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Abstract

In his 1887’s Mitteilungen zur Lehre von Transfiniten, Cantor seeks to prove

inconsistency of infinitesimals. We provide a detailed analysis of his argument

from both historical and mathematical perspective. We show that while his

historical analysis are questionable, the mathematical part of the argument is

false.
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1. Introduction

It is well-known that Cantor praised Bolzano for developing the arithmetic
of proper-infinite numbers. The famous quotation reads:

“Bolzano is perhaps the only one for whom the proper-infinite numbers
are legitimate (at any rate, he speaks about them a great deal); but I
absolutely do not agree with the manner in which he handles them without
being able to give a correct definition, and I regard, for example, §§ 29–33
of that book [Paradoxien des Unendlichen] as unsupported and erroneous.
The author lacks two things necessary for a genuine grasp of the concept
of determinate-infinite number: both the general concept of power and the
precise concept of Anzahl”.1

∗The first author is supported by the National Science Centre, Poland grant
2018/31/B/HS1/03896.

1[15, p. 181] translated by W. Ewald [31, p. 895, note in square brackets added].
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Interestingly, the specified paragraphs of Paradoxien develop calculus
in a way that appeals to Euler’s 1748 Introductio in Analysin Infinitorum,
i.e., calculus that employs infinitely small and infinitely large numbers along
with the relation is infinitely close. Euler’s masterpiece was written in
Latin, then it was translated into French by J. B. Labey in 1796, and into
German by J. A. C. Michelsen in 1788–1791, another German translation by
H. Maser was released in 1885. It was arguably one of the most important
18th century mathematical treaties. But there are only two significant
references to [29] in Cantor’s Gesammelte Abhandlungen: [12] and [13].
They deal with a specific issue raised by Euler in the section § 328 called
De partitione numerorum. Any other references to Euler are also of minor
importance. Furthermore, in Cantor’s Briefe [45] the name Euler occurs
twice, and, again, in very short remarks. Quite strange.

Cantor has never addressed Euler’s technique of infinite numbers as
employed in determining infinite sums and products. Whether knowingly
or unknowingly, or just by correcting supposed errors, in [12] and [13]
he interprets Euler’s infinite operations within the framework of standard
analysis, albeit limits do not occur in [29]. In [16] he discusses infinitesimals
through distinction actual vs. potential infinity.2 Due to the theory of lim-
its, developed, among others, by Cauchy – Cantor argues – the mistake of
ascribing them actual infinity had been fixed. The letter to Mittag-Leffler
dated March 3, 1883 contains a hint that Euler’s and Bolzano’s infinite
sums are inconsistent.3 Notes such as these as well as concerning infinites-
imals are scattered all throughout Cantor’s papers, however he has never
developed them into a thorough criticism. Instead, they attest Cantor’s
aversion to infinitesimals – an aversion based on prejudices rather than
concrete arguments.

As to Euler, in [30], the number line is explicitly revealed as consisting
of infinitesimals, infinitely large numbers, and assignable quantities, i.e.,
numbers representing line segments, while infinite numbers are viewed as
inverses of infinitesimals. In [29], infinitesimals and infinitely large num-
bers are employed to expand sinx and cosx functions into series, and then
to derive the famous formula eix = cosx + i sinx, to mention the most
spectacular achievements. Thus, Euler’s infinite numbers provide a ma-

2See [16, p. 410].
3See [45, p. 117–118]. Another reference to Euler occurs in the letter to Lipschitz

dated October 18, 1885 [45, p. 247]; it regards an arithmetic problem.
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chinery which enable crucial mathematical results. And yet, there are no
references to this technique neither in Cantor’s papers, nor in his letters.
Why then, instead of referring to the mathematical treatise that explic-
itly develops the analysis of infinity, does Cantor prefer to discuss ancient
Greek and medieval philosophers? Moreover, whereas his theory of infin-
ity is formal, his philosophical considerations explore distinctions that he
could never formalize, namely actual infinity vs. potential infinity. Instead,
Euler’s approach to infinity builds on the easily formalized opposition of
finite vs. non-finite that turned out to be equivalent to the Archimedean
vs. non-Archimedean opposition.

We believe that the following quotation is crucial when it comes to
understanding Cantor’s perspective:

“The fact of actual infinite numbers is thus so little ground for the existence
of actual infinitely small magnitudes that, on the contrary, the impossibility
of the latter can be proven with the former”.4

In fact, there are many similar declarations scattered throughout Can-
tor’s papers, showing that he considered infinitesimals as the most serious
rival of his theory of infinite numbers.

Cantor’s position is more understandable when we realize that he was
absolutely certain about his characterization of infinity being the only pos-
sible characterization. Similarly, he was absolutely certain there was only
one possible domain to develop the calculus.5 This no-alternative philos-
ophy, whether applied to infinity or to a domain of calculus, motivated
Cantor’s struggle with infinitesimals.

In his 1887 paper Mitteilungen zur Lehre von Transfiniten, Cantor goes
beyond declarations and seeks to prove that infinitesimals are inconsistent.
The general idea of his argument is this: Let ζ be a positive infinitesimal,
which, for him, means it fulfills the condition (∀n ∈ N)(ζ < 1

n ), then for
any infinite ordinal number ν the product ζ · ν is smaller than any finite
magnitude, in symbols

(∀n ∈ N)(ζ < 1
n )⇒ (∀ν ∈ Ord)(∀n ∈ N)(ζ · ν < 1

n ), (1.1)

where Ord stands for the class of ordinal numbers. In other words, provided
ζ is infinitesimal, every product ζ · ν is also infinitesimal. Hereinafter, we
will also refer to the more suggestive and equivalent version of (1), namely

4[16, p. 408], translated by P. Enrlich [27, p. 42].
5See [22, pp. 233–236].
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(∀n ∈ N)(ζ < 1
n )⇒ (∀ν ∈ Ord)(ζ · ν < 1). (1.2)

Cantor’s argument looks like a reductio ad absurdum proof, while the
supposed contradiction is to consist of the following statements: ζ is a linear
magnitude, ζ cannot be made finite through any actual infinite multiplica-
tion. Arguably, to get a real contradiction, Cantor’s argument requires
interpretation. One has to decide (a) what is the meaning of the term
linear magnitude, (b) what does the product ζ · ν mean.

In this paper, we will provide a detailed analysis of Cantor’s argument
and will argue that linear magnitude means real numbers. We will also
present some modern interpretations of the product ζ · ν that do not entail
the conclusion (∀ν ∈ Ord)(ζ · ν < 1).

2. Linear magnitude and Archimedean property

Provided that Cantor’s linear magnitude means positive real numbers, his
proof of the inconsistency of infinitesimals aims to show that the concept
of linear magnitude implies the Archimedean property.

Indeed, Cantor’s definition of infinitesimals is the same as the one
provided in Bolzano’s Paradoxien, §§ 10, 16; it is, in fact, the same def-
inition as the modern one. Cantor, thus, sought to show that no in-
finitesimal is a real number. From the modern, axiomatic perspective,
it is an obvious observation, as the completeness of the field of real num-
bers implies the Archimedean property, and the Archimedean property
excludes infinitesimals. In fact, Cantor’s reasoning in its full version in-
volves the Archimedean property and can be paraphrased as follows: Lin-
ear magnitude has the Archimedean property, while infinitesimals and the
Archimedean property are mutually exclusive.

