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Abstract Let f be a real polynomial, non-negative at infinity with non-compact zero-
set. Suppose that f is non-degenerate in the Kushnirenko sense at infinity. In this paper
we give a formula for the Łojasiewicz exponent at infinity of f and a formula for the
exponent of growth of f in terms of its Newton polyhedron.
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1 Introduction

Let f : R
n → R be a real polynomial, f (0) = 0 and K ⊂ R

n be a compact set. The
well known classical inequality (see Łojasiewicz 1959) say that there exist positive
constants C, α such that

| f (x)| ≥ C · dist(x, f −1(0))α, (1)

for all x ∈ K .
If the set K is non-compact, it may happen that such C, α do not exist. One may

check that it is impossible for polynomials
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744 G. Oleksik, A. Różycki

f (x, y, z) = x2(y2 + z4) and f (x, y) = x(y − 1)[y2 + (xy − 1)2]. (2)

For this reason, some authors modify inequality (1) or its domain.
Hörmander (1958) considered a global version of inequality (1). Precisely, he

proved the following

| f (x)| · (1 + |x |)β ≥ C · dist(x, f −1(0))α,

for all x ∈ R
n and some positive constants C, α, β.

In some additional assumptions another global version of inequality (1) was given
in -Dinh (2014) i.e.

| f (x)|α + | f (x)|β ≥ C · dist(x, f −1(0)), x ∈ R
n,

for some positive constants C, α, β.
In turn, Hà and Duc (2010) Ha and Nguyen modified the zero set of polynomial

f : R
2 → R in inequality (1):

| f (x)| ≥ C · dist
(

x, f −1(0)
R
)α

,

in someneighborhood at infinity,where f −1(0)
R
denotes real approximation at infinity

of {x ∈ C
2 : f (x) = 0}.

Another modification concerned both a zero set and a domain. Indeed, in -Dinh
(2013) Kurdyka and Le Gal established

| f (x)| ≥ C · dist(x, Z)α, x ∈ f −1(−δ, δ)

for some positive constants δ, C, α, where Z = {x ∈ R
n : f (x) · ∂ f

∂x1
(x) = 0}, and f

is a monic polynomial with respect to x1. In this case constants C, α can be computed
explicitly (see Hà et al. 2015).

If the set f −1(0) is compact, then

dist(x, f −1(0)) ≈ |x |.

In this case for real polynomial f : R
n → R, Gwoździewicz (1998) proved the fol-

lowing

| f (x)| ≥ C · |x |d−(d−1)n
, |x | > R,

where d = deg f > 2 and C, R > 0.
Kollár (1988) gave similar result for complex polynomial mappings F : C

n → C
n ,

#F−1(0) < ∞ i.e.

|F(x)| ≥ C · |x |d−dn
, |x | > R,
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The Łojasiewicz Exponent at Infinity... 745

where d = deg F and C, R > 0.
In the paper we assume that f −1(0) is a non-compact set. We keep the form of

inequality (1) , but we restrict the domain. Namely, we examine behavior of f :

(i) in the neighborhood of the level set f −1(0) at infinity i.e. in the set

{x ∈ R
n : dist(x, f −1(0)) < ε, |x | > R},

(ii) or in the set

{x ∈ R
n : dist(x, f −1(0)) > R}.

The lack of the distinction of these cases could lead to a situation that an exponent α in
inequality (1) does not exist in neighborhood at infinity. See for example polynomials
(2). In the case (i) and (ii) we give the following definitions.

Let f : R
n → R be a polynomial such that f −1(0) is a non-compact set. We define

the Łojasiewicz exponent of f at infinity as the infimum of the exponents l ∈ R+ such
that

| f (x)| ≥ C · dist(x, f −1(0))
l

for all x such that dist(x, f −1(0)) < ε, (3)

in some neighborhood of infinity for some ε > 0 and C > 0. We denote it by L∞( f ).
In cases where such l does not exist, we put

L∞( f ) = +∞.

