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Abstract

In the natural deduction system for classical propositional logic given by G. Gen-

tzen, there are some inference rules with assumptions discharged by the rule.

D. Prawitz calls such inference rules improper as opposed to proper ones. Im-

proper inference rules are more complicated than proper ones and more difficult

to understand. In 2022, we provided a sequent system based solely on the ap-

plication of proper rules. In the present paper, on the basis of our system from

2022, we classify improper inference rules.
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1. Introduction

In the natural deduction system for the classical propositional logic given in
Gentzen [4], there are some inference rules with assumptions discharged by
the rule. For instance, the implication introduction rule and the disjunction
elimination rule have such assumptions. Prawitz [7] calls such inference
rules improper as opposed to proper ones. The difference occurring between
these two kinds of rules has been acknowledged by Fine [3], Robering [8],
and Breckenridge and Magidor [1]. Nevertheless, no formal system allows
for distinguishing them.

In Sasaki [9], we provided a sequent system ⊢Sc that admits only proper
rules. In the present paper, we classify the improper inference rules using
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⊢Sc, however, there are still some that do not fall within our framework.
The range of the inference rules considered is determined in Subsection 1.2,
while the preliminaries are provided in Subsection 1.1, and our objectives
are made specific in Subsection 1.3.

1.1. Preliminaries

Formulas are constructed from ⊥ (contradiction) and propositional vari-
ables by means of logical connectives ∧ (conjunction), ∨ (disjunction), and
→ (implication) in the usual way. Latin letters p, q, and r, with or without
subscripts, stand for propositional variables, and Greek letters ϕ, ψ, and χ,
with or without subscripts, for formulas. The set of formulas is denoted
by Wff. We define ¬φ as φ→ ⊥. Also, we use U and V , with or without
subscripts, for sets of formulas, especially we use Greek letters Γ,∆, · · · ,
with or without subscripts, for finite sets of formulas.

A sequent is an expression (Γ ⇒ φ). We often write

φ1, · · · , φi,Γ1, · · · ,Γj ⇒ φ

instead of
({φ1, · · · , φi} ∪ Γ1 ∪ · · · ∪ Γj ⇒ φ).

Sequents are denoted by X,Y , and Z, with or without subscripts. The
antecedent ant(Γ ⇒ φ) and the succedent suc(Γ ⇒ φ) of a sequent Γ ⇒ φ
are defined as

ant(Γ ⇒ φ) = Γ and suc(Γ ⇒ φ) = φ,

respectively. We use S and T , with or without subscripts, for sets of se-
quents.

A sequent system is defined as a collection comprising a set Axi of
sequents and a set Inf of inference rules of the form

X1 · · · Xn

X
I.

Specifically, a proof figure of X from T in the sequent system is defined by
means of the set Axi∪ T as axioms and Inf as inference rules in the usual
way. Let ⊢, with or without subscripts, represent sequent systems and
write T ⊢ X if there exists a proof figure of X from T in ⊢. We write ⊢ X
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and T,U ⊢ X instead of ∅ ⊢ X and T ∪ {⇒ ϕ | ϕ ∈ U} ⊢ X, respectively.
Also, we write T ⊢ Γ ⇒ ∆ if T ⊢ Γ ⇒ ψ for every ψ ∈ ∆. We note

T ̸⊢ Γ ⇒ ∆ ⇐⇒ T ̸⊢ Γ ⇒ ψ for some ψ ∈ ∆.

We often take the recourse to the following properties:

• T1 ⊢ X implies T1 ∪ T2 ⊢ X,

• T1 ⊢ X and T2 ∪ {X} ⊢ Y imply T1 ∪ T2 ⊢ Y ,

which can be shown by induction on a proof figure.
For a sequent system for the classical propositional logic, we use the

system ⊢Gc which corresponds to the natural deduction system in Gentzen
[4] and Prawitz [7]. Specifically, the system ⊢Gc is defined as follows.

Definition 1.1. A proof figure of X from T in ⊢Gc is defined by means
of the following axioms and inference rules.
Axioms:

• ϕ⇒ ϕ,

• ⊥ ⇒ ϕ,

• members of T .

Inference rules: See Figure 1.

We note that there are three improper inference rules (∨ ⇒), (⇒→), and
(RAA) in Figure 1.

A sequent system ⊢Sc is defined as follows.

Definition 1.2. A proof figure of X from T in the system ⊢Sc is defined
by means of the following axioms and inference rules.
Axioms: members of {X |⊢Gc X} ∪ T ,
Inference rules: (w ⇒) and (cut).

