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Abstract

Basic results of the paper are that any four-valued expansion L4 of Dunn-Belnap’s

logic DB4 is defined by a unique (up to isomorphism) conjunctive matrix M4

with exactly two distinguished values over an expansion A4 of a De Morgan

non-Boolean four-valued diamond, but by no matrix with either less than four

values or a single [non-]distinguished value, and has no proper extension satisfying

Variable Sharing Property (VSP). We then characterize L4’s having a theorem /

inconsistent formula, satisfying VSP and being [inferentially] maximal / subclas-

sical / maximally paraconsistent, in particular, algebraically through M4|A4’s

(not) having certain submatrices|subalgebras.

Likewise, [providing A4 is regular / has no three-element subalgebra] L4 has a

proper consistent axiomatic extension if[f] M4 has a proper paraconsistent / two-

valued submatrix [in which case the logic of this submatrix is the only proper

consistent axiomatic extension of L4 and is relatively axiomatized by the Ex-

cluded Middle law axiom]. As a generic tool (applicable, in particular, to both

classically-negative and implicative expansions of DB4), we also prove that the

lattice of axiomatic extensions of the logic of an implicative matrix M with equal-

ity determinant is dual to the distributive lattice of lower cones of the set of all

submatrices of M with non-distinguished values.
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1. Introduction

Dunn-Belnap’s four-valued logic (cf. [5] and [3]) arising as the logic of first-
degree entailment (FDE, for short) in relevance logic R has been naturally
expanded by additional connectives in [11]. The present paper, equally
belonging to General Logic, pursues this line of research in the follow-
ing generic respects in addition to those of functional completeness and
both sequential and equational axiomatizations comprehensively explored
therein.

First of all, the most natural way of expanding FDE consists in ex-
panding the matrix DM4 defining FDE by additional connectives. This
inevitably raises the question which exactly expansions of FDE are covered
by such approach. As we argue here, these are exactly all four-valued ones
(that excludes E and R). And what is more, any four-valued expansion of
FDE is defined by a unique expansion of DM4.

In addition, as a by-product of auxiliary results, we prove that any
four-valued expansion of FDE is defined by no matrix with either a unique
(non-)distinguished value or less than four values and has no proper exten-
sion satisfying Variable Sharing Property (VSP, for short; cf. [1]), according
to which any entailment φ→ ψ holds only if φ and ψ have a propositional
variable in common, that is one of the most fundamental peculiarities of
FDE, quite independently from whether the expansion itself satisfies VSP.
The latter result has been proved for FDE alone in [9] and means, per-
haps, a principal maximality of expansions of FDE. In this connection, we
find purely algebraic criteria of a FDE expansion’s satisfying VSP, being
[inferentially] maximal in the sense of not having a proper [inferentially]
consistent extension,1 being a sublogic of a definitional copy of the clas-
sical logic and being maximally paraconsistent in the sense of [10] (viz.,
having no proper paraconsistent extension).

After all, we study the issue of axiomatic extensions within the frame-
work of FDE expansions.

The rest of the paper is as follows. The exposition of the material of
the paper is entirely self-contained (of course, modulo very basic issues
concerning Set Theory, Lattice Theory, Universal Algebra, Model Theory
and Mathematical Logic not specified here explicitly, to be found, e.g., in

1It is the absence of theorems in FDE, being an inevitable consequence of VSP,
that makes “inferential” versions of standard conceptions of consistency and maximality
acute within the framework of FDE expansions to be equally void of theorems.
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standard mathematical handbooks like [2] and [7]). Section 2 is a concise
summary of basic issues underlying the paper, most of which have actually
become a part of logical and algebraic folklore. Section 3 is devoted to
certain key preliminary issues concerning equality determinants (in the
sense of [13]), implicative matrices and De Morgan lattices. In Section 4
we formulate and prove main results of the paper described above. Then, in
Section 5 we apply general results of previous two sections to three generic –
classically-negative, bilattice and implicative – classes of FDE expansions.

2. Basic issues

Standard notations like img, dom, ker, hom, πi, Con, et. al., as well as
related notions are supposed to be clear.

2.1. Set-theoretical background

We follow the standard convention (among other things, contracting cum-
bersome finite sequence notations), according to which natural numbers
(including 0) are treated as finite ordinals (viz., sets of lesser natural num-
bers), the ordinal of all them being denoted by ω. The proper class of
all ordinals is denoted by ∞. Likewise, functions are viewed as binary
relations. In addition, singletons are often identified with their unique
elements, unless any confusion is possible.