However, the argument is not that simple, as Cantor adopts a specific
interpretation of what we nowadays consider to be the Archimedean axiom,
AA in short. Namely, he allows multiplications by any ordinal rather than
any natural number. More importantly, his characteristic of real numbers
differs from our modern one. In the 1872’s Über die Ausdehnung eines
Satzes der Theorie der trigonometrischen Reihen, he identified the com-
pleteness (continuity) of real numbers with a condition currently called
Cauchy completeness, CC in short. While nowadays we know that AA
does not follow from CC, this was not the case at the turn of the 19th and
20th century.
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In 1887, neither Cantor nor Dedekind were quite sure whether their
versions of continuity of real numbers were equivalent. It was partly be-
cause there was no obvious framework that would enable to establish or
dismiss the equivalence of Cantor’s and Dedekind’s versions. Adopting a
modern perspective, we can say that in [14] Cantor sought to characterize
continuum as an ordered field (R,+, ·, 0, 1, <), in [15] as a subset of the
metric space Rn, and in [17] as a totally ordered set (R, <). The Dedekind
cut principle does not apply to the subsets of metric space; in the context
of totally ordered sets, it does not provide unique characteristics (i.e. up
to isomorphism); in the framework of an ordered field, the cut principle
implies CC, yet not vice versa.6 As all these facts were not clear at the
time, it is no wonder Cantor objected whether the Dedekind cut principle
really reveals the “essence of continuity”.7 Basically – in our interpretation
– it can-not be applied in every context he considered continuum.

In modern mathematics, the concept of an ordered field provides such
a framework, yet the concept itself was introduced only in Hilbert’s 1899
Grundlagen der Geometrie. The first widely-known proof that complete-
ness of real numbers implies the Archimedean axiom was given in 1901 by
Otto Hölder; to this end, he applied the Dedekind cut version of complete-
ness, and the result was established for an ordered group. In 1900’s Über
den Zahlbegriff, Hilbert presents the continuity of real numbers in the form
of a conjunction: AA plus Axiom of Completeness; the second condition
could be paraphrased as follows: Real numbers are the biggest Archimedean
field. In 1932’s Anschauliche Geometrie, Hilbert characterized the conti-
nuity of real numbers as a conjunction of AA plus the condition, which he
named Cantor’s axiom, namely: If (An) is a descending sequence of closed
line segments, then

⋂∞
n=1An 6= ∅.

In fact, we can not determine who was the first to show that CC does
not imply AA. [19] proves that the field of Laurent series over real numbers
is a non-Archimedean, Cauchy-complete field. [46] shows that Levi-Civita
fields are non-Archimedean and Cauchy-complete. We can show that the
field of hyperreals is yet another example of a non-Archimedean, Cauchy-
complete field. Still, these are relatively recent results.

In what follows, next to Cantor’s construction of real numbers and
its accompanied characteristics of continuity, we will also discuss Cantor’s

6We develop these claims in section 7.
7The very phrase occurs in [23].
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topological characterization of linear magnitude given in [15], as well as
his characterization of real numbers in terms of total order given in [17].
None of these characteristics implies the Archimedean property. Neverthe-
less, suggestions that the line of real numbers (R, <) has the Archimedean
property permeated Cantor’s milieu.

Indeed, there were some earlier attempts to prove the Archimedean
property in the 19th century. The first one we know of was made by
Bolzano in his Reine Zahlenlehre; yet the paper was published posthu-
mously in 1962.8 In 1817’s Rein analytischer Beweis, he applied the seem-
ingly self-evident condition lim

n→∞
1
n = 0; nowadays we know that it is but

another version of the Archimedean axiom. In 1885’s Vorlesungen über all-
gemeine Arithmetik, Stolz sought to show that the Archimedean property
follows from the Dedekind cut principle; his proof, however, proceeded in
a geometrical framework. In the 1890’s Teoria delle grandezze, Bottazzi
proved that in the abelian group the Dedekind cut principle implies the
Archimedean property.9

Whether correct or not, they were attempts to derive the Archimedean
property from the Dedekind cut principle.10 Since Cantor could not decide
whether his account of continuum differs from that proposed by Dedekind,
it is no wonder he was seeking his own proof of the Archimedean property.
Moreover, he knew that in some contexts, e.g. in a theory of totally or-
dered sets, the Dedekind cut principle was insufficient to characterize real
numbers up to isomorphism. This could be the reason behind his search
for a genuine proof.

The rest of paper is as follows: in section 3 we present basic mathe-
matical facts concerning infinitesimals, the Archimedean axiom, continuity
and related issues. Then, in subsequent sections, we provide a detailed
analysis of chapter VI of [16] which includes Cantor’s inconsistency proof
of infinitesimals.

8See [7, § 69] and [8, § 74]. There is, however, an alternative interpretation of
these paragraphs to the effect that instead of proving the Archimedean property of real
numbers, Bolzano sought to show that his measurable numbers had the Archimedean
property, and to this end he assumed that real numbers had the Archimedean property.
Then, Bolzano’s measurable numbers are viewed as assignable hyperreal numbers.

9See [27, p. 80].
10[1] identifies flaws in Stolz’s 1885 proof. In fact, [48] provides a corrected version of

his 1885 proof. Still, the 1902 proof is incomplete.
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3. Basic Facts

A commutative field (F,+, ·, 0, 1) together with a total order< is an ordered
field when the sums and products are compatible with the order, that is

x < y ⇒ x+ z < y + z, x < y, 0 < z ⇒ xz < yz.

In any ordered field we define in a usual way an absolute value, |x|, and
a limit of sequence, lim

n→∞
an. Note, however, that while in real analysis the

formula ∀ε > 0 stands for ∀ε ∈ R+, in an ordered field (F,+, ·, 0, 1, <) it
means ∀ε ∈ F+.

The term n is defined by

n =df 1 + 1 + ...+ 1︸ ︷︷ ︸
n−times

,

while n
m =df n · m−1. On this basis we assume that any ordered field

includes natural numbers N and rational numbers Q.
We define the following subsets of F:

L = {x ∈ F : (∃n ∈ N)(|x| < n)},
A = {x ∈ F : (∃n ∈ N)( 1

n < |x| < n)},
Ψ = {x ∈ F : (∀n ∈ N)(|x| > n)},
Ω = {x ∈ F : (∀n ∈ N)(|x| < 1

n )}.

The elements of these sets are called limited, assignable, infinitely large,
and infinitely small numbers respectively. Here are some obvious relation-
ships between these kinds of elements, we will call them ΩΨ rules,

(∀x, y ∈ Ω)(x+ y ∈ Ω, xy ∈ Ω),
(∀x ∈ Ω)(∀y ∈ L)(xy ∈ Ω),
(∀x)(x ∈ A⇒ x−1 ∈ A),
(∀x 6= 0)(x ∈ Ω⇔ x−1 ∈ Ψ).

