the plati-
num particles (Pt) on PANI/MXene electrode using electrode-
position via amperometry with a constant potential of −0.2 V
(vs. Ag/AgCl) for 120 s.

Electroanalytical measurement

All the electrochemical measurements were performed on a
potentiostat using cyclic voltammetric and amperometric
techniques. Cyclic voltammetry (CV) was used to optimize
the parameters for electrode modification and electrode char-
acterization for hydrogen peroxide detection by scanning the
potential between −0.8 to +0.8 V (vs. Ag/AgCl) with a scan
rate of 100 mV·s−1. Amperometry was used to determine
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H2O2 and lactate with a constant potential of +0.3 V (vs. Ag/
AgCl) for 240 s.

Real sample analysis

Commercially available pasteurized milk samples were mixed
with 0.8 mL of 24% trichloroacetic acid (TCA) and centri-
fuged for 10 mins at a speed of 10,000 rpm. Then, the super-
natant was collected for all further experiments. For the stan-
dard addition method, different lactate concentrations (1.0,
1.5, 2.0, 2.5 and 3.0 mM) were spiked into the supernatants
[25] and the electrochemical measurements were performed.

Results & discussion

Electrode characterization

The morphologies of MXene, PANI/MXene and Pt/PANI/
MXene-modified working electrode surface were characterized

by SEM with EDX as shown in Fig. 1. A typical accordion-like
structure of layeredMXene powder was observed (Fig. S1a) due
to the selective removal of Al layer using the HF exfoliation
method. Moreover, the absence of Al atoms in MXene was
confirmed by SEM-EDX as shown in Fig. S1c. In addition, the
XRD spectrum of MXene was also obtained (Fig. S1b), and the
results correspond well with the previous report [4] confirming
that MXene was successfully synthesized. The high surface area
of MXene (10 m2·g−1) makes it attractive for biosensor applica-
tions. Comparing with graphene and its derivatives, the unique
multilayer structure of MXene has the ability to enhance the
specific surface area and preserve the enzymatic activity on the
electrode surface leading to increased enzymatic stability of bio-
sensor [4]. For an electrochemical biosensor,MXenewas used to
modify a screen-printed carbon working electrode. The
accordion-like structure of MXene was deposited on the carbon
electrode surface via physical adsorption as shown in Fig. 1a.
After electropolymerization of aniline, the nanostructured of
sponge-like PANI was formed on the surface of MXene modi-
fied electrode as shown in Fig. 1b. Furthermore, the presence of

Fig. 1 SEM images of aMXene, b PANI/MXene, c Pt/PANI/MXene nanocomposites, and d SEM-EDX spectra of Pt/PANI/MXene modified electrode
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PANI on MXene was also characterized by TEM as shown in
Fig. S2. PANI was successfully grown on MXene surface (Fig.
S2b) leading to easy electrolyte access, fast ion diffusion, and
enhanced electrochemical performance [26]. To further improve
the electrocatalytic activity of the electrode towards H2O2 detec-
tion, Pt was selected to modify the PANI/MXene electrode via
electrodeposition. The presence of Pt was confirmed by SEM-
EDX (Fig. 1c–d). Platinum particles were uniformly deposited
on the PANI/MXene electrode surface after electrodeposition via
amperometry. The average size of Pt was found to be 137 ±
70 nm (n= 40). In addition, SEM-EDX results (Fig. 1d) showed
a high intensity of Pt confirming the presence of Pt within Pt/
PANI/MXene nanocomposite electrode.

Electrode optimization and electrochemical
characterization

In this work, MXene, PANI and Pt play the important role for
electrode surface modification not only for enhancing the
electrochemical sensitivity but also improving the stability of
enzymatic immobilization. The influence of MXene concen-
tration, number of electropolymerization PANI cycles and the
electrodeposition time for Pt particle growth were systemati-
cally investigated. As shown in Fig. S3, the best conditions for

the preparation of Pt/PANI/MXene modified electrode are
0 . 5 m g · mL − 1 MX e n e , t w o c y c l e s o f PAN I
electropolymerization, and 2 min of electrodeposition, and
these optimal conditions were used for all experiments.

The electrochemical behavior of unmodified, MXene,
PANI, Pt, PANI/MXene, Pt/MXene, Pt/PANI and Pt/PANI/
MXene modified electrodes was investigated by CVas shown
in Fig. 2. The combination of Pt/PANI/MXene (red line)
showed the highest anodic and cathodic peak currents to-
wards H2O2 detection compared to the unmodified and
other modified electrodes (i.e. MXene, PANI, Pt,
PANI/MXene, Pt/PANI and Pt/MXene modified elec-
trodes). The presence of MXene enhanced the specific sur-
face area of working electrode due to the multilayer of
MXene. The incorporation of PANI on the surface of
MXene improves not only electrochemical conductivity
but also the surface area of electrode leading to enhanced
specific surface area for Pt deposition [27]. Pt on the mod-
ified electrodes gives a unique morphology, enhanced
electroactive surface area and increased current response
towards H2O2 detection. Moreover, Pt can effectively ac-
celerate the electron transfer of H2O2 detection. Thus, Pt/
PANI/MXene modified electrode was selected as a novel
electrode for the detection of H2O2 produced by enzymatic
reaction between LOx and lactate in the further.