The system ⊢Sc has only structural rules, and all logical content is
put into axiomatic sequents. Such systems have been considered in Hertz
[5], Suszko [11], Suszko [12], and Schroeder-Heister [10]. Indrzejczak [6]
provides a brief summary of these works. However, a difference between
proper and improper inference rules is not discussed there. [9] proved that
⊢Sc distinguishes them, specifically,
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Γ ⇒ ψ

ϕ,Γ ⇒ ψ
(w ⇒)

Γ ⇒ ϕ ϕ,Γ ⇒ ψ

Γ ⇒ ψ
(cut)

ϕ1, ϕ2,Γ ⇒ ψ

ϕ1 ∧ ϕ2,Γ ⇒ ψ
(∧ ⇒)

Γ ⇒ ϕ1 Γ ⇒ ϕ2
Γ ⇒ ϕ1 ∧ ϕ2

(⇒ ∧)

ϕ1,Γ ⇒ ψ ϕ2,Γ ⇒ ψ

ϕ1 ∨ ϕ2,Γ ⇒ ψ
(∨ ⇒)

Γ ⇒ ϕi
Γ ⇒ ϕ1 ∨ ϕ2

(⇒ ∨)(i = 1, 2)

Γ ⇒ ϕ1 ϕ2,Γ ⇒ ψ

ϕ1 → ϕ2,Γ ⇒ ψ
(→⇒)

ϕ1,Γ ⇒ ϕ2
Γ ⇒ ϕ1 → ϕ2

(⇒→)

¬ϕ,Γ ⇒ ⊥
Γ ⇒ ϕ

(RAA)

Figure 1. Inference rules of ⊢Gc

Lemma 1.3. Among the inference rules in Figure 1, none of the three im-
proper inference rules (∨ ⇒), (⇒→), and (RAA) holds in ⊢Sc, and the
other proper ones hold in ⊢Sc.

To classify inference rules, we use the following system.

Definition 1.4. For an inference rule I, we define ⊢Sc+I as the system
obtained by adding I to ⊢Sc.

The definition of the usual truth valuation is as follows.

Definition 1.5. We say that a mapping v : Wff → {t, f} is a truth valu-
ation if the following conditions hold:

• v(⊥) = f,

• v(ϕ ∧ ψ) = t ⇐⇒ v(ϕ) = v(ψ) = t,

• v(ϕ ∨ ψ) = f ⇐⇒ v(ϕ) = v(ψ) = f,

• v(ϕ→ ψ) = f ⇐⇒ v(ϕ) = t and v(ψ) = f.

We use u and v, with or without subscripts, for truth valuations. We write
v(U) = t if v(ϕ) = t for each ϕ ∈ U . The completeness below can be shown
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in the usual way. For example, we can refer to Chagrov and Zakharyaschev
[2].

Lemma 1.6. The following conditions are equivalent:

(1) U ⊢Gc⇒ ϕ,

(2) for any v, v(U) = t implies v(ϕ) = t.

We modify the above truth valuation as follows.

Definition 1.7. Let v be a set of truth valuations. We define a mapping
v : Wff → {t, f} as follows:

v(ϕ) = t ⇐⇒ for any v ∈ v, v(ϕ) = t.

We note that

• ∅(ϕ) = t,

• {v}(ϕ) = v(ϕ),

• {v1, v2}(ϕ) = t ⇐⇒ v1(ϕ) = v2(ϕ) = t.

We use u and v, with or without subscripts, for a set of truth valuations.
We write v(U) = t if v(ϕ) = t for each ϕ ∈ U . Also, we write v(X) = t if
v(ant(X)) = f or v(suc(X)) = t. Moreover, we write v(T ) = t if v(X) = t
for each X ∈ T . We define #(v) as the number of elements in v.

The following lemma was proved in [9].

Lemma 1.8. The following conditions are equivalent:

(1) T ⊢Sc X,

(2) for any v, v(T ) = t implies v(X) = t.

1.2. The range of inference rules

In the present paper, we classify the improper inference rules. However,
there are some inference rules which are not considered here. Also, the
meaning of “improper” has not been clear. Prawitz [7] calls an inference
rule in the natural deduction system improper if it has some assumptions
discharged by the rule. For example, the rules in natural deduction system
corresponding to (∨ ⇒), (⇒→), and (RAA) are improper and the rules
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corresponding to (∧ ⇒), (⇒ ∧), (⇒ ∨), and (→⇒) are proper. However,
there are some rules in natural deduction systems we can not distinguish
between proper or improper. In the present subsection, we give our inter-
pretation of improper rules in sequent systems and clarify the range of the
inference rules we investigate here.

First, we give our interpretation of “improper inference rule”. [9] gave
a condition (C2), and confirmed that (C2) is a natural interpretation of
“improper” among inference rules which hold in ⊢Gc by showing the equiv-
alence between T ̸⊢Sc X and (C2). Here, we use this interpretation. Also,
if an inference rule I does not hold in ⊢Gc, then we treat I as an improper
one. Specifically, an inference rule

X1 · · · Xm

X

is improper if the following condition (C2) holds:

(C2) there exists a subset T of {X1, · · · , Xm} satisfying the following two
conditions:

• {X1, · · · , Xm}\T ̸⊢Gc ant(X) ⇒ ant(Xi) for each Xi ∈ T ,

• {X1, · · · , Xm}\T ̸⊢Gc X.

Since (C2) is equivalent to T ̸⊢Sc X, an improper inference rule is a rule
which does not hold in ⊢Sc.

Below, we also clarify a range of the improper inference rule we investi-
gate. Such inference rules are the following adequate ones. It will be shown
in Lemma 1.10 that an inference rule I is adequate if ⊢Sc+I is complete for
some class of sets for truth valuations. From this point of view, we treat
most of natural inference rules.