In -Dinh (2012) authors proved that there are no sequences of the first type if and
only if there exist C, δ, α > 0 such that

| f (x)|α ≥ C · dist(x, f −1(0)) for all x ∈ f −1([−δ, δ]).

The sequence (xk)
∞
k=1 ⊂ R

n is of the first type if f (xk) → 0 and dist(x, f −1(0)) � 0.
It is easy to observe that if the last inequality is true for some positive C, δ, α, then

there exist C, ε, l > 0 such that inequality (3) is true. Hence if there are no sequences
of the first type, then L∞( f ) exists. However, in some cases L∞( f ) exists but there
is a sequence of the first type. For example f (x, y) = x(y − 1)[y2 + (xy − 1)2].

In the paper we give an effective formula for the Łojasiewicz exponent at infinity
in the class of non-negative and non-degenerate polynomials in terms of the Newton
polyhedron (see Sect. 2). This result is a counterpart at infinity of the local result of
the paper Bùi and Pham (2014).

2 Preliminaries

We denote by R+ = {x ∈ R : x ≥ 0} and Z+ = Z ∩ R+. For x = (x1, . . . , xn) ∈ R
n

and α = (α1, . . . , αn) ∈ Z
n+, we denote by xα the monomial xα1

1 . . . xαn
n and put

|α| = α1 + · · · + αn , and |x | = maxn
i=1 |xi |.
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746 G. Oleksik, A. Różycki

Let f (x) = ∑
α∈Zn+ cαxα . Let us define the set supp( f ) = {α ∈ Z

n+ : cα 	= 0} and
call it the support of f . Define the set �( f ) = conv{supp( f )} ⊂ R

n+ and call it the
Newton polyhedron at infinity of f .

Let q ∈ R
n\{0}. Define

d(q, �( f )) = min{〈q, α〉 : α ∈ �( f )},
�(q, �( f )) = {α ∈ �( f ) : 〈q, α〉 = d(q, �( f ))},

where 〈· , ·〉 denotes the standard inner product in R
n × R

n . We say that � ⊂ �( f ) is
a face of �( f ), if there exists q ∈ R

n\{0} such that� = �(q, �( f )). By a dimension
of a face�wemean the minimum of the dimensions of the affine subspace containing
�. By a vertice of �( f )we mean the 0-dimensional faces of �( f ). We define Newton
boundary at infinity of f as the set of faces � ⊂ �( f ) such that: if q is defining
a vector for � then qi < 0 for some i ∈ {1, . . . , n} and we denote it by �∞( f ).
Denote by �k∞( f ) the set of k-dimensional faces of �∞( f ), k = 0, . . . , n − 1. For
� ∈ �∞( f ) we define the polynomial

f� =
∑
α∈�

cαxα.

and call it the principal part of f at infinity with respect to face �.
We say that f is Kushnirenko non-degenerate at infinity on the face � ∈ �∞( f ) if

the system of equations

∂ f�
∂x1

(x) = · · · = ∂ f�
∂xn

(x) = 0

has no solution in (R\{0})n\K , where K ⊂ R
n is a compact set. We say that f is

Kushnirenko non-degenerate at infinity (shortly non-degenerate) if f is Kushnirenko
non-degenerate at infinity on each face � ∈ �∞( f ).

We say that f is non-negative at infinity (shortly non-negative) if there exists a
compact set K ⊂ R

n such that f (x) ≥ 0 for x ∈ R
n\K .

One of the main tool which we use in the paper is the following

Lemma 1 (Curve Selection Lemma at infinity, -Dinh (2014), Lemma 1) Let A ⊂ R
n

be a semi-algebraic set, and let F := ( f1, . . . , f p) : R
n → R

p be a semi-algebraic
map. Assume that there exists a sequence xk ∈ A such that limk→∞ |xk | = ∞ and
limk→∞ F(xk) = y ∈ (R)p, where R := R ∪ {±∞}. Then there exists an analytic
curve ϕ : (0, ε) → A of the form

ϕ(t) = a0tq + a1tq+1 + . . . ,

such that a0 ∈ R
n\{0}, q < 0, q ∈ Z, and limt→0 F(ϕ(t)) = y.