Fig. 2 Cyclic voltammograms of 1.0 mM H2O2 measured on 8 different
electrodes including unmodified, MXene, PANI, Pt, PANI/MXene, Pt/
MXene, Pt/PANI and Pt/PANI/MXene modified electrodes, with a scan
rate of 100 mV·s−1

Fig. 3 a Hydrodynamic
voltammograms of 1.0 mM H2O2

(blue line) and background
(0.1 M PB pH 7.4: orange line)
measured on Pt/PANI/MXene
modified electrode, and b the
signal-to-background ratios (S/B)
obtained from hydrodynamic
voltammograms

Fig. 4 Nyquist plots of 0.1 M KCl containing 5.0 mM [Fe(CN)6]
3−/4− on

unmodified, Pt/PANI/MXene and LOx/Pt/PANI/MXene modified
electrodes
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Hydrogen peroxide detection

The Pt/PANI/MXene electrode was selected for the detection
of H2O2 by amperometry. To obtain the optimal conditions for
amperometry, the detection potential was optimized in a range
of +0.1 to +0.5 V (vs. Ag/AgCl) as shown in Fig. 3. The
increase in detection potential from +0.1 to +0.3 V (vs. Ag/
AgCl) increased the anodic current signal for H2O2 but the
background current also increased. The signal-to-background
ratios (S/B) was examined instead of the anodic current signal
as shown in Fig. 3b. The S/B ratio measured at +0.3V (vs. Ag/
AgCl) not only provides the highest sensitivity for the detec-
tion of H2O2 but also avoids the interfering effect from real
samples due to the low oxidation potential [28]. Hence,

+0.3 V (vs. Ag/AgCl) was chosen as a detection potential
for further amperometric experiments.

Pt/PANI/MXene modified electrode was used to detect
H2O2 at different concentrations, and the amperometric re-
sponses were investigated at a steady state current of 240 s
to generate a calibration plot of H2O2. A calibration plot was
linearly proportional to H2O2 concentration over a range from
1.0 μM to 7.0 mM with a correlation coefficient of 0.9990
(Fig. S4), showing the ability to use the Pt/PANI/MXene-
modified electrode over a wide linear range.

Lactate detection

Lactate can be detected via H2O2 generation from the enzy-
matic reaction between LOx and lactate [28] using a LOx/Pt/
PANI/MXene-modified electrode. For a lactate detection,
LOx (1.0 μL; 50 U·mL−1) was immobilized on Pt/PANI/
MXene-modified electrode by a drop casting and drying at a
room temperature for 10 min. The presence of LOx on the
electrode surface was confirmed by EIS and compared with
Pt/PANI/MXene-modified electrode in the absence of LOx
and an unmodified electrode by measuring the impedance
change. The Nyquist plots showing electron transfer resis-
tance (Rct) between the electrode surface and the redox couple
of [Fe(CN)6]

3−/4were investigated [29]. Since LOx is a non-
conductive protein, the charge transfer resistance increases
after immobilization. As shown in Fig. 4, Rct of the modified
electrode immobilized with LOx is higher than the one with-
out LOx. This is resulted from the enzyme immobilization on

Fig. 5 A calibration plot between amperometric current signals and
concentrations of lactate in the concentration range of 0.005–5.0 mM in
0.1 M PB pH 7.4 at +0.3 V (vs. Ag/AgCl) detection potential. The data
points were averaged from 3 electrodes (n = 3)

Table 1 Comparison of
electrodes for lactate detection Electrode Linear range

(mM)
Detection limit
(μM)

Sensitivity
(μA·mM−1)

Reference

LOx/Pt/GCNF/SPCE 0.01–2.0 6.9 0.0413 [16]

LOx/FSM8.0/Naf/CoPC/SPCE 0.02–1.5 18 0.0036 [30]

Au/MPTS/AuNPs/LOx 0.05–0.25 4.0 3.4 [31]

LOx/MWCNTs/Pt-nano/GCE 0.25–2.0 10.0 3.99 [19]

LOx/ PtNp-CNF-PDDA/SPCE 0.025–1.5 11 0.0368 [17]

LOx/PtNP/GCNF–SPCE 0.01–2.0 6.9 0.0413 [16]

LOx/GPNs/GCE 0–1.0 8.0 3.52 [14]

LOx/PtNPs/PdNPs/carbon 0.05–0.8 0.1 0.003 [32]

LOx/CS/MWCNTs/FcMe/HRP/
BSA/SPBGE

0.03–0.24 22.6 NR [33]