Given a set S, the set of all subsets of S [of cardinality ∈ K ⊆ ∞]2

is denoted by ℘[K](S). A subset T ⊆ S is said to be proper, if T 6= S.
Further, given any equivalence relation θ on S, as usual, by νθ we denote
the function with domain S defined by νθ(a) , θ[{a}], for all a ∈ S, in
which case ker νθ = θ, whereas we set (T/θ) , νθ[T ], for every T ⊆ S.
Next, S-tuples (viz., functions with domain S) are often written in either
sequence t̄ or vector ~t forms, its s-th component (viz., the value under
argument s), where s ∈ S, being written as either ts or ts. Given two
more sets A and B, any relation R ⊆ (A × B) (in particular, a mapping
R : A→ B) determines the equally-denoted relation R ⊆ (AS×BS) (resp.,
mapping R : AS → BS) point-wise, that is, R , {〈ā, b̄〉 ∈ (AS×BS) | ∀s ∈
S : as R bs}. Likewise, given a set A, an S-tuple B of sets and any

2As usual, parentheses as well as both square, figure and angle brackets are often
used for surrounding a (possibly, multiple) optional content.
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f̄ ∈ (
∏
s∈S B

A
s ), put (

∏
f̄) : A → (

∏
B), a 7→ 〈fs(a)〉s∈S . (In case I = 2,

f0×f1 stands for (
∏
f̄).) Further, a lower cone of a T ⊆ ℘(S) is any L ⊆ T

such that, for each X ∈ L, (℘(X)∩T ) ⊆ L. Likewise, an anti-chain of T is
any A ⊆ T such that max(A) = A. (Clearly, in case S is finite, the unary
operations A 7→ (T ∩

⋃
{℘(X) | X ∈ A}) and L 7→ max(L) on ℘(℘(S))

form inverse to one another bijections between the sets of all anti-chains
and all lower cones of T .) Furthermore, set ∆S , {〈a, a〉|a ∈ S}, functions
of such a kind being referred to as diagonal. Finally, given any R ⊆ S2,
Tr(R) , {〈π0(π0(r̄)), π1(πl−1(r̄))〉|r̄ ∈ Rl, l ∈ (ω \ 1)} is the least transitive
binary relation on S including R, known as the transitive closure of R.

2.2. Algebraic background

Unless otherwise specified, abstract algebras are denoted by Fraktur let-
ters (possibly, with indices/prefixes/suffixes), their carriers (viz., under-
lying sets) being denoted by corresponding Italic letters (with same in-
dices/prefixes/suffixes, if any).

A (propositional/sentential) language/signature is any algebraic (viz.,
functional) signature Σ (to be dealt with by default throughout the paper)
constituted by function (viz., operation) symbols of finite arity to be treated
as (propositional/sentential) connectives. Given any α ∈ ℘∞\1(ω), put

Vα , {xβ |β ∈ α}, elements of which being viewed as (propositional/sen-
tential) variables of rank α. Then, we have the absolutely-free Σ-algebra
FmαΣ freely-generated by the set Vα, referred to as the formula Σ-algebra
of rank α, its endomorphisms/elements of its carrier Fmα

Σ (viz., Σ-terms of
rank α) being called (propositional/sentential) Σ-substitutions/-formulas
of rank α. (In general, the reservation “of rank α” is normally omitted,
whenever α = ω.) Given a Σ-formula ϕ, Var(ϕ) denotes the set of all
variables actually occurring in ϕ.

Recall the following useful well-known algebraic fact:

Lemma 2.1. Let A and B be Σ-algebras and h ∈ hom(A,B). [Suppose
(img h) = B.] Then, for every ϑ ∈ Con(B), h−1[ϑ] ∈ {θ ∈ Con(A) |
(kerh) ⊆ θ} [whereas h[h−1[ϑ]] = ϑ, while, conversely, for every θ ∈
Con(A) such that (kerh) ⊆ θ, h[θ] ∈ Con(B), whereas h−1[h[θ]] = θ].
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2.3. Propositional logics and matrices

A [finitary] Σ-rule is any couple 〈Γ, ϕ〉, where (Γ ∪ {ϕ}) ∈ ℘[ω](Fmω
Σ),

normally written in the standard sequent form Γ ` ϕ, ϕ/any element of
Γ being referred to as the/a conclusion/premise of it. A (substitutional)
Σ-instance of it is then any Σ-rule of the form σ(Γ ` ϕ) , (σ[Γ] ` σ(ϕ)),
where σ is a Σ-substitution. As usual, Σ-rules without premises are called
Σ-axioms and are identified with their conclusions. A[n] [axiomatic] (fini-
tary) Σ-calculus is any set of (finitary) Σ-rules[-axioms].

A (propositional/sentential) Σ-logic (cf., e.g., [6]) is any closure opera-
tor C over Fmω

Σ that is structural in the sense that σ[C(X)] ⊆ C(σ[X]),
for all X ⊆ Fmω

Σ and all σ ∈ hom(FmωΣ,Fm
ω
Σ). A(n) (in)consistent set of

C is any X ⊆ Fmω
Σ such that C(X) 6= (=) Fmω

Σ. Then, C is said to be [in-
ferentially] (in)consistent, provided ∅[∪{x0}] is a(n in)consistent set of C
or, equivalently, in view of the structurality of C, x1 6∈ (∈)C(∅[∪{x0}]). A
Σ-rule Γ ` ϕ is said to be satisfied in C, provided ϕ ∈ C(Γ), Σ-axioms satis-
fied in C being called its theorems. A [proper] extension of C is any Σ-logic
C ′ ⊇ C [distinct from C], in which case C is said to be a [proper] sublogic of
C ′. Then, an extension C ′ of C is said to be axiomatized by a Σ-calculus C
relatively to C, provided it is the least extension of C satisfying each rule of
C. Furthermore, an extension C ′ of C is said to be axiomatic, whenever it is
relatively axiomatized by an axiomatic Σ-calculus. Next, C is said to be [in-
ferentially] maximal(ly consistent), whenever it is [inferentially] consistent
and has no proper [inferentially] consistent extension. Further, C is said
to be �-conjunctive, where � is a (possibly, secondary) binary connective of
Σ, provided C(φ � ψ) = C({φ, ψ}), for all φ, ψ ∈ Fmω