Definition 1.9. We say that an inference rule I is adequate if the following
two conditions hold:

(1)
{Γi ⇒ ϕi | i ∈ {1, · · · ,m}} ⊢Sc+I Γ0 ⇒ ϕ0

implies

{Γ,Γi ⇒ ϕi | i ∈ {1, · · · ,m}} ⊢Sc+I (Γ,Γ0 ⇒ ϕ0),
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(2)
T ∪ {Γ1 ⇒ ϕ1} ⊢Sc+I Γ0 ⇒ ϕ0

implies
T ∪ {Γ1 ⇒ ϕ0} ⊢Sc+I Γ0 ⇒ ϕ0.

Lemma 1.10. Let I be an inference rule. If there exists a class C of sets of
truth valuations satisfying the completeness:

T ⊢Sc+I X ⇐⇒ v(T ) = t implies v(X) = t, for every v ∈ C,

then I is adequate.

Proof: Here, we also use (1) and (2) as the conditions (1) and (2) in
Definition 1.9, respectively. We can show (1), by the existence of C.

We show (2). Suppose that

T ∪ {Γ1 ⇒ ϕ1} ⊢Sc+I Γ0 ⇒ ϕ0

and let v be a set in C. Then by the completeness, we have

v(T ) = v(Γ0) = v(Γ1 ⇒ ϕ1) = t implies v(ϕ0) = t. (3)

If
v(T ) = v(Γ0) = t implies v(Γ1) = t, (4)

then we have

v(T ) = v(Γ0) = v(Γ1 ⇒ ϕ0) = t implies v(ϕ0) = t. (5)

If (4) does not hold, then we have

v(T ) = v(Γ0) = t and v(Γ1) = f,

and so,
v(T ) = v(Γ0) = v(Γ1 ⇒ ϕ1) = t,

and using (3), we have v(ϕ0) = t. So, in both cases, we have (5). Using
the completeness, we obtain

T ∪ {Γ1 ⇒ ϕ0} ⊢Sc+I Γ0 ⇒ ϕ0.
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1.3. The purposes

In the present paper, we classify the adequate improper inference rules.
In other words, we classify the systems obtained from ⊢Sc by adding an
adequate inference rule. In the present subsection, we describe this purpose
precisely.

In the present paper, we fix the variable n for a natural number. We
use p⃗ for the sequence p1, · · · , pn. Similarly, we also use ϕ⃗, ψ⃗, χ⃗, and so on.

We consider the inference rule

edn,0(ϕ⃗),Γ ⇒ ψ · · · edn,n(ϕ⃗),Γ ⇒ ψ

Γ ⇒ ψ
(emn),

where

edn,k(ϕ⃗) =
∨

1≤i≤k

¬ϕi ∨
∨

k<j≤n

ϕj for every k ∈ {0, · · · , n}.

We note that

ed3,0(ϕ⃗) = ϕ1 ∨ ϕ2 ∨ ϕ3, ed3,1(ϕ⃗) = ¬ϕ1 ∨ ϕ2 ∨ ϕ3,

ed3,2(ϕ⃗) = ¬ϕ1 ∨ ¬ϕ2 ∨ ϕ3, ed3,3(ϕ⃗) = ¬ϕ1 ∨ ¬ϕ2 ∨ ¬ϕ3.

We often call these formulas elementary disjunctions if each ϕi is a propo-
sitional variable. The name “ed” is intended to mean “elementary disjunc-
tion”. We also note that (em1) and (em2) are as follows:

ϕ1,Γ ⇒ ψ ¬ϕ1,Γ ⇒ ψ

Γ ⇒ ψ
(em1),

ϕ1 ∨ ϕ2,Γ ⇒ ψ ¬ϕ1 ∨ ϕ2,Γ ⇒ ψ ¬ϕ1 ∨ ¬ϕ2,Γ ⇒ ψ

Γ ⇒ ψ
(em2),

and we find that (em1) corresponds to the law of excluded middle. The
name “(emn)” is intended to mean the law. We write T ⊢n X instead of
T ⊢Sc+(emn) X.

The main theorem in the present paper is as follows.

Theorem 1.11.

(1) T ⊢Gc X ⇐⇒ T ⊢1 X.

(2) T ⊢Sc X =⇒ T ⊢n X.
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(3) T ⊢n+1 X =⇒ T ⊢n X.

(4) Neither of the converses of (2) and (3) holds.

(5) For each adequate inference rule I, either one of the following three
conditions holds:

(5.1) ⊢Sc+I⇒ ⊥,
(5.2) T ⊢Sc+I X ⇐⇒ T ⊢n X, for some n,
(5.3) T ⊢Sc+I X ⇐⇒ T ⊢Sc X.

In the following section, we prove the completeness of ⊢n and show the first
four conditions in Theorem 1.11. In Section 3, we prove Theorem 1.11(5).

2. The system ⊢n

In the present section, we prove the completeness of ⊢n and show the first
four conditions in Theorem 1.11.

Theorem 2.1. The following conditions are equivalent:

(1) T ⊢n X,

(2) for each v, #(v) ≤ n and v(T ) = t imply v(X) = t.

In order to prove Theorem 2.1, we provide some preparations.

Lemma 2.2.

(1) T ∪ {⇒ ψ} ⊢n Γ ⇒ ϕ ⇐⇒ T ⊢n (ψ,Γ ⇒ ϕ).