Let A ⊂ N
n be a finite set. Put

NA(x) = max
α∈A

|xα|.
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The Łojasiewicz Exponent at Infinity... 747

Let V be the set of vertices of �( f ). Denote

N� = NV .

We recall two simple lemmas which will be used in the rest of the paper.

Lemma 2 (-Dinh (2014), Lemma 11) There exist some subset J1, . . . , Js of {1, . . . , n},
with Ji � J j for i 	= j , such that

N−1
� (0) =

s⋃
k=1

Zk,

where Zk := {x ∈ R
n : x j = 0, j ∈ Jk}.

For a given subset J ⊂ {1, . . . , n} we define

R
J := {α = (α1, . . . , αn) ∈ R

n : α j = 0 for j /∈ J }.

Lemma 3 (-Dinh (2014), Lemma 12) Let J1, . . . , Js be as in Lemma 2. For every
( j1, . . . , js) ∈ J1 × · · · × Js , we have V ∩ R

J 	= ∅, where J = { j1, . . . , js}.

3 The Main Theorem

Let J1, . . . , Js be as in Lemma 2 and let

P = {I ⊂ {1, . . . , n} : I 	= ∅ ∧ I ∩ Jk = ∅ for some k ∈ {1, . . . , s}}.

Observe that P 	= ∅ i.e. Jk0 	= {1, . . . , n} for some k0 ∈ {1, . . . , s}. Indeed, suppose
to the contrary that Jk = {1, . . . , n} for any k ∈ {1, . . . , s}. If s > 1, then by Lemma
2 it is not possible. Therefore s = 1. Hence J1 = {1, . . . , n} and N−1

� (0) = {0}. By
Lemma 10

f −1(0) ∩ (Rn\K ) = N−1
� (0) ∩ (Rn\K ) = ∅,

for some compact set K . This gives a contradiction to the assumption that the set
f −1(0) is not compact.
Let us fix I ∈ P . We define ϕ I (x) = (ϕ I

1 (x), . . . , ϕ I
n (x)), where

ϕ I
i (x) =

{ 1 for i ∈ I,
xi for i /∈ I,

for i = 1, . . . , n and define N I
� = N� ◦ ϕ I .

Observe that

(N I
�)−1(0) =

s(I )⋃
k=1

Z I
k =

s(I )⋃
k=1

{x ∈ R
I ′ : x j = 0, j ∈ J I

k }, J I
l � J I

m, l 	= m,
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748 G. Oleksik, A. Różycki

where I ′ = {1, . . . , n}\I . Put

α I
max = max

{
αmin

J : J ∈ J I
1 × · · · × J I

s(I )

}
,

where

αmin
J := min

{
|α| : α ∈ V I ′ ∩ R

J
}

,

and V I ′
denotes the projection of the set V onto R

I ′
. Observe that N I

� = N
V I

′ .
Now, we give the main result of the paper.

Theorem 4 Let f : R
n → R, f (0) = 0, be a non-negative and non-degenerate

polynomial. Then

L∞( f ) = max
{
α I
max : I ∈ P

}
. (4)

Remark 5 One can check that the assertions of the above theorems are also true if we
assume Mikhailov–Gindikin non-degeneracy (see -Dinh (2014), Section 5).

To illustrate the above theorems we give the following

Example 6 Let f (x, y, z) = x8(y4 + z6). It is easy to see that f is non-degenerate
and non-negative. We have V = {(8, 4, 0), (8, 0, 6)} and

N�(x, y, z) = max{x8y4, x8z6}, (N�)−1(0) = {x = 0} ∪ {y = z = 0}.

Hence J1 = {1}, J2 = {2, 3}.
We calculate L∞( f ). We have P = {{1}, {2}, {3}, {2, 3}}. For I = {1} we obtain

I ′ = {2, 3} and

N I
�(y, z) = max{y4, z6}, (N I

�)−1(0) = {(0, 0)}, J I
1 = {2, 3}.