Σ, in which case any
extension of C is so. Likewise, C is said to be [maximally] o-paraconsistent,
where o is a unary connective of Σ, provided x1 6∈ C({x0, ox0}) [and C has
no proper o-paraconsistent extension]. In addition, C is said to be theorem-
less, provided C(∅) = ∅. Finally, Variable Sharing Property (VSP, for
short; cf. [1]) is said to hold/be satisfied for C, provided, for all φ ∈ Fmω

Σ

and all ψ ∈ C(φ), it holds that (Var(φ)∩Var(ψ)) 6= ∅, in which case C has
neither a theorem nor an inconsistent formula, in view of the finiteness of
the set Var(ϕ), where ϕ ∈ Fmω

Σ.
A (logical) Σ-matrix (cf. [6]) is any couple of the form A = 〈A, DA〉,

where A is a Σ-algebra, called the underlying algebra of A, while DA ⊆ A
is called the truth predicate of A, elements of which being referred to
as distinguished values of A. (In general, matrices are denoted by Cal-
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ligraphic letters [possibly, with indices/prefixes/suffixes], their underlying
algebras being denoted by corresponding Fraktur letters [with same in-
dices/prefixes/suffixes, if any].) This is said to be n-valued/truth[-non]-
empty/(in)consistent/false-singular/truth-singular, where n ∈ ω, provided
|A| = n/DA = [ 6=]∅/DA 6= (=)A/|A \ DA| ∈ 2/|DA| ∈ 2. Next, given
any Σ′ ⊆ Σ, put (A�Σ′) , 〈A�Σ′, DA〉, in which case A is said to be a
( Σ-)expansion of A�Σ′. (Any notation, being specified for single matrices,
is supposed to be extended to classes of matrices member-wise.)

A Σ-matrix A is said to be finite/finitely-generated/generated by a B ⊆
A, whenever A is so. Then, A is said to be K-generated, where K ⊆ ∞,
whenever it is generated by a B ∈ ℘K(A).

As usual, Σ-matrices are treated as first-order model structures (viz.,
algebraic systems; cf. [7]) of the first-order signature Σ ∪ {D} with unary
predicate D, any [finitary] Σ-rule Γ ` φ being viewed as the [first-order]
Horn formula (

∧
Γ) → φ under the standard identification of any propo-

sitional Σ-formula ψ with the first-order atomic formula D(ψ). Then, the
class of all models of a Σ-calculus C is denoted by Mod(C). In that case,
given any class of Σ-matrices M, C is said to axiomatize M ∩Mod(C) rela-
tively to M.

Given any α ∈ ℘∞\1(ω) and any class M of Σ-matrices, we have the clo-

sure operator CnαM over Fmα
Σ defined by CnαM(X) , (Fmα

Σ ∩⋂
{h−1[DA]|A ∈ M, h ∈ hom(FmαΣ,A), h[X] ⊆ DA}, for all X ⊆ Fmα

Σ,
in which case we have:

CnαM(X) = (Fmα
Σ ∩CnωM(X)), (2.1)

because hom(FmαΣ,A) = {h�Fmα
Σ |h ∈ hom(FmωΣ,A)}, for any Σ-algeb-

ra A, as A 6= ∅. (Note that CnαM(∅) = ∅, whenever M has a truth-
empty member.) Then, CnωM is a Σ-logic called the one of M. Next, a
Σ-logic C is said to be K-defined by M, where K ⊆ ∞, if (C�℘K(Fmω

Σ)) =
(CnωM �℘K(Fmω

Σ)). (As usual, “finitely-” stands for “ω-”. Likewise, “∞-”
is normally omitted, whenever no confusion is possible.) A Σ-logic C is
said to be [minimally] n-valued, where n ∈ ω, whenever it is defined by an
n-valued Σ-matrix [but by no m-valued one, where m ∈ n], in which case
C is finitary (cf. [6]). A Σ-matrix A is said to be o-paraconsistent, where o
is a unary connective of Σ, whenever the logic of A is so. (Clearly, the logic
of any class of matrices is [inferentially] consistent iff the class contains a
consistent [truth-non-empty] member.)
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Let A and B be two Σ-matrices. A (strict) [surjective] homomorphism
from A [on]to B is any h ∈ hom(A,B) such that [h[A] = B and] DA ⊆
(=)h−1[DB], the set of all them being denoted by hom

[S]
(S)(A,B). Recall

that ∀h ∈ hom(A,B) : [((img h) = B) ⇒](hom(FmαΣ,B) ⊇ [=]{h ◦ g|g ∈
hom(FmαΣ,A)}), and so we have:

(∃h ∈ hom
[S]
S (A,B))⇒(CnαB ⊆ [=] CnαA), (2.2)

(∃h ∈ homS(A,B))⇒(CnαA(∅) ⊆ CnαB(∅)), (2.3)

for all α ∈ ℘∞\1(ω). Then, A is said to be a [proper] submatrix of B,

whenever ∆A ∈ homS(A,B) [and A 6= B], in which case we set (B�A) , A.
Injective/bijective strict homomorphisms from A to B are referred to as
embeddings/isomorphisms of/from A into/onto B, in case of existence of
which A is said to be embeddable/isomorphic into/to B.