Referring to the set Ω, an equivalence relation is defined by

x ≈ y ⇔ x− y ∈ Ω.

We say that x is infinitely close to y, when the relation x ≈ y holds.
Although we present the above relations within the modern framework,

all of them were explicitly discussed in [30, ch. 3].
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3.1. Archimedean axiom

Here are some equivalent forms of the Archimedean axiom:

(A1) (∀x, y ∈ F)(∃n ∈ N)(0 < x < y ⇒ nx > y),
(A2) (∀x ∈ F)(∃n ∈ N)(n > x),
(A3) lim

n→∞
1
n = 0,

(A4) (∀x, y ∈ F)(∃q ∈ Q)(x < y ⇒ x < q < y),
(A5) For any Dedekind cut (A,B) of (F, <) obtains11

(∀n ∈ N)(∃a ∈ A)(∃b ∈ B)(b− a < 1
n ),

(A6) Ω = {0}.
Versions A1 and A2 are well-known, both in the mathematical as well

as the historical context. In calculus courses, A3 is usually presented as
a theorem rather than an axiom, however the Archmimedean axiom fol-
lows from some versions of the continuity of real numbers, or is explicitly
included in other versions (see section 3.2. below). A6 reveals that in
a non-Archimedean field the set of infinitesimals Ω contains at least one
positive element, say ε. Then, by ΩΨ rules, ε

n , as well as, n · ε are also
infinitesimals.

The versions A1 to A6 above are equivalent within the framework of
an ordered field while some of them, for instance A1, apply to an ordered
group (G,+, <). Then, the term nx is defined by

nx =df x+ x+ ...+ x︸ ︷︷ ︸
n−times

.

We can also apply versions A4 and A5, provided the concept of fraction
is interpretable in a group. Versions A3 and A6 involve the concept of an
absolute value. While the very definition makes sense in any ordered group,
some properties of the absolute value, such as |x · y| = |x| · |y|, require the
order to be compatible both with sums and products. Hence, these versions
need to be applied carefully.

At the end of the 19th century, a few non-Archimedean structures were
introduced, however they contained rather exotic mathematical entities
that provoked distrust.12 We present a non-Archimedean group made up

11For the remainder, a pair (A,B) of non-empty sets is a Dedekind cut of a totally
ordered set (X,<) iff: (1) A ∪B = X, (2) (∀x ∈ A)(∀y ∈ B)(x < y).

12[27] provides a thorough overview of these structures.
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of then well-known objects, namely complex numbers; the simplicity of the
model makes us wonder why it was not involved in the dispute concerning
infinitesimals.

Let (C,+, 0,≺) be the additive group of complex numbers with the
lexicographical order, i.e.,

a+ bi ≺ c+ di⇔ a < c ∨ (a = c, b < d).

The order is compatible with sums, although not with products. One
can easily show that 0 ≺ i ≺ 1, moreover, for every natural number n the
inequality ni ≺ 1 holds. The set {ri : r ∈ R} includes infinitesimals of
the group (C,+, 0,≺).13

3.2. Real numbers

The field of real numbers is a commutative ordered field (F,+, · , 0, 1, <) in
which every Dedekind cut (L,U) of (F, <) satisfies the following condition:

(∃x ∈ F)(∀y ∈ L)(∀z ∈ U)(y ≤ x ≤ z). (C1)

Throughout the paper, we consider the condition C1 the Dedekind cut
principle. Here are some other equivalent forms of C1:

(C2) If A ⊂ F is a nonempty set which is bounded above, then there exists
a ∈ F such that a = supA.

(C3) The field is Archimedean and every Cauchy (fundamental) sequence
(an) ⊂ F has a limit in F.

(C4) The field is Archimedean and if
{
An| n ∈ N

}
⊂ F is a family of

descending, closed line segments, then
⋂
n∈N

An 6= ∅.

Any equivalent form of C1 usually gets the name of continuity or com-
pleteness, and then the real numbers system is called the continuous or-
dered field or the complete ordered field. The version C2 is also known as
Dedekind completeness or the least upper bound (LUB) principle, whereas
the second part of C3 is called Cauchy completeness. Since Dedekind and
Cauchy completeness are not equivalent, we prefer to use more specific
names like Dedekind cut or LUB principle.

13[4] provides historical account of the Archimedean axiom, from Euclid and
Archimedes, through Heiberg’s edition of Greek text, to the 19th century theories of
magnitudes developed by Stolz, Weber, Hölder and others.
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The above definition is based on the so called categoricity theorem
which states that every two ordered fields that satisfy C1 are isomorphic.
In that sense, the field of real numbers is the unique complete ordered field.

When dealing with non-Archimedean fields, the following theorem is of
crucial importance: The field of real numbers is the biggest Archimedean
field, that is, for any Archimedean field (A,+, ·, 0, 1, <), there is a subfield of
the field of real numbers that is isomorphic to (A,+, ·, 0, 1, <). As a result,
any field extension of the system of real numbers is a non-Archimedean
field and includes infinitely many infinitesimal numbers. Below we present
such an extension, namely the field of hyperreals (R∗,+, ·, 0, 1, <∗).

One way to obtain hyperreals is by the ultrapower construction. Here
is a sketch of that approach.14 Let (R,+, ·, 0, 1, <) be the field of real
numbers, let U be a nonprincipal ultrafilter on N. The set R∗ is defined as
the quotient class of RN with respect to the following relation

(rn)≡(sn)⇔ {n ∈ N : rn = sn} ∈ U ,

thus, R∗ = RN/U . New sums and products are defined pointwise, while the
total order is defined by

[(rn)] <∗ [(sn)]⇔ {n ∈ N : rn < sn} ∈ U .

Hence, the product of hyperreal [(r1, r2, ...)] and [(s1, s2, ...)] gives [(r1 ·
s1, r2 · s2, ...)], and the relation [(r1, r2, ...)] <

∗ [(s1, s2, ...)] holds when, for
example, the set {n ∈ N : rn < sn} equals N minus some finite set (though
the definition of order <∗ also includes other cases).

Standard real number, r ∈ R, is represented by the class [(r, r, r, ...)],
i.e., the class of a constant sequence (r, r, r, ...). Owing to these definitions,
we employ the same symbols for real numbers in the standard and non-
standard context; we will also employ the same symbols for sums, products
and order relation in the standard and non-standard context.

The equivalence class of the sequence ( 1
n ), i.e., the hyperreal number

ε = [( 1
n )], is a model example of infinitesimal. As another infinitesimal,

let us consider a hyperreal δ represented by the sequence ( 1
n2 ), that is

δ = [( 1
n2 )]. It is easy to check that 0 < δ < ε.

To study products of infinitely small and infinitely large numbers, let
us define two infinite numbers,

14For details, see [3, 2].
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K = [(n)] = [(1, 2, 3, ...)], L = [(n2)] = [(1, 4, 9, ...)].

Since products are defined pointwise, we easily obtain the following
equalities

K · ε = 1, L · ε = K, K · δ = ε.