Hence J = {2} or J = {3} and

αmin
2 = min{|α| : α ∈ {4, 0}} = 4, αmin

3 = min{|α| : α ∈ {0, 6}} = 6.

Therefore

α{1}
max = max{4, 6} = 6.

Similarly we calculate

α{2}
max = α{3}

max = α{2,3}
max = 8.

Finally we have

L∞( f ) = max
{
α I
max : I ∈ P

}
= max{6, 8} = 8.
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4 Auxiliary Results

The following lemmas will be used in the proof of Lemma 10. The proof of Lemma
7 is a simple transfer of its local counterpart [see Bùi and Pham (2014), Lemma 3.1].
We give it for a convenience of the reader.

Lemma 7 Suppose that f is non-negative polynomial. Then for any face � ∈ �∞( f )

we have f�(x) ≥ 0 for x ∈ (R\{0})n\K , where K is a compact set.

Proof Since f is non-negative there exists a compact set K such that f (x) ≥ 0 for
x ∈ R

n\K . Suppose to the contrary that there exists a face � ∈ �∞( f ) and there
exists a point x0 ∈ (R\{0})n\K such that f�(x0) < 0. Let J be the smallest subset
of {1, . . . , n} such that � ⊂ R

J . Hence, there exists a non-zero vector a ∈ R
n , with

a j < 0 for some j ∈ J and a j = 0 for j /∈ J such that

� = {ν ∈ �( f ) ∩ R
J : 〈a, ν〉 = d(a, �( f ))}.

Define monomial curve ϕ : (0, 1) → R
n , t �→ (ϕ1(t), . . . , ϕn(t)), by

ϕ j (t) =
{ x0j ta j for j ∈ J,

0 for j /∈ J.

Put d := d(a, �( f )). Now, we may write f in the form:

f (ϕ(t)) = f�(x0)td + higher order terms in t.

Since f�(x0) < 0, we have

f (ϕ(t)) < 0 for all sufficiently small t.

This gives a contradiction.

However counterpart of equivalence Bùi and Pham (2014, Lemma 3.2) is not true
at infinity. The simple implication is the only one that holds.

Lemma 8 If f is non-negative and non-degenerate, then for any face � ∈ �∞( f )

we have f� > 0 on (R\{0})n\K .

Proof Using Lemma 7 we obtain f�(x) ≥ 0 for all x ∈ (R\{0})n\K , where K
is a suitably chosen compact set. Suppose to the contrary that there exists a point
x0 ∈ (R\{0})n\K such that f�(x0) = 0. Therefore the function f� attains a local
minimum at the point x0. Hence grad f�(x0) = 0. This gives a contradiction to
non-degeneracy of f .
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750 G. Oleksik, A. Różycki

The following lemma will be also applied in the proof of the Lemma 10.

Lemma 9 Gindikin (1974, Lemma 1) Let ν ∈ R
n+, ν ∈ conv{ν1, . . . , νk}. Then

|xν | ≤
k∑

j=1

|xν j |.

The next lemma plays a crucial role in the proof of the main theorem. Its proof is a
substantially analogous to the proof of Lemma 3.3 of the paper Bùi and Pham (2014).
However we prove the second inequality in (5) without assumption of non-degeneracy
and non-negativity, using Lemma 9.

Lemma 10 If f is non-negative and non-degenerate then there exist some positive
constants C1 and C2 such that

C1N�(x) ≤ f (x) ≤ C2N�(x), for all x ∈ R
n\K , (5)

for some compact set K ⊂ R
n.

Proof We will prove the first inequality. Suppose to the contrary that there exists a
sequence {xk} ⊂ R

n with |xk | > k and such that

f (xk) <
1

k
N�(xk)

for all k. By Lemma 1, there exist an analytic curves ϕ : (0, ε) → R
n , t �→

(ϕ1(t), . . . , ϕn(t)) and ψ : (0, ε) → R+ such that

|ϕ(t)| → ∞, |ψ(t)| → 0 as t → 0+, (6)

and
f (ϕ(t)) < ψ(t)N�(ϕ(t)). (7)

Let J = { j : ϕ j 	≡ 0} ⊂ {1, . . . , n}. For j ∈ J we can expand coordinate function
ϕ j , say

ϕ j (t) = x0j ta j + higher order terms in t,

where x0j 	= 0 and a j ∈ N. From Condition (6), there exists j ∈ J such that a j < 0.