Let A be a Σ-matrix. Elements of Con(A) , {θ ∈ Con(A)|θ[DA] ⊆
DA} 3 ∆A are called congruences of A. Given any ∅ 6= Θ ⊆ Con(A) ⊆
Con(A), Tr(

⋃
Θ), being well-known to be a congruence of A, is then easily

seen to be a congruence of A. Therefore, a(A) , (
⋃

Con(A)) ∈ Con(A), in
which case this is the greatest congruence of A (it is this fact that justifies
using the symbol a). Then, A is said to be simple/irreducible, provided
a(A) = ∆A. Given any θ ∈ Con(A[A]), we have the quotient Σ-matrix
(A/θ) , 〈A/θ,DA/θ〉, in which case νθ ∈ homS

[S](A,A/θ). The quotient

<(A) , (A/a(A)) is called the reduction of A.
A Σ-matrix A is said to be a model of a Σ-logic C, provided C ⊆ CnωA,

the class of all [irreducible of] them being denoted by Mod[=](C). Next,
A is said to be �-conjunctive, where � is a (possibly, secondary) binary
connective of Σ, provided ({a, b} ⊆ DA)⇔ ((a�A b) ∈ DA), for all a, b ∈ A,
that is, CnωA is �-conjunctive.

Remark 2.2. As an immediate consequence of Lemma 2.1, given any

Σ-matrices A and B and any h ∈ hom
[S]
S (A,B), for every ϑ ∈ Con(B),

h−1[ϑ] ∈ {θ ∈ Con(A) | (kerh) ⊆ θ} [whereas h[h−1[ϑ]] = ϑ, while, con-
versely, for every θ ∈ Con(A) such that (kerh) ⊆ θ, h[θ] ∈ Con(B), whereas
h−1[h[θ]] = θ].

By Remark 2.2, we immediately have:

Corollary 2.3. Let A and B be Σ-matrices and h ∈ homS(A,B). Sup-
pose A is simple. Then, h is injective.
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Remark 2.4 (Matrix Homomorphism Theorem). As an immediate conse-
quence of the Algebra Homomorphism Theorem, given any Σ-matrices

A, B and C, any f ∈ homS
S(A,B) and any g ∈ hom

(S)
[S] (A, C) such that

(ker f) ⊆ {=}(ker g), it holds that (g ◦ f−1) ∈ hom
(S)
[S] (B, C) {is injec-

tive}.

Proposition 2.5. Let A and B be two Σ-matrices and h ∈ homS
S(A,B).

Then, a(A) = h−1[a(B)] and a(B) = h[a(A)].

Proof: As ∆B ∈ Con(B), by Remark 2.2, we have kerh = h−1[∆B ] ∈
Con(A), and so kerh ⊆ a(A), in which case, by Remark 2.2, we get:

h−1[a(B)] ⊆ a(A),

h[h−1[a(B)]] = a(B),

h[a(A)] ⊆ a(B),

h−1[h[a(A)]] = a(A).

These collectively imply the equalities to be proved, as required.

Since, for any equivalence θ on any set A, it holds that νθ[θ] = ∆A/θ,
as an immediate consequence of Proposition 2.5, we also have:

Corollary 2.6. Let A be a Σ-matrix. Then, A/a(A) is simple.

Given a set I and an I-tuple A of Σ-matrices, the Σ-matrix (
∏
i∈I Ai)

, 〈
∏
i∈I Ai, (

∏
i∈I Ai) ∩

⋂
i∈I π

−1
i [DAi ]〉 is called the direct product of A.

(As usual, when I = 2, A0 × A1 stands for the direct product involved.
Likewise, if (imgA) ⊆ {A}, where A is a Σ-matrix, AI stands for the
direct product involved.) Any submatrix B of the direct product involved is
referred to as a subdirect product of A, whenever, for each i ∈ I, πi[B] = Ai.

Lemma 2.7 (Subdirect Product Lemma). Let M be a [finite] class of [finite]
Σ-matrices and A a {truth-non-empty} (simple) ([ω∩](ω + 1))-generated
model of the logic of M. Then, there is some strict surjective homomor-
phism from a subdirect product of a [finite] tuple constituted by members of

S
{∗}
∗ (M) onto A/a(A) (resp., onto A itself).