(2) U ⊢Sc X ⇐⇒ U ⊢n X ⇐⇒ U ⊢Gc X.

Proof: By induction on a proof figure.

Lemma 2.3. If #(v) ≤ n, then there exists k ∈ {0, · · · , n} such that

v(edn,k(ϕ⃗)) = t.

Proof: In the present proof, we write edn,k instead of edn,k(ϕ⃗). It is
sufficient to show

#(v) ≤ n and v(edn,1) = · · · = v(edn,n) = f imply v(edn,0) = t.

Suppose that #(v) ≤ n and v(edn,1) = · · · = v(edn,n) = f. Then, for each
k ∈ {1, · · · , n}, there exists vk ∈ v such that vk(edn,k) = f, and so,

vk(ϕ1) = · · · = vk(ϕk−1) = t and vk(ϕk) = · · · = vk(ϕn) = f.
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Therefore, for each i, j ∈ {1, · · · , n} with i < j, we observe vi(edn,i)= f and
vj(edn,i)= t, and so, we have vi ̸=vj . Therefore, we have #({v1, · · · , vn})=
n. Using {v1, · · · , vn} ⊆ v and #(v) ≤ n, we have {v1, · · · , vn}= v. We
also observe that

vk(ϕ1) = t for every vk ∈ v,

and so,
vk(edn,0) = t for every vk ∈ v.

Hence, we obtain v(edn,0) = t.

Corollary 2.4. If #(v) ≤ n and

v(edn,k(ϕ⃗),Γ ⇒ ϕ) = t, for every k ∈ {0, · · · , n},

then v(Γ ⇒ ϕ) = t.

Proof: By Lemma 2.3.

Lemma 2.5. If T ⊢n X, then for each v,

#(v) ≤ n and v(T ) = t imply v(X) = t.

Proof: We use induction on a proof figure of T ⊢n X.
Basis. If X ∈ T , then the lemma is clear. If ⊢Gc X, then we obtain the

lemma by means of Lemma 1.6.
Induction step can be shown by Corollary 2.4 and the following two:

• #(v) ≤ n and v(Γ ⇒ ψ) = t imply v(ϕ,Γ ⇒ ψ) = t,

• #(v) ≤ n and v(Γ ⇒ ϕ) = v(ϕ,Γ ⇒ ψ) = t imply v(Γ ⇒ ψ) = t.

Lemma 2.6. If T ̸⊢n Γ ⇒ ϕ, then there exists a pair ⟨U, V ⟩ satisfying the
following four conditions:

(1) Γ ⊆ U and ϕ ∈ V ,

(2) U ∪ V = Wff ,

(3) T,U ̸⊢n⇒ ψ for each ψ ∈ V ,

(4) for each ϕ⃗, edn ̸⊆ V , where

edn = {edn,k(ϕ⃗) | k ∈ {0, · · · , n}}.



A Classification of Improper Inference Rules 253

Proof: Suppose that T ̸⊢n Γ ⇒ ϕ. To define ⟨U, V ⟩ satisfying the required
conditions, we construct a list U1, U2, · · · . Let

χ∗
1, χ

∗
2, · · ·

be an enumeration of all formulas. We consider the list

χ∗
1, χ

∗
2, χ

∗
1, χ

∗
2, χ

∗
3, χ

∗
1, χ

∗
2, χ

∗
3, χ

∗
4, · · · ,

and we write χm instead of the m-th formula of the list above. We note
that for each integer i and each formula χ, there exists an integer j such
that χ = χj and i < j. We define Uk as

• U0 = Γ,

• Uk+1 =

{
Uk ∪ {χk+1} if T ̸⊢n (χk+1, Uk ⇒ ϕ)
Uk otherwise.

We note that
i < j implies Ui ⊆ Uj . (0.1)

We define the pair ⟨U, V ⟩ as

U =

∞⋃
i=0

Ui and V = Wff\U.

We show the required conditions (1), (2), (3), and (4). (2) is clear from the
definition.

For (1). Γ ⊆ U is clear from the definition. Suppose that ϕ ̸∈ V . Then
by (2), we have ϕ ∈ U , and so

ϕ ∈ Uk for some k. (2.1)

On the other hand, by induction on k, we can show

T ̸⊢n Uk ⇒ ϕ for every k, (2.2)

which is in contradiction with (2.1).
For (3). Suppose that T,U ⊢n⇒ ψ for some ψ ∈ V . Then by Lemma

2.2(1), there exists k′ such that

T ⊢n Uk′ ⇒ ψ. (3.1)
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By the definition of the list χ1, χ2, · · · , we observe that ψ = χj+1 for some
j ≥ k′. By j ≥ k′ and (0.1), we have Uk′ ⊆ Uj . Also, by ψ = χj+1 ∈ V ,
we have T ⊢n (ψ,Uj ⇒ ϕ). Using (2.2) and (cut), we have T ̸⊢n Uj ⇒ ψ,
which is in contradiction with (3.1) and Uk′ ⊆ Uj .

For (4). Suppose that edn ⊆ V . Then for each ed ∈ edn ⊆ V , there
exists an integer f(ed) such that ed = χf(ed)+1 and

T ⊢n (ed, Uf(ed) ⇒ ϕ).