If �( f ) ∩ R
J = ∅, then for any vertex α ∈ V , there exists j /∈ J such that α j > 0

(V ⊂ �( f )) and hence (ϕ j (t))α j ≡ 0. Then (ϕ(t))α j ≡ 0. Hence

N�(ϕ(t)) = max
α∈V

|ϕ(t)α| ≡ 0.

This gives a contradiction to (7).
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The Łojasiewicz Exponent at Infinity... 751

Therefore, �( f ) ∩ R
J 	= ∅. Put

d = min

⎧
⎨
⎩

∑
j∈J

a jα j : α ∈ �( f ) ∩ R
J

⎫
⎬
⎭ ,

� =
⎧⎨
⎩α ∈ �( f ) ∩ R

J :
∑
j∈J

a jα j = d

⎫⎬
⎭ .

We can write

f (ϕ(t)) = f�(x0)td + higher order terms in t,

where x0 = (x01 , . . . , x0n ) and x0j = 1 for j /∈ J . We will show that f�(x0) > 0.
Indeed, since f is non-negative and non-degenerate, it follows from Lemma 8 we
have that f�(x) > 0 for x ∈ (R\{0})n\K , where K is a suitably chosen compact set.
Therefore by quasi-homogeneity of f� we have

f�(x0) = f�((sa j x0j ) j∈J )

sd
> 0,

where s is a positive number such that sa j · x0j is large enough for some j ∈ J . Hence

f (ϕ(t)) and td (8)

are of the same order if t → 0+.
On the other hand, we have

N�(ϕ(t)) = max
α∈V

|ϕ(t)α| = max
α∈�

|(x0)
α|td + higher order terms in t.

Hence and by (8) we have a contradiction to (7).
Now we prove the second inequality in (b). Let |x | ≥ R ≥ 1, where R is sufficiently
large. By Lemma 9 we have

f (x) =
∑

ν∈supp f

cνxν ≤ max
ν∈supp f

|cν | ·
∑

ν∈supp f

|xν | ≤

≤ C2 · max
ν∈V

|xν | = C2 · N�(x),

where C2 is a some positive constant. ��
Let A ⊂ N

n be a finite set. Put

L(NA) = inf{l ∈ R+ : ∃C>0|NA(x)| ≥ C · dist(x, N−1
A (0))

l
, dist(x, N−1

A (0)) < 1}.

Now we give an effective formula to compute L(NA).
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752 G. Oleksik, A. Różycki

Proposition 11 We have

L(NA) = max
{
αmin

J : J ∈ J1 × · · · × Js

}
,

where

αmin
J := min

{
|α| : α ∈ A ∩ R

J
}

.

Proof We first show that L(NA) ≤ max{αmin
J : J ∈ J1 × · · · × Js}. Let us fix an

arbitrary x ∈ R
n such that

dist(x, N−1
A (0)) = δ < 1.

It is easy to check that

dist(x, N−1
A (0)) = s

min
k=1

max
j∈Jk

|x j |.

Hence

max
j∈Jk

|x j | ≥ δ for any k = 1, . . . , s.

This means that for each k = 1, . . . , s there exists jk ∈ Jk such that

|x jk | ≥ δ.

Put J = { j1, . . . , js}. By Lemma 3 we have that A ∩ R
J 	= ∅. Let us choose α =

(α1, . . . , αs) ∈ A ∩ R
J such that

|α| = αmin
J .

Hence

NA(x) = max{|xα j
j1

. . . xαs
js

|, . . .} ≥ δα j . . . δαs

= δαmin
J ≥ δmax{αmin

J :J∈J1×···×Js }

= dist(x, N−1
A (0))

max{αmin
J :J∈J1×···×Js }

.