Proof: Take any A′ ∈ ℘[ω∩](ω+1)(A) generating A and any a ∈ A 6= ∅,

in which case A′′ , (A′ ∪ {a}) ∈ ℘([ω∩](ω+1))\1(A) generates A, and so

α , |A′′| ∈ (([ω∩](ω + 1)) \ 1) ⊆ ℘∞\1(ω). Next, take any bijection from
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Vα onto A′′ to be extended to a surjective h ∈ hom(Fmα
Σ,A), in which case

it is a surjective strict homomorphism from B , 〈Fmα
Σ, X〉, where {∅ 6=

}X , h−1[DA], onto A, and so, by (2.2), B is a {truth-non-empty} model
of the logic of M. Then, applying (2.1) twice, we get CnαM(X) ⊆ CnαB(X) ⊆
X ⊆ CnαM(X). Furthermore, we have the [finite] set I , {〈h′,D〉 | h′ ∈
hom(B,D),D ∈ M, (img h′) * DD}, in which case, for every i ∈ I, we set

hi , π0(i), and so Ci , (π1(i)�(img hi)) is a consistent {truth-non-empty}
submatrix of π1(i) ∈ M. Clearly, X = CnαM(X) = (Fmα

Σ ∩
⋂
i∈I h

−1
i [DCi ]).

Therefore, the mapping g , (
∏
i∈I hi) : Fmα

Σ → (
∏
i∈I Ci) is a strict

homomorphism from B to
∏
i∈I Ci such that, for each i ∈ I, (πi ◦ g) = hi,

in which case πi[g[Fmα
Σ]] = hi[Fmα

Σ] = Ci, and so g is a surjective strict
homomorphism from B onto the subdirect product E , ((

∏
i∈I Ci)�(img g))

of C. Put θ , a(A)(= ∆A) and F , (A/θ). Then, f , (νθ ◦ h) ∈
homS

S(B,F). Therefore, by Remark 2.2, Proposition 2.5 and Corollary 2.6,
we have (ker g) = g−1[∆E ] ⊆ a(B) = f−1[∆F ] = (ker f), in which case, by
Remark 2.4, e , (f ◦ g−1) ∈ homS

S(E ,F) (and so (ν−1
θ ◦ e) ∈ homS

S(E ,A)),
as required.

Given a class M of Σ-matrices, the class of all (truth-non-empty) [con-

sistent] submatrices of members of M is denoted by S
(∗)
[∗] (M). Likewise, the

class of all [sub]direct products of tuples (of cardinality ∈ K ⊆ ∞) consti-

tuted by members of M is denoted by P
[SD]
(K) (M). Clearly, model classes are

closed under P.

Theorem 2.8. Let K and M be classes of Σ-matrices, C the logic of M
and C ′ an extension of C. Suppose (both M and all members of it are
finite and) [<](PSD

(ω)(S∗(M))) ⊆ K {in particular, [<](S(P(ω)(M))) ⊆ K 〈in
particular, K ⊇ M is closed under both S and P(ω) [as well as <]〉}. Then,

C ′ is (finitely-)defined by S , (Mod[=](C
′) ∩ K).

Proof: Clearly, C ′ ⊆ CnωS , for S ⊆ Mod(C ′). Conversely, consider any
(Γ ∪ {ϕ}) ∈ ℘(ω)(Fmω

Σ), in which case (there is some α′ ∈ (ω \ 1) such

that (Γ ∪ {ϕ}) ⊆ Fmα′

Σ , and so) (Γ ∪ {ϕ}) ⊆ Fmα
Σ, where α , ((α′∩)ω) ∈

℘∞\1(ω), such that ϕ 6∈ C ′(Γ). Then, by the structurality of C ′,
〈FmωΣ, C ′(Γ)〉 is a model of C ′ {in particular, of C}, and so is its (α + 1)-
generated (and so ω-generated) submatrix A , 〈FmαΣ, C ′(Γ) ∩ Fmα

Σ〉, in
view of (2.2), in which case ϕ 6∈ CnαA(Γ), and so ϕ 6∈ CnωA(Γ), in view of
(2.1). Therefore, by Lemma 2.7, there are some B ∈ PSD

(ω)(S∗(M)), in which
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case D , [<](B) ∈ [<](PSD
(ω)(S∗(M))) ⊆ K, and some g ∈ homS

S(B,A/a(A)).

Then, by (2.2), CnωD = CnωA, in which case [by Corollary 2.6] D ∈ S, and
so ϕ 6∈ CnωS (Γ), as required.

Corollary 2.9. Let M be a class of Σ-matrices and A an axiomatic
Σ-calculus. Then, the axiomatic extension C ′ of the logic C of M rela-
tively axiomatized by A is defined by S∗(M) ∩Mod(A).

Proof: Then, Mod(C ′) = (Mod(C) ∩ Mod(A)), and so (2.2), (2.3) and
Theorem 2.8 with K , PSD

(ω)(S∗(M)) ⊆ Mod(C), in which case (Mod(C ′) ∩
K) = (Mod(A)∩K) = PSD

(ω)(S∗(M)∩Mod(A)), complete the argument.

Given any Σ-logic C and any Σ′ ⊆ Σ, in which case Fmα
Σ ⊆ Fmα

Σ′ and
hom(FmαΣ′ ,FmαΣ′) = {h�Fmα

Σ′ |h ∈ hom(FmαΣ,Fm
α
Σ), h[Fmα

Σ′ ] ⊆ Fmα
Σ′}, for

all α ∈ ℘∞\1(ω), we have the Σ′-logic C ′, defined by C ′(X) ,
(Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ , called the Σ′-fragment of C, in which

case C is said to be a ( Σ-)expansion of C ′. In that case, given also any
class M of Σ-matrices defining C, C ′ is, in its turn, defined by M�Σ′.