Let m be the maximum in {f(ed) | ed ∈ edn}. Then, using (0.1), we have

T ⊢n (ed, Um ⇒ ϕ) for every ed ∈ edn,

and using (emn), we have

T ⊢n Um ⇒ ϕ,

which is in contradiction with (2.2).

Lemma 2.7. If #({v1, · · · , vn+1}) = n+1, then there exist ϕ1, · · · , ϕn such
that

vi(ϕj) = f ⇐⇒ i ≤ j.

Proof: Let a and b be members in {1, · · · , n + 1} with a < b. By
#({v1, · · · , vn+1}) = n+ 1, we have va ̸= vb, and so, there exists a propo-
sitional variable pa,b such that va(pa,b) ̸= vb(pa,b). We define ψa,b as

ψa,b =

{
pa,b if va(pa,b) = f

¬pa,b if va(pa,b) = t.

Then we observe
va(ψa,b) = f,

and using va(pa,b) ̸= vb(pa,b),

vb(ψa,b) = t.

For ℓ ∈ {1, · · · , n+ 1}, we define ψℓ as

ψℓ =
∨

ℓ<k≤n+1

ψℓ,k.
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Table 1. A truth table of formulas in Lemma 2.7 in the case n = 3

ψ1,2 ψ1,3 ψ1,4 ψ1 ϕ1 ψ2,3 ψ2,4 ψ2 ϕ2 ψ3,4 ψ3 ϕ3

v1 f f f f f f f
v2 t t t f f f f f
v3 t t t t t t f f f
v4 t t t t t t t t t

Then we have

va(ψa) = f and va+1(ψa) = · · · = vn+1(ψa) = t.

Finally, we define ϕi as

ϕj =
∧

1≤k≤j

ψk.

If i ≤ j, then by vi(ψi) = f, we have vi(ϕj) = f. If i > j, then by vi(ψk) = t
for each k ∈ {1, · · · , i− 1}, we have vi(ϕj) = t.

In Table 1, we can see the truth values of the formulas occurring in Lemma
2.7 in the case that n = 3.

Lemma 2.8. If T ̸⊢n Γ ⇒ ϕ, then there exists v such that #(v) ≤ n,
v(T ) = t, and v(Γ ⇒ ϕ) = f.

Proof: Suppose that T ̸⊢n Γ ⇒ ϕ. By Lemma 2.6, there exists a pair
⟨U, V ⟩ satisfying the following four conditions:

(1) Γ ⊆ U and ϕ ∈ V ,

(2) U ∪ V = Wff ,

(3) T,U ̸⊢n⇒ ψ for each ψ ∈ V ,

(4) for each ϕ⃗, edn(= {edn,k(ϕ⃗) | k ∈ {0, · · · , n}}) ̸⊆ V .

By (3), for each ψ ∈ V , we observe

U ̸⊢n⇒ ψ,

and by Lemma 2.2, we have

U ̸⊢Gc⇒ ψ,
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and by Lemma 1.6, there exists vψ satisfying

vψ(U) = t and vψ(ψ) = f.

We define v as
v = {vψ | ψ ∈ V }.

Then we have

v(U) = t and v(ψ) = f for each ψ ∈ V,

and using (1), we have
v(Γ ⇒ ϕ) = f.

Also, similarly to Lemma 2.10 in [9], we can show v(T ) = t.
So, we have only to show #(v) ≤ n. Suppose that #(v) ≥ n+1. Then

there exist ψ1, · · · , ψn+1 ∈ V such that #({vψ1
, · · · , vψn+1

}) = n + 1. By
Lemma 2.7, there exist χ1, · · · , χn such that

vψi
(χj) = f ⇐⇒ i ≤ j,

and by the definition of edn,i(χ⃗),

vψi
(edn,i(χ⃗)) = f,

and using vψi
∈ v,

v(edn,i(χ⃗)) = f,

Using v(U) = t and (2), we have edn ⊆ V , which is in contradiction with
(4).

From Lemma 2.5 and Lemma 2.8, we obtain Theorem 2.1. The first
three conditions in Theorem 1.11 are obtained by Theorem 2.1, Lemma
1.6, and Lemma 1.8. Theorem 1.11(4) is obtained by the following lemma.

Lemma 2.9. The rule (emn) does not hold in ⊢n+1.

Proof: We show that the following rule does not hold in ⊢n+1:

edn,0(p⃗) ⇒ ⊥ · · · edn,n(p⃗) ⇒ ⊥
⇒ ⊥

.
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Table 2. A truth table of formulas in Lemma 2.9 in the case n = 3

p1 p2 p3 ed3,0(p⃗) ed3,1(p⃗) ed3,2(p⃗) ed3,3(p⃗)

v0 f f f f t t t
v1 t f f t f t t
v2 t t f t t f t
v3 t t t t t t f

By Lemma 2.5, we have only to show that there exists v such that

#(v) = n+ 1 and v(edn,0(p⃗)) = · · · = v(edn,n(p⃗)) = f. (1)

We define v0, · · · , vn as

vi(pj) = f ⇐⇒ i < j

and define v as v = {v0, · · · , vn}. Then we observe

vi(edn,j(p⃗)) = f ⇐⇒ i = j for every i, j ∈ {0, · · · , n}.