This means that L(NA) ≤ max{αmin
J : J ∈ J1 × · · · × Js}.

Now, we show that L(NA) ≥ max{αmin
J : J ∈ J1 × · · · × Js}.

Let ( j1, . . . , js) ∈ J1 × · · · × Js be such that realized the above maximum and
let J ⊂ {1, . . . , n} be the minimal set such that jk ∈ J , k = 1, . . . , s. Put AJ =
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R
J ∩ A. By Lemma 3 we have that AJ 	= ∅. Take the following parametrization

ϕ(t) = (ϕ1(t), . . . , ϕn(t)), |t | < 1, where

ϕi (t) =
{

t for i ∈ J

0 for i /∈ J,
(9)

for i = 1, . . . , n. We have

NA(ϕ(t)) = max
ν∈AJ

|ϕ(t)ν | = |t |min{|ν| : ν∈AJ } = |t |αmin
J = dist(ϕ(t), N−1

A (0))α
min
J .

Hence L(NA) ≥ αmin
J . This ends the proof.

One can observe that the above proof in comparison with the proof of (Bùi and
Pham 2014, Proposition 3.1) is more elementary.

5 Proof of the Main Theorem

Now, we are ready to give the proof of the main result.

Proof of Theorem 4. Since f is non-negative and non-degenerate polynomial, then by
Lemma 10 there exist some positive constants C1 and C2 such that

C1N�(x) ≤ f (x) ≤ C2N�(x), (10)

for all x ∈ R
n\K and some compact set K ⊂ R

n . Hence

f −1(0) ∩ (Rn\K ) = N−1
� (0) ∩ (Rn\K ). (11)

We will show that there exist some positive constants D1 and D2 such that

D1 dist(x, N−1
� (0)) ≤ dist(x, f −1(0)) ≤ D2 dist(x, N−1

� (0)),

for all x ∈ R
n\K1 and some compact set K1 ⊂ R

n , K ⊂ K1. First, observe that

dist(x, K ) ≤ |x | ≤ 2 dist(x, K ), x ∈ R
n\K1, (12)

for some compact set K1 ⊂ R
n , K ⊂ K1. By (11), (12) and since 0 ∈ N−1

� (0) we
have

dist(x, f −1(0)) = min{dist(x, f −1(0)\K ), dist(x, f −1(0) ∩ K )}
≥ min{dist(x, N−1

� (0)\K ), dist(x, K )}
≥ min{dist(x, N−1

� (0)),
1

2
|x |}
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754 G. Oleksik, A. Różycki

≥ min{dist(x, N−1
� (0)),

1

2
dist(x, N−1

� (0))}

= 1

2
dist(x, N−1

� (0)),

for x ∈ R
n\K1. Analogously, by (11), (12) and since 0 ∈ f −1(0) we get

dist(x, N−1
� (0)) ≥ 1

2
dist(x, f −1(0)),

for x ∈ R
n\K1. Summing up we obtain

1

2
dist(x, N−1

� (0)) ≤ dist(x, f −1(0)) ≤ 2 dist(x, N−1
� (0)), (13)

for x ∈ R
n\K1. By (10) and (13) it follows that

L∞(N�) = L∞( f ). (14)

By (14), it is enough to prove formula (4) for N� . We first show that

L∞(N�) ≤ max
{
L(N I

�) : I ∈ P
}

. (15)

Let x ∈ R
n\K , where K is the same as in Lemma 10 and dist(x, N−1

� (0)) < ε < 1.
It can be assumed that

{x ∈ R
n : |x | < 1} ⊂ K .

Let I 	= ∅ be such that

|xi | ≥ 1, i ∈ I and |xi | < 1, i /∈ I.