2.3.1. Classical matrices and logics

Let o ∈ Σ be unary.
A two-valued consistent Σ-matrix A is said to be o-classical, provided,

for all a ∈ A, (a ∈ DA)⇔ (oAa 6∈ DA), in which case it is truth-non-empty,
and so both false- and truth-singular, but is not o-paraconsistent.

A Σ-logic is said to be o-[sub]classical, whenever it is [a sublogic of] the
logic of a o-classical Σ-matrix.

3. Preliminary key issues

3.1. Equality determinants

According to [13], an equality determinant for a Σ-matrix A is any Υ ⊆
Fm1

Σ such that any a, b ∈ A are equal, whenever, for all υ ∈ Υ, υA(a) ∈ DA
iff υA(b) ∈ DA.

Example 3.1. {x0} is an equality determinant for any consistent truth-non-
empty two-valued (in particular, classical) matrix.
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Lemma 3.2. Let A be a Σ-matrix and Υ an equality determinant for A.
Then, A is simple.

Proof: Consider any θ ∈ Con(A) and any 〈a, b〉 ∈ θ. Then, for each
υ ∈ Υ, υA(a) θ υA(b), in which case (υA(a) ∈ DA) ⇔ (υA(b) ∈ DA), and
so a = b, as required.

Lemma 3.3. Let A and B be Σ-matrices, Υ an equality determinant for
B and e ∈ homS(A,B). Suppose e is injective. Then, Υ is an equality
determinant for A.

Proof: In that case, for all a ∈ A and every υ ∈ Υ, it holds that υA(a) ∈
DA iff υB(e(a)) = e(υA(a)) ∈ DB, and so the injectivity of e completes the
argument.

3.2. Implicative matrices with equality determinant

Let � and Y be (possibly, secondary) binary connectives of Σ.
A Σ-matrix A is said to be �-implicative/-disjunctive, provided, for all

a, b ∈ A, it holds that ((a ∈ / 6∈ DA) ⇒ (b ∈ DA)) ⇔ ((a �A b) ∈ DA), in
which case it is ∨�-disjunctive, where (x0 ∨� x1) , ((x0 � x1) � x1).

Lemma 3.4. Let A be a finite �-implicative and Y-disjunctive (in particu-
lar, Y = ∨�) Σ-matrix with equality determinant Υ, S ⊆ S(A), n , |S| and
B ∈ S∗(A). Suppose B 6∈ S(S). Then, there is some Σ-axiom in Fmn+1

Σ ,
which is true in S but is not true in B.

Proof: Take any bijection C : n → S. Consider any i ∈ n, in which case
B * Ci, and so there is some ai ∈ (B \ Ci) 6= ∅. Define a ψi ∈ Fm2

Σ

as follows. Take any bijection c̄ : m , |Ci| → Ci. By induction on any
j ∈ (m+1), define a φj ∈ Fm2

Σ such that, for all b ∈ (A\DA), it holds that
φAj [x0/ai, x1/b] 6∈ DA, while, providing x1 ∈ Var(φj), for all a ∈ A and all

d ∈ DA, it holds that φAj [x0/a, x1/d] ∈ DA, whereas, for all k ∈ j and all

a ∈ A, it holds that φAj [x0/ck, x1/a] ∈ DA, as follows. First, put φj , x1,
if j = 0. Otherwise, (j − 1) ∈ m ⊆ (m + 1), in which case cj−1 6= ai, for
cj−1 ∈ Ci 63 ai, and so there is some υ ∈ Υ such that υA(ai) ∈ DA iff
υA(cj−1) 6∈ DA. Then, set:
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φj ,



υ � φj−1 if υA(ai) ∈ DA,
∃a ∈ A : φAj−1[x0/cj−1, x1/a] 6∈ DA,

υ Y φj−1 if x1 6∈ Var(φj−1), υA(ai) 6∈ DA,
∃a ∈ A : φAj−1[x0/cj−1, x1/a] 6∈ DA,

ϕj−1[x1/υ] if x1 ∈ Var(φj−1), υA(ai) 6∈ DA,
∃a ∈ A : φAj−1[x0/cj−1, x1/a] 6∈ DA,

φj−1 otherwise.