Therefore, we have #(v) = n+ 1 and

vk(edn,k(p⃗)) = f for every k ∈ {0, · · · , n}.

Hence, we obtain (1).

In Table 2, we can see the truth values of the formulas occurring in Lemma
2.9 in the case that n = 3.

3. A classification

In the present section, we prove Theorem 3.1. Theorem 1.11(5) will be
obtained as a corollary of the theorem.

First, we define v(I) for an inference rule I. For an inference rule,

X1 · · · Xm

X
I,

we write v(I) = t if v(X1) = · · · = v(Xm) = t implies v(X) = t.
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Theorem 3.1. Let I be an adequate inference rule and let N be the set
{#(v) | v(I) = f}. Then

(1) N ̸= ∅ and minN = 1 imply ⊢Sc+I⇒ ⊥,

(2) N ̸= ∅ and minN > 1 imply T ⊢Sc+I X ⇐⇒ T ⊢minN−1 X,

(3) N = ∅ implies T ⊢Sc+I X ⇐⇒ T ⊢Sc X.

(1) and (3) in the above theorem are obtained by Lemma 1.6 and Lemma
1.8, respectively. Below, we provide some preparations for Theorem 3.1(2).

We define the set EDn(ϕ⃗) as

EDn(ϕ⃗) = {
∨
i∈N

¬ϕi ∨
∨

i∈{1,··· ,n}\N

ϕi | N ⊆ {1, · · · , n}}

and consider the following inference rule:

edn,0,Γ ⇒ ψ · · · edn,n,Γ ⇒ ψ Γ ⇒ edn,n+1 · · · Γ ⇒ edn,2n−1

Γ ⇒ ψ
(em∗

n),

where
edn,k = edn,k(ϕ⃗) for every k ∈ {0, · · · , n}

and

{edn,k(ϕ⃗) | k ∈ {n+ 1, · · · , 2n − 1}} = EDn(ϕ⃗)\{edn,k(ϕ⃗) | 0 ≤ k ≤ n}.

We also consider the rule (em0
n) obtained from (em∗

n) by replacing ϕ⃗ with
p⃗, respectively. Moreover, we consider the rule (em0

n(⊥)) obtained from
(em0

n) by replacing ψ with ⊥.

Remark 3.2.
{edn,k(ϕ⃗) | 0 ≤ k ≤ n}

=

∨
i∈N

¬ϕi ∨
∨

i∈{1,··· ,n}\N

ϕi

∣∣∣∣∣∣ N ∈ {∅, {1}, · · · , {1, · · · , n}}

 .

Lemma 3.3.

T ⊢Sc+(em∗
n)
X ⇐⇒ T ⊢n X.

Proof: It is easily observed that (em∗
n) holds in ⊢n.
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We show that (emn) holds in ⊢Sc+(em∗
n)
. Suppose that

T ⊢Sc+(em∗
n)

(edn,k(ϕ⃗),Γ ⇒ ψ) for every k ∈ {0, · · · , n}. (1)

For each k ∈ {1, · · · , n}, we define ψk as

ψk =
∨

k≤i≤n

ϕi.

Then T ⊢Sc+(em∗
n)

(Γ ⇒ ψ) follows from

T ⊢Sc+(em∗
n)

(edn,k(ψ⃗),Γ ⇒ ψ) for every k ∈ {0, · · · , n} (2)

and

T ⊢Sc+(em∗
n)

Γ ⇒ ed for every ed ∈ EDn(ψ⃗)\{edn,k(ψ⃗) | 0 ≤ k ≤ n}, (3)

by (em∗
n). So, it is sufficient to show (2) and (3).

For (2). For each k ∈ {1, · · · , n}, we note

⊢Sc⇒ edn,k(ψ⃗)
⇐⇒ ⊢Sc⇒

∨
1≤i≤k ¬ψi ∨

∨
k<i≤n ψi

⇐⇒ ⊢Sc⇒
∨

1≤i≤k ¬ψi ∨
∨
k<i≤n ϕi

⇐⇒ ⊢Sc⇒
∨

1≤i<k ¬ψi ∨ ¬ψk ∨
∨
k<i≤n ϕi

⇐⇒ ⊢Sc⇒
∨

1≤i<k ¬ψi ∨ ¬(ϕk ∨
∨
k<i≤n ϕi) ∨

∨
k<i≤n ϕi

⇐⇒ ⊢Sc⇒
∨

1≤i<k ¬ψi ∨ ¬ϕk ∨
∨
k<i≤n ϕi

⇐⇒ ⊢Sc⇒ ¬ϕk ∨
∨
k<i≤n ϕi

and
⊢Sc⇒ edn,0(ψ⃗) ⇐⇒ ⊢Sc⇒

∨
1≤i≤n

ψi ⇐⇒ ⊢Sc⇒
∨

1≤i≤n

ϕi.

Therefore, for each k ∈ {0, · · · , n}, we have

⊢Sc edn,k(ψ⃗) ⇒ edn,k(ϕ⃗),

and using (1), we obtain (2).