It is easy to check that I ∈ P . Since

(N I
�)−1(0) = N−1

� (0) ∩ {x ∈ R
n : xi = 1 for i ∈ I } ⊂ N−1

� (0),

we have
dist(xI , (N I

�)−1(0)) ≥ dist(xI , N−1
� (0)). (16)

It is easy to check that

dist(xI , N−1
� (0)) = dist(x, N−1

� (0)). (17)

By (16), (17) we obtain

|N�(x)| ≥ |N I
�(xI )| ≥ CI dist(xI , (N I

�)−1(0))L(N I
�)
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≥ CI dist(xI , N−1
� (0))L(N I

�) = CI dist(x, N−1
� (0))L(N I

�)

≥ min{CI : I ∈ P} dist(x, N−1
� (0))max{L(N I

�) : I∈P}.

This gives (15).
Now we show that

L∞(N�) ≥ max
{
L(N I

�) : I ∈ P
}

. (18)

First we choose I ∈ P such that realizes the abovemaximum.Take the parametrization
ϕ : R\{0} → R

{1,...,n}\I defined by formula (9) such that it realizesL(N I
�). Let ε > 0.

Let (ϕε)i : R\{0} → R
n be defined in the following way

(ϕε(t))i =
{

ϕi (t) for i /∈ I,
t−ε for i ∈ I,

Observe that

dist(ϕε(t), N−1
� (0)) = t.

Indeed, let K = {k ∈ {1, . . . , s} : Jk ∩ I = ∅} = {k1, . . . , kr }. We have

dist(ϕε(t), N−1
� (0)) = s

min
k=1

max
j∈Jk

|ϕε, j (t)|

= s
min
k=1

{max{ max
j∈Jk∩I

|ϕε, j (t)|, max
j∈Jk\I

|ϕε, j (t)|}}

= s
min
k=1

{max{|t−ε|, max
j∈Jk\I

|ϕε, j (t)|}} = min
k∈K

{max
j∈Jk

|ϕ j (t)|}.

Now, it is enough to show that

min
k∈K

{max
j∈Jk

|ϕ j (t)|} = t. (19)

Observe that

(N I
�)−1(0) = N−1

� (0) ∩ {x ∈ R
n : xi = 1, i ∈ I }

=
s⋃

k=1

Zk ∩ {x ∈ R
n : xi = 1, i ∈ I }

=
s⋃

k=1

{x ∈ R
n : xi = 0 for i ∈ Jk, xi = 1 for i ∈ I }

123



756 G. Oleksik, A. Różycki

=
⋃
k∈K

{x ∈ R
n : xi = 0 for i ∈ Jk, xi = 1 for i ∈ I }

=
r⋃

l=1

{x ∈ R
n : xi = 0 for i ∈ Jkl , xi = 1 for i ∈ I }.

Let ( jk1 , . . . , jkr ) ∈ Jk1 × · · · × Jkr , J = { jk1 , . . . , jkr } be the same as in definition
of ϕ. It is obvious that Jkl ∩ J 	= ∅, l = 1, . . . , r . Therefore

max
j∈Jkl

|ϕ j (t)| = t, l = 1, . . . , r.

This gives (19).
Let νI be the system of these coordinates of ν which are in I and νI ′ - system of

the remaining ones. We have

|(N� ◦ ϕε)(t)| = max
ν∈V

|ϕε(t)
ν | = max

ν∈V
{|t−ε|νI · |ϕI ′(t)νI ′ |}

≤ |t−ε|maxν∈V |νI | · max
ν∈V

|ϕI ′(t)νI ′ | = |t−ε|maxν∈V |νI | · N�(ϕ(t))

= |t−ε|maxν∈V |νI | · |t |L(N I
�) = |t |L(N I

�)−εmaxν∈V |νI |

= dist(ϕε(t), N−1
� (0))L(N I

�)−εmaxν∈V |νI |.

It can be assumed that ε is such that L(N I
�) − εmaxν∈V |νI | > 0. Hence

L∞(N�) ≥ L(N I
�) − εmax

ν∈V
|νI |.

By arbitrary choice of ε and I we obtain (18). Summing up we obtain

L∞(N�) = max
{
L(N I

�) : I ∈ P
}

.