In this way, ψi , φm ∈ Fm2
Σ is true in Ci, while, for all b ∈ (A\DA), it holds

that ψA
i [x0/ai, x1/b] 6∈ DA, whereas, providing x1 ∈ Var(ψi), for all a ∈ A

and all d ∈ DA, it holds that ψA
i [x0/a, x1/d] ∈ DA. Finally, by induction

on any l ∈ (n + 1), define a ϕl ∈ Fml+1
Σ such that for all b ∈ (A \ DA),

it holds that ϕA
l [xk+1/ak, x0/b]k∈l 6∈ DA, while, providing x0 ∈ Var(ϕl),

for all c̄ ∈ Al and all d ∈ DA, it holds that ϕA
l [x0/d, xk+1/ck]k∈l ∈ DA,

whereas, for all k ∈ l, Ck |= ϕl, as follows. First, put ϕl , x0, if l = 0.
Otherwise, (l − 1) ∈ n ⊆ (n+ 1), so set:

ϕl ,



ψl−1[x1/ϕl−1, x0/xl] if x1 ∈ Var(ψl−1), Cl−1 6|= ϕl−1,

ϕl−1[x0/(ψl−1[x0/xl])] if x0 ∈ Var(ϕl−1),

x1 6∈ Var(ψl−1), Cl−1 6|= ϕl−1,

ϕl−1 Y (ψl−1[x0/xl]) if x0 6∈ Var(ϕl−1),

x1 6∈ Var(ψl−1), Cl−1 6|= ϕl−1,

ϕl−1 otherwise.

Thus, ϕn ∈ Fmn+1
Σ is true in S but B 6|= ϕn[xi+1/ai;x0/b]i∈n, where b ∈

(B \DA) 6= ∅, for B is consistent, as required.

Since model classes are closed under S (cf. (2.2)), while any axiomatic
extension of a logic is relatively axiomatized by the set of all its theorems,
whereas lower cones sets are closed under intersections and unions, com-
bining Corollary 2.9 and Lemma 3.4, we eventually get:

Theorem 3.5. Let A be a finite �-implicative Σ-matrix with equality de-
terminant and S , S∗(A). Then, the mappings:

C 7→ (Mod(C) ∩ S) = (Mod(C(∅)) ∩ S),

C 7→ CnωC
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are inverse to one another dual isomorphisms between the lattices of all
axiomatic extensions of the logic of A and of all lower cones of S (un-
der identification of submatrices of A with the carriers of their underlying
algebras), corresponding axiomatic extensions of the logic of A and lower
cones of S having same axiomatic relative axiomatizations, both lattices be-
ing distributive. Moreover, for every M ⊆ S, the logic of M is the axiomatic
extension of the logic of A corresponding to S∗(M).

It is remarkable that the proof of Lemma 3.4 is constructive, so, in case
Σ is finite, it collectively with Theorem 3.5 yield an effective procedure of
finding the lattice of axiomatic extensions of the logic of A collectively with
their finite relative axiomatizations and finite anti-chain matrix semantics.
In this connection, we should like to highlight that the effective procedure
of finding relative axiomatizations of axiomatic extensions to be extracted
from the constructive proof of Lemma 3.4 is definitely and obviously much
less computationally complex than the straightforward one of direct search
among all finite sets of formulas.

3.3. Distributive and De Morgan lattices

Let Σ+[01] , ({∧,∨}[∪{⊥,>}]) be the [bounded] lattice signature with
binary ∧ (conjunction) and ∨ (disjunction) [as well as nullary ⊥ and >
(falsehood/zero and truth/unit constants, respectively)].

Then, given any Σ-algebra A such that Σ+ ⊆ Σ and A�Σ+ is a lattice,
the partial ordering of A�Σ+ is denoted by 6A.

Given any n ∈ (ω \ 1), by Dn[01] we denote the [bounded] distributive
lattice given by the chain n ordered by the natural ordering.

We also deal with the signature Σ∼[01] , (Σ+[01] ∪ {∼}) with unary ∼
(weak negation).

A [bounded] De Morgan lattice (cf. [11]; bounded De Morgan lattices
are also traditionally called De Morgan algebras - cf., e.g., [2]) is any Σ∼[01]-
algebra A such that A�Σ+[01] is a [bounded] distributive lattice (cf. [2]) and
the following Σ∼-identities are true in A:

∼∼x0 ≈ x0, (3.1)

∼(x0 ∨ x1) ≈ ∼x0 ∧ ∼x1, (3.2)

the variety of all them being denoted by [B]DML.



414 Alexej P. Pynko

By DM4[01] we denote the [bounded] De Morgan lattice such that

(DM4[01]�Σ+[01]) , D2
2[01] and ∼DM4[01]~a , 〈1−a1−i〉i∈2, for all ~a ∈ 22. In

this connection, we use the following abbreviations going back to [3]:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉.

In addition, set µ : 22 → 22, 〈a, b〉 7→ 〈b, a〉. Finally, an n-ary operation f
on B ⊆ 22, where n ∈ ω, is said to be regular, provided it is monotonic

with respect to the partial ordering v on 22 defined by (~a v ~b) def⇐⇒ ((a0 6
b0)&(b1 6 a1)), for all ~a,~b ∈ 22, in the sense that, for all ā, b̄ ∈ Bn such
that ai v bi, for each i ∈ n, it holds that f(ā) v f(b̄).

Remark 3.6. Clearly, {b, t} is a prime filter of D2
2, in which case, in par-

ticular, DM4[01] , 〈DM4[01], {b, t}〉 is ∧-conjunctive and ∨-disjunctive.
Moreover, {x0,∼x0} is an equality determinant for it.

Recall also the following well-known algebraic fact:

Lemma 3.7. Let B be a subalgebra of DM4. Then, Con(B) ⊆ {∆B , B
2}.