Although K and L are not Cantor’s ordinal numbers, these results un-
dermine the seemingly obvious supposition that the product of an infinitely
large and infinitely small number has to be infinitesimal regardless of the
framework. In fact, within the field of hypereals we can realize all three
options: the product can be an appreciable, infinitely large, or infinitely
small number.

As already mentioned, in his argument Cantor employs the specific
interpretation of the Archimedean property. Namely, instead of sums, he
allows for multiplications.15 Adopting that perspective, axiom A1 will take
the following form

(A1∗) (∀x, y ∈ R∗)(∃n ∈ N∗)(0 < x < y ⇒ n · x > y),

where the set of hypernatural numbers N∗ is defined by

N∗ = {[(nj)] ∈ R∗ : (nj) ∈ NN}.

The field of hyperreals is non-Archimedean in the sense of A1, yet it
is Archimedean in the sense of A1∗. Indeed, for any positive hyperreal
numbers x = [(r1, r2, r3, ...)], y = [(s1, s2, s3, ...)], due to the Archimedean
property of real numbers, there is a sequence of natural numbers (nj) such
that nj · rj > sj . Thus, the hypernatural number K defined by K = [(nj)]
is such that K · x > y.

Finally, let us note that the set of assignable hyperreals (A,+, <) is
Archimedean in the sense A1, A2, A5, and non-Archimedean in the sense
A4, while versions A3 and A6 do not apply to this structure; (A,+, <) is
not an ordered group, not to mention an ordered field. Therefore to deal
with the Archimedean property we need a broader algebraic context.

15Under some interpretations, Cantor’s term ζν stands for specific infinite sum;
see [27]. Whether it is a product or infinite sum, Cantor’s interpretation differs from our
modern understanding of A1, as well as from the version of the Archimedean property
introduced by [47]; see section 6 below.
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4. Cantor’s proof

Cantor’s proof was presented in his letter to Goldscheider (Cantor, 13 May,
1887). Its crucial part was also included in the letter to Weierstrass (Can-
tor, 16 May, 1887). Then the former letter was made into section VI of
the paper [16]. Below, we present the Philip Ehrlich translation of [16, ch.
VI, pp. 406–409]; numerals 1–11 as well as some Greek and German words
in square brackets are added; to enhance the numbered sentences, we also
changed the setting of original sections.

“You mention in your letter the question of actual infinitely small magni-
tudes [Grössen]. At several places of my works you will find expressed the
opinion that this is impossible, i.e., they are self-contradictory in thought,
and I already implied in my work “Foundations of a General Theory of
Manifolds”, p. 8, §4, even though still with a certain reserve, that a rig-
orous proof of this position could be derived from the theory of transfinite
numbers. During this winter, the time was first found to express my ideas
on this subject in the form of a formal proof. It concerns the theorem:

[1] Non-zero linear numbers ζ (i.e., numbers which may be regarded as
bounded, continuous lengths of straight lines) which would be smaller than
each arbitrarily small finite number do not exist, i.e., they contradict the
concept of linear numbers.

The thought process of my proof is simply as follows:
[2] I proceed from the assumption of a linear magnitude [linearen Grös-

sen] ζ which is so small that its n-fold product ζ · n is less than unity for
each whole number, and prove from the concept of linear magnitude with
the help of certain propositions of transfinite number theory,

[3] that even when ν is an arbitrarily large transfinite ordinal (i.e., the
order type of a well-ordered set) ζ · ν is smaller than any finite magnitude
that is as small as you please.

[4] This means that ζ cannot be made finite through any actual infinite
multiplication [Vervielfachung], and is therefore certainly not an element
of finite magnitude.

[5] Thus, the assumption we made contradicts the concept of a linear
magnitude, which is of the sort that, according to it each linear magnitude
must be thought of as an integral part of another, in particular of finite
linear magnitude. So nothing is left but to let go of the assumption that
there is a magnitude ζ which for any finite whole number n would be smaller
than 1

n , and with this our proposition has been proven.



Cantor on Infinitesimals. Historical and Modern Perspective 161

It seems to me that this is an important application of the theory of
transfinite numbers, which is capable of pushing aside widespread
prejudices.

[6] The fact of actual infinite numbers is thus so little ground for the
existence of actual infinitely small magnitudes that, on the contrary, the
impossibility of the latter can be proven with the former.

[7] I also don’t believe that this result can be reached fully and strictly
in any other way.

[8] The need of our theorem is especially clear for the purpose of op-
posing the newer attempts of O. Stolz and P. Dubois-Reymond to de-
rive the legitimacy of actual infinitely small magnitudes from the so-called
“Archimedean axiom” (cf. O. Stolz, “Zur Geometrie der Alten, insbeson-
dere über ein Axiom des Archimedes” 1881–1882, 1883; “Die unendlich
kleinen Grössen” 1884; “Vorlesungen über allgemeine Arithmetik”, Part 1,
Leipzig 1885, p. 205).

[9] Archimedes appears to be the first to remark that, the assertion used
in Euclid’s Elements, where upon from any arbitrarily small line segment
can be produced through sufficiently large multiplication [Vervielfachung]
an arbitrarily large line segment, requires proof, and for that reason he
believed that this assertion should be called an “Assumption”.

[10] (Cf. Euclid’s Elements, Book V, Definition 4: Magnitudes are
said to have a ratio to one another which are capable, when multiplied
[πολλαπλασιαζόμενα], of exceeding one another; also, especially Elements,
Book X, Proposition 1, Archimedes’ The Sphere and Cylinder I, Postulate
5 and the Introduction to his work: The Quadrature of the Parabola).

[11] Now it is the reasoning of those authors (O. Stolz loc. cit.), that
if one deletes this supposed “axiom”, the permissibility of actual infinitely
small magnitudes, which are there called “moments”, would emerge.

[12] But if the above theorem of mine is applied to the continuous
straight line, the necessity of the Euclidean assumption immediately fol-
lows”.

5. Magnitudes and Archimedean property in Greek
mathematics

Cantor’s sentences [9] and [10] as well as the bracketed apposition in sen-
tence [1] explicitly refer to Greek mathematics, therefore we dedicate this
section to ancient versions of the Archimedean property.
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We start with a brief description of the interest in ancient mathematics
prevalent in the second half of the 19th century. In the 1880s, Johan L.
Heiberg published Archimedis opera Omnia [37] and then Euclid’s Elements
[38]. They are both arranged in the same format: Greek text and Latin
translation authored by Heiberg are provided alternately page by page.
For the mathematicians of that time, these were standard source books for
Greek understanding of magnitude. Cantor, Peano, and Hilbert cite them
when discussing Euclid and Archimedes. However, the reading of ancient
texts hinges upon a philosophical disposition. While, for instance, Hilbert’s
Grundlagen der Geometrie provides an interpretation of Euclid’s Elements,
Cantor’s comments on the Archimedean property and the concept of mag-
nitude reveal his Platonic propensity and belief that with new definitions,
he complements the Greek idea of continuum rather than introducing a
new concept. The 19th-century renaissance of Greek mathematics, specifi-
cally mathematicians’ interest in the concept of magnitude and the theory
of proportion, was initiated by German mathematician and historian Her-
mann Hankel. In 1874’s Zur Geschichte der Mathematik in Altertum und
Mittelalter, he developed modern formalizations of books V and VI of the
Elements, and his symbolic representations of Euclid schematic phrases
were then adopted in Heiberg’s Latin translation.16

We must also note Hermann Grassmann’s Lehrbuch der Arithmetik,
published 1861. It was the first monograph dedicated to totally ordered
groups. The idea of an order compatible with sums was employed in every
axiomatic characteristic of a magnitude of that time, whereas Dedekind
employed the idea of a total order compatible with sums and products in
his definition of rational and real numbers, as developed in [23].