By Proposition 11 we have L(N I
�) = α I

max and hence we get the formula (4) for N� .
This ends the proof. ��

6 Formula of Exponent of Growth

Wealso define the exponent of growth of f at infinity as the supremumof the exponents
l ∈ R+ such that

| f (x)| ≥ C · dist(x, f −1(0))
l

for all x such that dist(x, f −1(0)) > R,

in some neighborhood of infinity for some R > 0 and C > 0. We denote it by E∞( f ).
In the case that such l does not exist, we put

E∞( f ) = −∞.
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The second result is a formula of exponent of growth of polynomial f at infinity.

Theorem 12 Let f : R
n → R be a non-negative and non-degenerate polynomial.

Then

E∞( f ) = min
{
αmax

J : J ∈ J1 × · · · × Js
}
,

where

αmax
J := max

{
|α| : α ∈ V ∩ R

J
}

.

Proof By Lemma 10 we have E∞( f ) = E∞(N�). Therefore it is enough to prove this
formula for N� . We first show that E∞(N�) ≥ min

{
αmax

J : J ∈ J1 × · · · × Js
}
. Let

us fix arbitrary x ∈ R
n\K such that

dist(x, N−1
� (0)) = δ > 1.

Since

dist(x, N−1
� (0)) = s

min
k=1

max
j∈Jk

|x j |,

hence we get

max
j∈Jk

|x j | ≥ δ for any k = 1, . . . , s.

This means that for each k = 1, . . . , s there exists jk ∈ Jk such that

|x jk | ≥ δ.

Put J = { j1, . . . , js}. By Lemma 3 we have V ∩ R
J 	= ∅. Let us choose α =

(α1, . . . , αs) ∈ V ∩ R
J such that

|α| = αmax
J .

Hence

N�(x) = max{|xα j
j1

. . . xαs
js

|, . . .} ≥ δα j . . . δαs

= δαmax
J ≥ δmin{αmax

J :J∈J1×···×Js }

= dist(x, N−1
� (0))

min{αmax
J :J∈J1×···×Js }

.

This means that E∞(N�) ≥ min
{
αmax

J : J ∈ J1 × · · · × Js
}
.

Now, we show that E∞(N�) ≤ min
{
αmax

J : J ∈ J1 × · · · × Js
}
.
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Let ( j1, . . . , js) ∈ J1 × · · · × Js and let J ⊂ {1, . . . , n} be the minimal set such
that jk ∈ J , k = 1, . . . , s. Put VJ = R

J ∩ V . By Lemma 3 we have that VJ 	= ∅.
Take the following parametrization ϕ(t) = (ϕ1(t), . . . , ϕn(t)), |t | > 1, where

ϕi (t) =
{

t for i ∈ J

0 for i /∈ J,

for i = 1, . . . , n. We have

N�(ϕ(t)) = max
ν∈VJ

|ϕ(t)ν | = |t |max{|ν| : ν∈VJ } = |t |αmax
J = dist(ϕ(t), N−1

� (0))α
max
J .

Hence E∞(N�) ≤ αmax
J and by arbitrary choice of ( j1, . . . , js) ∈ J1 × · · · × Js we

have

E∞(N�) ≤ min
{
αmax

J : J ∈ J1 × · · · × Js
}
.

This ends the proof. ��
Example 13 Let again f (x, y, z) = x8(y4 + z6) and V = {(8, 4, 0), (8, 0, 6)} and
J1 = {1}, J2 = {2, 3}.

We calculate E∞( f ). Take J ∈ J1 × J2. Then J = {1, 2} or J = {1, 3}. We
calculate

αmax{1,2} = max{|α| : α ∈ V ∩ R
{1,2}} = max{|α| : α ∈ {(8, 4)}} = 12

and

αmax{1,3} = max{|α| : α ∈ V ∩ R
{1,3}} = max{|α| : α ∈ {(8, 6)}} = 14.

Finally

E∞( f ) = min
{
αmax{1,2}, αmax{1,3}

}
= min{12, 14} = 12.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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