LOx/Pt/PANI/MXene 0.005–5 5.0 0.62 This
work

NR Not report, LOx Lactate oxidase, Pt Platinum particles, GCNF Graphitized carbon nanofibers, SPCE Screen-
printed carbon electrode, FSM8.0Mesoporous silica powder, NafNafion layer, CoPC Cobalt phthalocyanine, Au
Gold electrode, MPTS (3-mercaptopropyl)-trimethoxysilane, AuNPs Gold nanoparticles, MWCNTs Multiwalled
carbon nanotubes,Pt-nano Platinum nanoparticle,PtNp-CNF Platinum nanoparticle decorated carbon nanofibers,
PDDA poly(diallyldimethylammonium) chloride, GPNs Graphene supported platinum nanoparticles, PtNPs
Platinum nanoparticles, PdNPs Paldium nanoparticles, CS chitosan, FcMe Ferrocene methanol, HRP Horse
Radish Peroxidase, BSA Bovine serum albumin, SPBGE Basal-plane like screen-printed graphite electrodes
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the electrode surface, which reduces the electron transfer rate
of the electrode leading to increased charge transfer resistance.
Moreover, the lowest charge transfer resistance was exhibited
on Pt/PANI/MXene-modified electrode confirming that Pt/
PANI/MXene modified electrode (yellow) can accelerate the
electron transfer through electrode surface. Hence, the LOx/
Pt/PANI/MXene modified electrode is suitable for electro-
chemical determination of lactate.

For the determination of lactate, LOx/Pt/PANI/MXene
modified electrodes were incubated for 5 min with different
concentrations of lactate under the optimal conditions. The
amperometric measurements were made at the steady state
current of 240 s to construct a calibration plot for lactate. As
shown in Fig. 5, the calibration curve was linearly proportion-
al to the concentration of lactate over the range from 5.0μM to
5.0 mMwith a correlation coefficient of 0.9868. The detection
sensitivity of LOx/Pt/PANI/MXene modified electrodes was
found to be 0.62μA·mM−1, and a limit of detection (LOD) for
lactate was found to be 5.0 μM (n = 3). The electrochemical
performances of this biosensor were compared to previously
reported systems for lactate detection (Table 1). The biosensor
exhibits a relatively high electrochemical sensitivity with a
wide linear range for lactate detection. Hence, this information
confirms that LOx/Pt/PANI/MXene modified electrode is an
alternative system utilized for the detection of H2O2 generated
by the enzymatic assay, and it might be a new tool for the
detection of other biomarkers for medical diagnosis.

Reproducibility and stability

To investigate the electrode-to-electrode reproducibility, five
different electrodes were used to determine 1.0 mM lactate.
The current responses for this biosensor offered the reproduc-
ible responses with a 3.7% RSD, demonstrating acceptable
reproducibility (Fig. 6a). To evaluate biosensor stability,
LOx/Pt/PANI/MXene-modified electrodes were prepared
and kept in the sealed system at 4 °C for 30 days. The elec-
trodes retained 93% and 86% of their initial signal after stor-
age period of 7 days and 30 days, respectively (Fig. 6b). It is
confirmed that this biosensor has a good stability, which might

be the result of the porous structure of PANI and high surface
area of multilayers structure of MXene preserving the LOx
activity [34].

Determination of lactate in real milk samples

To evaluate the utilization of this biosensor, the analysis of
lactate in dairy products was investigated using the standard
addition method. Different lactate concentrations (1.0, 1.5,
2.0, 2.5 and 3.0 mM) were spiked into cow’s milk followed
by a protein precipitation using TCA [35]. The supernatant
was kept for further analysis after centrifugation at
10,000 rpm. The biosensor results showed a good agreement
with HPLC data using the standard analytical method for lac-
tate (Table S1). This proves that a novel LOx/Pt/PANI/MXene
biosensor possesses a high accuracy and applicable for deter-
mination of lactate in the real samples.

Conclusions

A Pt/PANI/MXene nanocomposite was successfully fabricat-
ed and used to modify screen-printed carbon electrode for
hydrogen peroxide (H2O2) and lactate detection. Pt/PANI/
MXene-modified electrode can substantially increase the cur-
rent response signal toward H2O2 detection, which is approx-
imately 180 times higher than an unmodified electrode. For
lactate detection, this biosensor provided a linear range of
0.005–5.0 mM with a sensitivity of 0.62 μA·mM−1, and a
detection limit of 5.0 μM. In addition, this biosensor provides
a relatively low LOD compared to previous reports.
Furthermore, the enzymatic activity of LOx was preserved
on this biosensor offering the high stability for at least 30 days
with 86% current response retained compared with the initial
signal. Hence, this biosensor might be used as an alternative
tool for sensitive detection of lactate and it can be further
applied for the detection other biomarkers for medical
diagnosis.

Fig. 6 a The reproducibility of
electrodes and b the stability
testing (0–30 days) on LOx/Pt/
PANI/MXene modified electrode
for the detection of 1.0 mM
lactate in 0.1 M PB pH 7.4 by
amperometry using detection
potential of +0.3 V. The standard
deviations are obtained from 5
measurements (n = 5)
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