5.1. Book V of Euclid’s Elements

The term linear number as it occurs in the sentence [1] refers to a closed line
segment. The bracketed original German phrase reads: d.h. kurz gesagt,
solche Zahlgrößen, welche sich unter dem Bilde begrenzter geradliniger
stetiger Strecken vorstellen lassen. Thus, linear numbers are to represent
– unter dem Bilde [. . . ] vorstellen lassen – closed line segments, the model
example of ancient Greek magnitudes.

16See [35, pp. 389–404].
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To elaborate, the general term μέγεθος covers line segments, triangles,
convex polygons, circles, solids, angles, and arcs of circles. We formalize
(write down in symbols) Euclid’s magnitudes of the same kind (line seg-
ments being of one kind, triangles being of another, etc.) as an additive
semigroup with a total order, (M,+, <), characterized by the following five
axioms:

E1 (∀x, y)(∃n ∈ N)(nx > y),

E2 (∀x, y)(∃z)(x < y ⇒ x+ z = y),

E3 (∀x, y, z)(x < y ⇒ x+ z < y + z),

E4 (∀x)(∀n ∈ N)(∃y)(x = ny),

E5 (∀x, y, z)(∃v)(x : y :: z : v).

The total order, both in book V as well as throughout the Elements,
is a primitive notion characterized by transitivity and the trichotomy law.
Unlike modern mathematics, in Greek mathematics it is applied not only
to line segments, but to figures at all, e.g. in proposition I.6, triangles are
compared in terms of lesser-greater.

E1 is Euclid definition 4 of book V. The sign :: represents proportion
as provided in definition 5 of book V. The fact that Greek line segments
are closed segments is explicated in definition 3 of book I, which reads:
“And the extremities of a line are points”. Moreover, all throughout the
Elements, line segments are represented by their end-points, such as A, B,
whether in the text as AB, or on diagrams, when A, B stand next to in-
tersections of lines, or next to short vertical lines depicting the ends of
segments; for instance, all throughout book V magnitudes are represented
by line segments with short, bounding vertical lines.

To be clear, we do not suggest that Cantor based his argument on
such exegesis. Our point is that over the course of history, from ancient
to modern times, line segments were considered what we now call closed
line segments, i.e., segments with their ends. In the second half of the
19th century, when the idea of totally ordered sets was introduced, it made
distinguishing between closed and open line segments easy. These new
concepts launched the mathematical career of open segments.

Throughout the ages, essentially owing to Descartes and Euler, the
structure of Greek magnitudes (M,+, <) was transformed into an ordered
field (M,+, ·, 0, 1, <), and then, a number line. In the late 19th century,
the number line was turned into the continuous line of real numbers. In
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this way, Cantor’s sentence [12] refers to the 19th century characteristics
of real numbers, rather than the ancient Greek structure of line segments.

In translations, the Greek word μέγεθος has been rendered in Latin
as quantitas, in English as quantity or magnitude, in French – as quantité
or grandeur, in German – as Quantität, or Grösse. In the 20th century
mathematics, the term magnitude was slowly replaced with real numbers;
still, in the late 40s, Nicolas Bourbaki used the term grandeur meaning real
numbers.17 In [14], the term Zahlengrössen stands for what we consider to
be real numbers, while already in [17] the term reellen Zahlen occurs.18 [23]
defines real numbers as all rational and irrational numbers: aller reellen,
d.h. aller rationalen und irrationalen Zahlen.

In sentence [10], Cantor cites the Greek text of definition V.4, how-
ever, in sentences [4] and [9], he interprets the word πολλαπλασιασμός as
Vervielfachung (multiplication). Euclid’s πολλαπλασιασμός means multi-
plicity rather than multiplication. Whereas multiplicity of a magnitude x
means the reiterated addition of that magnitude, that is x+ ...+ x, there
was no multiplication of any kind in Greek geometry. Although the read-
ing nx = x + ... + x was standard at that time, Cantor adopted a specific
interpretation of the Archimdean property, namely, at first, instead of nx
he assumed n · x, then in the place of (∀n ∈ N), he allowed (∀ν ∈ Ord).

In section 3.2 above, we have shown that by the same kind of inter-
pretation, when instead of nx we take n · x, and then change the range
of the variable n from N to N∗, we reach the conclusion that the field of
hyperreal numbers is Archimedean in the modified sense A1∗, although it
is non-Archimedean in the standard sense A1.

5.2. Archimedean property

There are two versions of the Archimedean property in the Opera omnia
[37]. In the treaty On spiral lines, Archimedes applies Euclid’s version E1,
although he calls it Lemma. In On the sphere and cylinder, the Lemma
reads:

“Further, of unequal lines, unequal surfaces, and unequal solids, the greater
exceeds the lesser by such a magnitude, as when added to itself, can be

17See. [10].
18See Section 7 below.
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made to exceed any assigned magnitude among those which are comparable
with and one another”.19

We formalize it with the following formula:

LA (∀x, y, z)(∃n ∈ N)(x < y → n(y − x) > z).

This version is placed among four lemmas, such as e.g. the following
one:

“Of all lines which have the same extremities the straight line is the least”.20

Clearly, Archimedes could not prove his lemmas. In fact, there is no
mention throughout the treaty that any proof was needed at all. Yet, when,
in the Quadrature of the parabola he reiterates the LA version, he also adds
this comment:

“The earlier geometers have also used this lemma; for it is by the use of
this same lemma that they have shown that circles are to one another in
the duplicate ratio of their diameters, and that spheres are to one another
in the triplicate ratio of their diameters, and further that every pyramid is
one third part of the prism which has the same base with the pyramid and
equal height; also, that every cone is one third part of the cylinder having
the same base as the cone and equal height they proved by assuming a
certain lemma similar to that aforesaid. And, in the result, each of the
aforesaid theorems has been accepted no less than those proved without
the lemma”.21

The results mentioned in this passage are Euclid’s propositions XII.2,
XII.18, XII.7, and XII.10 respectively. Archimedes, thus, evokes the au-
thority of Euclid to justify his reference to LA. Cantor could have consid-
ered Archimedes’ restraint revealed in these lines when he wrote: “Archimedes
appears to be the first to remark that, the assertion used in Euclid’s Ele-
ments [. . . ] requires proof”.

Viewed from the mathematical perspective, there were no other ax-
ioms, lemmas or definitions in Greek mathematics allowing to deduce the
Archimedean property. Book V of the Elements encapsulates all Greek
science of magnitudes, while in our axiomatic account of the theory, E1 is
an independent axiom.