For (3). Suppose that ed ∈ EDn(ψ⃗)\{edn,k(ψ⃗) | 0 ≤ k ≤ n}. Then by
Remark 3.2, there exists a subset N of {1, · · · , n} such that

N ̸∈ {∅, {1}, {1, 2}, · · · , {1, · · · , n}} (4)
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and
ed =

∨
i∈N

¬ψi ∨
∨

i∈{1,··· ,n}\N

ψi. (5)

Then by (4), there exists k ∈ {2, · · · , n} such that

k ∈ N and k − 1 ̸∈ N,

and using (5), we have

⊢Sc ¬ψk ∨ ψk−1 ⇒ ed,

and by the definition of ψk, we have

⊢Sc ¬ψk ∨ (ϕk−1 ∨ ψk) ⇒ ed,

Using ⊢Sc⇒ ¬ψk ∨ (ϕk−1 ∨ ψk), we obtain (3).

Lemma 3.4. Let I be an inference rule. If there exists u such that #(u) =
n+1 and u(I) = f, then there exists a substitution σ such that, for each v,

v(em0
n(⊥)) = f implies v(Iσ) = f.

Proof: Suppose that #(u) = n+ 1, u(I) = f, and u = {u0, · · · , un}. We
define a substitution σ as

pσ =
∧

0≤k≤n,uk(p)=f

edn,k(p⃗).

Also, we suppose that v((em0
n(⊥))) = f. Then we have

v(edn,0(p⃗)) = · · · = v(edn,n(p⃗)) = f (1)

and
v(edn,n+1(p⃗)) = · · · = v(edn,2n−1(p⃗)) = t. (2)

By (1), for each k ∈ {0, · · · , n}, there exists vk ∈ v such that vk(edn,k(p⃗)) =
f. Also, by the definition of edn,k(p⃗), for each k ∈ {n+1, · · · , 2n−1}, there
exists vk such that vk(edn,k(p⃗)) = f. Consequently, we have

vk(edn,k(p⃗)) = f for every k ∈ {0, · · · , 2n − 1} (3)

and
{v0, · · · , vn} ⊆ v. (4)
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By (3) and the definition of edn,k(p⃗), we have

vi(edn,j(p⃗)) = f ⇐⇒ i = j,

and by the definition of σ, we have

uk(p) = f ⇐⇒ vk(pσ) = f,

and using induction on χ, we observe

uk(χ) = vk(χσ). (5)

By (4) and (5), we have

u(χ) = f implies v(χσ) = f. (6)

So, if we show
u(χ) = t implies v(χσ) = t, (7)

then using (6), we have
u(χ) = v(χσ),

and using u(I) = f, we obtain v(Iσ) = f. So, the remaining to be done is
to show (7).

Suppose that u(χ) = t. Then by (5), we have

{v0, · · · , vn}(χσ) = t. (8)

Let v be a member of v. By the definition of vk, there exists k ∈ {0, · · · , 2n−
1} such that

v(pi) = vk(pi) for every i ∈ {1, · · · , n}.

Therefore, by an induction on χ∗, we observe

v(χ∗) = vk(χ
∗) for each χ∗ ∈ Wff(p⃗), (9)

where Wff(p⃗) is the set of formulas in which propositional variables occur-
ing in the formula are only p1, · · · , pn. If k > n, then by (9) and (3), we
have

v(edn,k(p⃗)) = vk(edn,k(p⃗)) = f,
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which is in contradiction with v ∈ v and (2). So, we have k ≤ n, and by
(9) and (8), we obtain

v(χσ) = vk(χσ) = t.

Hence, we obtain (7).

Lemma 3.5. If

T, {Γi ⇒ ⊥ | 1 ∈ {1, · · · , n}} ⊢Sc Γ ⇒ ϕ, (1)

then either
T, {Γi ⇒ ψ | 1 ∈ {1, · · · , n}} ⊢Sc Γ ⇒ ψ (2)

or
T ⊢Sc Γ ⇒ ϕ. (3)

Proof: We use an induction on a proof figure.
Basis. If (Γ ⇒ ϕ) ∈ T or ⊢Gc Γ ⇒ ϕ, then we have (3). If (Γ ⇒ ϕ) =

(Γi ⇒ ⊥), then we have (2).
Induction step. We only consider the following (cut):

Γ ⇒ χ χ,Γ ⇒ ϕ

Γ ⇒ ϕ
.

By applying the induction hypothesis to the left upper sequent, we have
either (2) or

T ⊢Sc Γ ⇒ χ. (4)

So, we assume that (4) holds. Also, to the right upper sequent, we have
either

T, {Γi ⇒ ψ | 1 ∈ {1, · · · , n}} ⊢Sc (χ,Γ ⇒ ψ) (5)

or
T ⊢Sc (χ,Γ ⇒ ϕ). (6)

If (5) holds, then by (4), we have (2); if (6) holds, then by (4), we have (3).

Lemma 3.6. Let I1 and I2 be inference rules defined below:

X1 · · · Xm

X
I1

X1 · · · Xm (suc(X),ant(X) ⇒ ψ)

ant(X) ⇒ ψ
I2,
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where ψ does not occur in I1. Then

T ⊢Sc+I1 Y ⇐⇒ T ⊢Sc+I2 Y.