19[36, p. 4].
20[36, p. 3].
21[36, p. 234].
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Archimedes was the unsurpassed champion of the exhaustion method,
he also contributed to the foundations of mathematics by expanding the
scope of the concept of magnitude to curve lines and surfaces. Nevertheless,
he certainly did not seek to prove the LA lemma.

To sum up, Cantor’s note in sentence [9] on Archimedes’ will to prove
LA reflects his attitude towards the Archimedean property rather than
historical facts.

Finally, let us note that it was Stolz who coined the name Archimedean
axiom. He referred to the lemma as presented in On the sphere and cylin-
der and Quadratura of the parabola as a model version of the axiom.22 The
name prevailed in mathematics due to his often-cited books Vorlesungen
über Allgemeine Arithmetik and Theoretische Arithmetik. On the other
hand, Heiberg, in his comment on the Archimedean lemma, cites Euclid’s
definition V.4 and notes that these two are the same axiom.23 This com-
ment of Heiberg, it seems, confirmed the name Archimedean axiom for
Euclid’s definition V.4.

6. Theory of magnitudes in the late 19th century

In sentences [8] and [11] Cantor refers to Stolz’s idea of introducing non-
Archimedean numbers via axioms for magnitudes, while sentences [9] and
[10] contain comments on Archimedes and Euclid. In fact, it was Stolz who
confirmed mathematical studies of the concept of magnitude, as opposed to
historical studies. Although many names were involved in this process, we
present the mathematical extracts of the concept of magnitude as developed
in [25, 26, 47, 49, 43]. This is how the movement has been characterized
by Hölder’s 1901 [43]:

“The theory of measurable magnitudes was developed to a high level by
Euclid. Recently, it has been treated in depth from a number of different
points of view. Nevertheless, it seems that the theory has not been treated
exhaustively; further, errors and obscurities have appeared in some of the
more recent treatments. This is why I think that a reformulation of this
important and fundamental theory will be profitable”.24

22See [47, pp. 70, 332].
23See [37, p. 11].
24[44, p. 238]. It is an English translation of [43] by J. Mitchell.
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In a way, [43] finished and crowned these studies. In 1899, in the first
edition of his Grundlagen der Geometrie, Hilbert provided axioms for an
ordered field. Then, in [41], he provided the first ever axioms for real
numbers. From that moment on, the mathematical studies of the concept
of magnitude were redirected to axioms for real numbers, the continuity
axiom specifically.

In what follows, we present symbolic accounts of the concept of mag-
nitude. To be clear, no one in the 19th century applied such symbols.
We decided on that form of presentation to clarify the mathematical back-
ground of Cantor’s considerations. The common feature of all of these
accounts was that the structure of magnitudes is a totally ordered, semi-
group M = (M,+, <) equipped with different axioms depending on the
author.25

6.1. Du Bois-Reymond, 1882/1887

B1 (∀x)(∃y, z)(y < x ∧ z > x),

B2 (∀x, y)(x+ y > x),

B3 (∀x)(∀n ∈ N)(∃y)x = ny),

B4 (∀x, y)(∃z)(x < y ⇒ x+ z = y),

B5 (∀x, y, z)(x < y ⇒ x+ z < y + z),

B6 (∀x, y)(∃n ∈ N)(x ≤ y ⇒ nx ≥ y),

B7 (∀x, y)(∀n ∈ N)(∃z)(z < y ∧ x = nz).

6.2. Otto Stolz, 1885

S1 (∀x, y)(∃n ∈ N)(x < y ⇒ nx > y),

S2 (∀x, y)(∃!z)(x < y ⇒ x+ z = y),

S3 (∀x, y, z)(x < y ⇒ x+ z < y + z),

S4 (∀x, y)(x+ y > x),

S5 (∀x)(∀n ∈ N)(∃y)(x = ny).

6.3. Heinrich Weber, 1895

W1 (∀x, y)(∃n ∈ N)(nx > y),

25For details, see [1].
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W2 (∀x, y)(∃z)(x < y ⇒ x+ z = y),

W3 (∀x, y)(x+ y > x),

W4 The order < is dense and for every Dedekind cut (A,B) of (M,<),
obtains
(∃z)(∀x ∈ A)(∀y ∈ B)(x ≤ z ≤ y).

6.4. Otto Hölder, 1901

Hölder clarifies the concept of addition by following axioms:

M ×M 3 (x, y) 7→ x+ y ∈M .

(∀x, y, z)[(x+ y) + z = x+ (y + z)].

Specifically, he does not assume the commutativity of addition. As regards
the order <, his only assumption is the so called trichotomy law, namely

For every two elements x, y, one and only one of the three possibilities
obtains: x < y ∨ x = y ∨ x > y.

Here are his axioms.

H1 (∀x)(∃y)(y < x),

H2 (∀x)(∀y)(x+ y > x ∧ x+ y > y),

H3 (∀x, y)(∃z, w)(x < y ⇒ (x+ z = y ∧ w + x = y)),

H4 For every Dedekind cut (A,B) of the set (M,<), obtains
(∃z)(∀x ∈ A)(∀y ∈ B)(x ≤ z ≤ y).

Hölder managed to show that axioms H1-H4 entail the transitivity of
the order <, the commutativity of addition, and above all, the Archimedean
property.

6.5. Non-Archimedean group

As we can see, Du Bois-Reymond, Stolz, and Weber explicitly assume the
Archimedean property. These are axioms B6, S1, and W1 respectively.
When adopting their perspective, rejection of the Archimedean property
does not imply inconsistency; we could say it would lead to a concept of a
non-Archimedean ordered group.

Yet, in sentence [12], Cantor claims: “if the above theorem of mine
is applied to the continuous straight line, the necessity of the Euclidean
assumption immediately follows”. These are Hölder’s results that could
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support this belief, rather than Cantor’s alleged theorem given in sen-
tence [3]. Instead of infinitesimals, “continuous straight line” proved to be
the key concept in these considerations. However, Cantor never adopted
Dedekind’s version of continuity.

7. Cantor’s continuum

Neither Cantor, nor Dedekind was quite sure whether their versions of con-
tinuity of real numbers were equivalent. It was partly because there were
no obvious framework that would enable to establish or dismiss the equiv-
alence of Cantor’s and Dedekind’s versions of continuity. While Dedekind
Cut Principle applies to totally ordered sets, Cantor sought for universal
formula which could be applied in any framework. In fact, he considered
an ordered field, a metric space and a totally ordered set. In each context,
he tried to apply his newly discovered idea of derived set, P ′.

Nevertheless, both Cantor and Dedekind developments had a clear ref-
erence object: Euclid’s geometrical line.

7.1. Cantor on the field of real numbers

In [14], real numbers are made up of fundamental sequences (Cauchy se-
quences). Cantor managed to define field operations as well as the total
order of real numbers. Dealing with numbers, he applies the concept of
sequence limit. From the perspective of the continuity of real numbers, the
following sentence is crucial:

“While domains B and A are so related, that although each a is assigned
to a certain b, but not each b can be assigned to a, it turns out that both
b can be assigned to a certain c, and each c can be assigned to a certain
b”.26

The phrase “each a is assigned to a certain b” means that each rational
number can be represented as a Cauchy sequence of rational numbers. The
phrase “not every b can be assigned to any a” means that the space of
rational numbers is not Cauchy-complete. The phrase “each c can be
assigned to a certain b” means that the space of real numbers is Cauchy-
complete. It could be rendered as follows: A′ = B, B′ = B, where prime

26([14, p. 95]. Letters a, b, c stand for elements of the sets A, B, C respectively.
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represents Cantor’s derivative set. Cantor does not prove any of these
claims and – as far as we know – never returned to this issue.

At the end of section § 1, Cantor declares that he develops the results
of Book X of Euclid Elements. Interestingly, while integers and ratio-
nal numbers are called Zahlen, for real numbers Cantor adopted the term
Zahlengrössen, which could mean numbers assigned to magnitudes.

In the next section, Cantor introduces his famous axiom relating real
numbers and geometric line. First, he shows how to assign for a point on
the straight line a real number. To this end, he determines a unit segment
and assumes that any point on the line is in a rational (rationales Verhält-
nis) or irrational (im andern Falle) ratio to the unit. Due to this very
assumption he is really in the heir to Euclid, specifically in his understand-
ing of commensurable and in-commensurable line segments as presented in
Book X of the Elements.27

Then Cantor writes:

“To make complete the relationship of the domain of number magnitudes
[Zahhlengrössen] defined in §1 with straight line geometry outlined in this §,
I should only add an axiom, which is simply the converse, to every number
magnitude there corresponds a definite point of the line whose coordinate
is equal to that number magnitude, and equal in the sense as explained
herein §. I call this statement an axiom, because it is in its nature that it
is not generally provable”.28

When points on the straight line and real numbers are identified, Cantor
continues to study subsets of the line. Within the geometrical context, he
prefers to apply the derivative set P ′ of a set P , rather than the concept
of sequence limit, as defined in an ordered field. In fact, to define P ′ one
only needs a structure of open line segments, thus the idea of P ′ can be
transferred to a totally ordered set (X,<).

7.2. Correspondence with Dedekind

In [23, § 3], Dedekind coined his cut principle as the “essence of continuity”.
The Preface mentions [14] and reads:

27In terms of the unit segment, Cantor belongs to the tradition which goes back to [24].
There was, of course, no universal unit segment in Greek mathematics.

28[14, p. 97]. As for the last sentence, both Cantor’s axioms turned out to be the-
orems within the framework of axiomatic account of Euclid’s geometry; see [9, § 20]
or [34, § 21].
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“After a hasty reading, it seems to me that the axiom given in Section
II of that paper (except for the form of presentation) agrees with what I
designate in Section III as the essence of continuity”.29

Dedekind seems never had a time to study Cantor’s paper in depth and
decide whether their axioms really agree.

In the letter to Dedekind dated May 17, 1887, Cantor raised the ob-
jection that the cut principle applies both to integers and to real numbers:
“this property also holds of the system of all integers”.30 In the Post Scrip-
tum, he reiterated his objection by writing:

“you lay special emphasis on IV [i.e. the cut principle] because this prop-
erty distinguishes the complete domain of numbers from the domain of all
rational numbers; however it seems to me for the above reasons that one
cannot give property IV the name essence of continuity”.31

On May 17, 1887, Dedekind replied: “you worry that my exclusive
stressing of IV as the property in which the essence of continuity is ex-
pressed could lead to misunderstanding. I do not share this concern”.32

Then he adds that the cut principle is the essence of continuity when ap-
plied to a dense total order.

Cantor refers to Dedekind’s reply in the first sentences of the letter
dated June 20, 1887. It reads:

“Thank you for your letter of 18 May. I completely agree with its contents;
and I acknowledge that the difference in our opinion of view was merely
external”.33

In the rest of the letter Cantor presents his proof to the effect subsets
of R2 can be in one-to-one relation with “continuous line”.34

The standard reading of that exchange is that Cantor simply misin-
terpreted Dedekind by applying the cut principle to a totally ordered set,
rather than to a densely ordered set. Nevertheless in [15, § 9], Dedekind’s

29[31, p. 767].
30[31, p. 852].
31[31, p. 852]. [23, § 2] provides a characteristic of the total order of rational numbers,

R in his notation, which we paraphrase as follows: I transitivity, II density, III every
rational number determines Dedekind cut of the set (R,<). The cut principle, the
condition IV, occurs in section § 3 called Continuity of the Straight Line.

32[31, p. 852].
33[31, p. 853].
34[31, p. 853].
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construction of real numbers was perfectly summarized. Thus, there was
no misinterpretation. The point is a philosophical question: the “essence of
continuity”. Doubts whether Dedekind’s cut principle provides a universal
characteristic of the continuum have been voiced already in [15, § 10]. In
fact, they have never been dispelled.

7.3. Cantor on continuum in metric space

[15, § 9] summaries some 19th century theories of real numbers, namely:
Weierstrass’, as developed in 1872’ Kossak Die Elemente der Arithmetik,
Dedekind’s, as developed in [23], and Cantor’s, as developed in [14].

[15, § 10] is dedicated to the continuum. Tracing back the history of
this concept, Cantor discusses ancient Greek and Medieval philosophers.
He believes that “the underlying idea has taken on different meanings”.
Therefore, his definition could be compared with, for instance, Aristotle’s
ex partibus sine fine divisibilibus.35 This very section initiated a branch of
point-set topology, namely continuum theory, that is the study of compact
and connected spaces. Yet Cantor’s own definition is a bit different.

According to Cantor, a subset T of the space Rn with Euclidean metric
is connected if for any of its points t0 and t0 and any positive real number
ε there are finitely many points t1, t2, ..., tn of T such that the distances
d(t0, t1), d(t1, t2), ..., d(tn, t

0) are all less than ε.
T is perfect if T = T ′, where

x ∈ T ′ ⇔ lim
n→∞

xn = x,

for some (xn) ⊂ Rn\{x}; convergence of a sequence is defined in the metric
space Rn. The latter condition is equivalent to the following assertion:
Every convergent series (tn) ⊂ T has a limit in T , and for every t ∈ T ,
there exists a sequence (tn) ⊂ T such that lim

n→∞
tn = t.

Then comes the famous definition:

“I therefore define a point-continuum inside Gn [Rn in our notation] as a
perfect-connected”.36

35It is a scholastic version of Aristotles characterization of magnitude (μέγεθος) as
provided in Physics, VI: divisible into divisibles that are infinitely divisible. It can
be show that Aristole’s definition is compatible with Euclid’s characteristic of a line
segment; see [1].