Proof: By the figure

X1 · · · Xm (suc(X),ant(X) ⇒ suc(X))

X
I2,

we can see that I1 holds in ⊢Sc+I2 . Also, by the figure

X1 · · · Xm

X
I1 suc(X),ant(X) ⇒ ψ

ant(X) ⇒ ψ
(cut)

we can see that I2 holds in ⊢Sc+I1 .

For example, we apply the above lemma for the following I1 and I2:

ϕ1,Γ ⇒ ϕ2
Γ ⇒ ϕ1 → ϕ2

I1
ϕ1,Γ ⇒ ϕ2 ϕ1 → ϕ2,Γ ⇒ ψ

Γ ⇒ ψ
I2.

Also, for the following I1 and I2

ϕ1,Γ ⇒ ⊥
Γ ⇒ ¬ϕ1

I1
ϕ1,Γ ⇒ ⊥ ¬ϕ1,Γ ⇒ ψ

Γ ⇒ ψ
I2.

So, by Lemma 3.6, we have only to consider the schema of inference rules
whose succedent of the lower sequent does not contain logical connectives.

Lemma 3.7. Let I be an adequate inference rule. If there exists u such
that #(u) = n+ 1 and u(I) = f, then (em∗

n) holds in ⊢Sc+I .

Proof: It is sufficient to show that (em0
n) holds in ⊢Sc+I .

We define Tu(ψ) and Tu as the following sets of upper sequents of (em0
n):

Tu(ψ) = {(edn,k(p⃗),Γ ⇒ ψ) | k ∈ {0, · · · , n}},

Tu = {Γ ⇒ edn,k(p⃗) | k ∈ {n+ 1, · · · , 2n − 1}}.

By Lemma 3.6, we can assume that I is of the form

X1 · · · Xm+1

X
I,
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where suc(X) = suc(Xm+1) = χ and χ only occurs in the succedents of
X and Xm+1. We consider the following instance I(⊥) of I:

X1 · · · Xm ant(Xm+1) ⇒ ⊥
ant(X) ⇒ ⊥

I(⊥),

We note that for each v,

v(I) = f implies v(I(⊥)) = f,

and using u(I) = f, we have u(I(⊥)) = f. Using Lemma 3.4, there exists a
substitution σ such that, for each v,

v(I(⊥)σ) = t implies v((em0
n(⊥))) = t.

Therefore, we have

• v(Tu(⊥)) = v(Tu) = v(Γ) = v(ant(X)σ ⇒ ⊥) = t implies v(⊥) = t,

• for each i ∈ {1, · · · ,m}, v(Tu(⊥)) = v(Tu) = v(Γ) = v(ant(Xi)σ) =
t implies v(suc(Xi)σ) = t,

• v(Tu(⊥)) = v(Tu) = v(Γ) = v(ant(Xm+1)σ) = t implies v(⊥) = t.

By Lemma 1.8, we have

• Tu(⊥) ∪ Tu ∪ {Γ,ant(X)σ ⇒ ⊥} ⊢Sc Γ ⇒ ⊥,

• for each i ∈ {1, · · · ,m}, Tu(⊥) ∪ Tu ⊢Sc (Γ,ant(Xi)σ ⇒ suc(Xi)σ),

• Tu(⊥) ∪ Tu ⊢Sc (Γ,ant(Xm+1)σ ⇒ ⊥).

By Lemma 3.5, we have

(1) Tu(ψ) ∪ Tu ∪ {Γ,ant(X)σ ⇒ ψ} ⊢Sc Γ ⇒ ψ,

(2) for each i ∈ {1, · · · ,m}, either Tu(ψ) ∪ Tu ⊢Sc (Γ,ant(Xi)σ ⇒ ψ) or
Tu ⊢Sc (Γ,ant(Xi)σ ⇒ suc(Xi)σ),

(3) Tu(ψ) ∪ Tu ⊢Sc (Γ,ant(Xm+1)σ ⇒ ψ).

Since I is adequate, for each χ′
i ∈ {suc(Xi)σ, ψ}, the following rule also

holds in ⊢Sc+I :
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(Γ,ant(X1)σ ⇒ χ′
1) · · · (Γ,ant(Xm)σ ⇒ χ′

m) (Γ,ant(Xm+1)σ ⇒ ψ)

Γ,ant(X)σ ⇒ ψ
.

Applying the above rule to (2) and (3), we have

Tu(ψ) ∪ Tu ⊢Sc+I (Γ,ant(X)σ ⇒ ψ),

and using (1), we have

Tu(ψ) ∪ Tu ⊢Sc+I Γ ⇒ ψ.

Hence, (em0
n) holds in ⊢Sc+I .

Lemma 3.8. Let I be an adequate inference rule and let n be the minimum
number of {#(v) | v(I) = f}. If n > 1, then

T ⊢Sc+I X ⇐⇒ T ⊢n−1 X.

Proof: Since n is minimum, we have

#(v) ≤ n− 1 implies v(I) = t, for every v (1)

and
#(v) = n and v(I) = f for some v (2)

By (1) and Lemma 2.8, we obtain that I holds in ⊢n−1. By (2) and Lemma
3.3 and Lemma 3.7, we obtain that (emn−1) holds in ⊢Sc+I .

By Lemma 3.8, we obtain Theorem 3.1(2).
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