36See [31, pp. 903–906].
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Based on this definition, Cantor rebukes definition of the continuum
as given in [6, § 38] and Dedekind’s cut principle. He claims that non-
connected sets exemplify Bolzano’s definition.37 As for Dedekind, Cantor
writes:

“Likewise, it seems to me that in the article (Continuity and irrational
numbers) only another property of the continuum has been one-sidedly
emphasized, namely, that property which it has in common with all ‘perfect’
sets”.38

7.4. Order type of linear continuum (Linearkontinuum)

[17, § 11] provides the order type characteristic of the segment [0, 1] of
numbers (reellen Zahlen) with their natural order (ihrer natürlichen Ran-
gordung).39 Cantor proves that any linearly ordered set (X,<) with the
first and the last element, that is (1) perfect, and (2) contains a subset
A ⊂ X which is dense in (X,<) and of cardinality ℵ0 is isomorphic to the
set ([0, 1], <).

Since in 1883 Cantor interprets Dedekind Cut Principle as a property of
perfect set, in 1895 he could be certain that Dedekind Cut Principle did not
provide the “essence of continuity”. Nowadays we can support his belief by
a simple example. Namely, let X = [0, 1]× [0, 1], be the Cartesian product
of real numbers segments with lexicographical order. The set (X,<) is
continuous in terms of the cut principle, however, it is not a separable
space.

8. Modern account of the product ζ · ν

In this section, we firstly provide an alternative arithmetic for Cantor’s
sums and products of ordinal numbers. Then, we introduce a non-Archime-
dean field ONAG which includes the class of ordinal numbers, Ord. As the
field ONAG includes both ordinal and infinitesimal numbers, we can show
that Cantor hypothesis concerning products of ordinal and infinitesimal
numbers, as presented in sentence [3], fails.

37Indeed, Bolzano definition of the continuum boils to the fact that the continuum
has no isolated points.

38[31, p. 906].
39Cantor had never explained what natural order means in mathematical terms.
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8.1. Normal sums and products of ordinal numbers

Let us start with a remainder of the normal form theorem [18]: For every
ordinal number α ∈ Ord, there are ordinal numbers η1, . . . , ηh, and natural
numbers h, pi ∈ N such that

α = ωη1 · p1 + . . .+ ωηh · ph,
where η1 > . . . > ηh.

This representation of α is unique. Moreover, it is finite, due to the
assumption concerning the index h.

Based on this theorem, [39] introduced the so-called normal sums and
products of ordinal numbers. Namely, for

α = ωη1 · p1 + . . .+ ωηh · ph, β = ωη1 · q1 + . . .+ ωηh · qh
their normal sum +n and normal product ·n is defined by40

α+n β =df ωη1 · (p1 + q1) + . . .+ ωηh · (ph + qh)

α ·n β =df

∑
1≤i,j≤h

ωηi+nηj · piqj

Contrary to Cantor’s sums and products of ordinal numbers, normal
sums and products are commutative and compatible with the standard
order of ordinal numbers, that is

α+n β = β +n α, α ·n β = β ·n α,
α < β ⇒ α+n γ < β +n γ, α < β ⇒ α ·n γ < β ·n γ.

Thus, the structure (Ord,+n, ·n, 0, 1, <) is an abelian semigroup.
Hence, e.g. since ω = ω · 1 + 0, and 1 = ω · 0 + 1, we calculate the

normal sums of ω +n 1 and 1 +n ω as follows,

1 +n ω = (ω · 0 + 1) +n (ω · 1 + 0) = ω · (0 + 1) + 1 = ω + 1,

ω +n 1 = (ω · 1 + 0) +n (ω · 0 + 1) = ω · (1 + 0) + 1 = ω + 1.

Similarly, we calculate

2 ·n ω = (ω · 0 + 2) ·n (ω · 1 + 0) = ω2 · 0 + ω · 2 + 0 = ω · 2,
ω ·n 2 = (ω · 1 + 0) ·n (ω · 0 + 2) = ω2 · 0 + ω · 2 + 0 = ω · 2.

As is well known, in Cantor’s arithmetic the inequalities hold 1 + ω <
ω + 1, and 2 · ω < ω · 2.

40We assume for the use of the definition, that some pi or qi could equal 0.
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8.2. Conway numbers

[20, 21] introduces a very special non-Archimedean ordered field; it is usu-
ally called the field of surreal numbers or in short ONAG (the acronym for
on numbers and games). In fact, [28] proves that (ONAG,+.·, 0, 1, <) is
the biggest non-Archimedean field.

While Conway develops his theory beyond the framework of the set
theory, [32] manages to rediscover surreal numbers in the set theory, and
provides a suggestive representation. Namely, a surreal number is a func-
tion a from an ordinal α into the set {+,−}, that is

a : α 7→ {+,−}.

Hence, every ordinal number α is represented by the α-length string of
pluses

α ∼ (+ + ...︸ ︷︷ ︸
α

).

To compare surreal numbers a,b in terms of lesser-greater, when α < β,
where α and β are domains of a,b respectively, we make up the sequence
a by 0s, to the sequence of β-length. Then, the total order a < b is defined
by lexicographical order, given

− < 0 < + .

For example,

(−−) < (−) < (−+) < (+) < (+ +−) < (++).

We can show that the field ONAG includes the structure (Ord,+n, ·n,
0, 1, <). Therefore, within the framework of surreal numbers, Cantor’s
ordinal numbers are subject to field operations. Next to the ordinal number
ω, in the field ONAG, there are also elements such as

−ω, ω − 1,
ω

2
,

1

ω
.

Due to Gonshor’s development, we can represent these numbers as follows

−ω = (−− ....︸ ︷︷ ︸
ω

),

ω − 1 = (+ + +...︸ ︷︷ ︸
ω

−),
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ω
2 = (+ + +...︸ ︷︷ ︸

ω

−−−...︸ ︷︷ ︸
ω

),

1
ω = (+−−− ...︸ ︷︷ ︸

ω

).

Since every infinite ordinal number α is an infinite element of the field
ONAG, i.e. it is an element of the class Ψ, as defined in section 3 above,
the element α−1 is infinitesimal. In this way, the field of surreal numbers
provides a framework to test Cantor’s hypothesis concerning the products
of infinitesimal and ordinal numbers.

8.3. Falsifying Cantor’s hypothesis

Sentence [3] includes the key mathematical part of Cantor’s argument, we
call it the Infinitesimals Hypotheses (IH): when ζ is infinitesimal and ν “is
an arbitrarily large transfinite ordinal [...] ζ · ν is smaller than any finite
magnitude”, in symbols

(∀ν ∈ Ord)(ζ · ν < 1). (IH)

Cantor had never defined the product of infinitesimal and ordinal num-
bers, especially he had never proved the claim IH. The framework of surreal
numbers enables, both make sense of the product ζ ·ν, and falsify the claim
IH.

For the falsification part, let ζ be a positive infinitesimal. Then ζ−1 ∈
Ψ, i.e. ζ−1 is infinitely large number in the field ONAG. Due to Gon-
shor’s representation of surreal numbers, we can find and ordinal number
α greater than ζ−1. By the standard rules of an ordered field, we have

ζ−1 < α⇒ α−1 < ζ.

Similarly, by the standard rules of an ordered field

α−1 < ζ ⇒ α−1 · α < ζ · α.

Hence, the product ζ ·α is greater than 1. In the same manner, we can
show that the product ζ · α2 is an infinite surreal number, as it is greater
than α. �
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