Theorem 3.8. Let A be a Σ∼-algebra and (H ∪ {h}) ∈ ℘ω(hom(A,
DM4)). Suppose (

⋂
{ker g | g ∈ H}) ⊆ (kerh) 6= A2. Then, (kerh) =

(ker g), for some g ∈ H.

Proof: In that case, combining Lemma 11 and Claim on p. 300 (inside the
proof of Lemma 10) of [13] with Remark 3.6, we first conclude that (ker g) ⊆
(kerh), for some g ∈ H, in which case g is a surjective homomorphism
from A onto the subalgebra B , (DM4�(img g)) of DM4, and so, by the
Algebra Homomorphism Theorem, f , (h ◦ g−1) ∈ hom(B,DM4). Hence,
by Lemma 2.1, (ker f) ∈ Con(B). Moreover, (ker f) 6= B2, for (kerh) 6=
A2. Therefore, by Lemma 3.7, f is injective. Thus, (kerh) ⊆ (ker g), as
required.

4. Main results

Fix any language Σ ⊇ Σ∼[01] such that either {⊥,>} ⊆ Σ or ({⊥,>}
∩ Σ) = ∅ and any Σ-algebra A such that (A�Σ∼[01]) = DM4[01]. Put

A , 〈A, {b, t}]〉. Since [the bounded version of] Dunn-Belnap’s four-valued
logic [5] (cf. [3]), denoted by C[B]DB from now on, is defined by DM4[01] =
(A�Σ∼[01]) (cf. [9]), the logic C of A is a four-valued expansion of C[B]DB.
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A subalgebra B of A is said to be specular, whenever (µ�B) ∈ hom(B,A).
Likewise, it is said to be regular, whenever its primary operations are so, in
which case its secondary ones are so as well. (Clearly, B is specular/regular,
whenever A is so. Moreover, DM4[01] is both specular and regular.)

4.1. Characteristic matrix expansions

Lemma 4.1. Let I be a set, C ∈ S(A)I , B a Σ-matrix and e an embedding
of B into

∏
i∈I Ci. Suppose {f, b, t} forms a subalgebra of A, {I × {d} |

d ∈ {f, t}} ⊆ e[B] and, for each i ∈ I, both {f, b, t} ∪ Ci forms a regular
subalgebra of A and either n 6∈ Ci or A�{f, b, t} is specular. Then, (Bu2) ,
((B × {b}) ∪ {〈e−1(I × {d}), d〉 | d ∈ {f, t}}) forms a subalgebra of B ×
(A�{f, b, t}), in which case π0�(Bu 2) is a surjective strict homomorphism
from (B u 2) , ((B × (A�{f, b, t}))�(B u 2)) onto B.

Proof: Consider any ς ∈ Σ of arity n ∈ ω and any b̄ ∈ (B u 2)n. In
case ςA(ā) = b, where ā , (π1 ◦ b̄) ∈ {f, b, t}n, we clearly have ςB×A(b̄) =
〈ςB(π0 ◦ b̄), ςA(ā)〉 = 〈ςB(π0 ◦ b̄), b〉 ∈ (B × {b}) ⊆ (B u 2). Otherwise,
since {f, b, t} forms a subalgebra of A, we have ςA(ā) ∈ {f, t}. Put N ,
{k ∈ n | ak = b}. Consider any i ∈ I. Put c̄ , (πi ◦ e ◦ π0 ◦ b̄) ∈ Cni .
Then, for every j ∈ (n \N), it holds that cj = aj ∈ {f, t}. Hence, cj v aj ,
for all j ∈ n. Therefore, by the regularity of A�({f, b, t} ∪ Ci), we have
ςA(c̄) v ςA(ā). Consider the following complementary cases:

1. n ∈ Ci.
Then, µ(aj) v cj , for all j ∈ n. Therefore, as, in that case, A�{f, b, t}
is specular, by the regularity of (A�({f, b, t} ∪ Ci)) = A, we have
ςA(ā) = µ(ςA(ā)) = ςA(µ ◦ ā) v ςA(c̄), and so we get ςA(c̄) = ςA(ā).

2. n 6∈ Ci.
Then, ςA(c̄) ∈ Ci ⊆ {f, b, t}. Therefore, since both f and t are mini-
mal elements of the poset {f, b, t} ordered by v, we get ςA(c̄) = ςA(ā).

Thus, in any case, we have ςA(c̄) = ςA(ā), and so, since e is an embed-
ding of B into

∏
i∈I Ci, we get ςB×A(b̄) = 〈e−1(I × {ςA(ā)}), ςA(ā)〉 ∈

{〈e−1(I × {d}), d〉 | d ∈ {f, t}} ⊆ (B u 2), as required.
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Lemma 4.2. Let B be a model of C. Suppose either {b} forms a subalgebra
of A or both A is regular and {f, b, t} forms a specular subalgebra of A (in
particular, Σ = Σ∼[01]), while the rule:

{x0,∼x0} ` (x1 ∨ ∼x1) (4.1)

is not true in B. Then, there is some submatrix D of B such that A is
isomorphic to <(D).

Proof: In that case, there are some a, b ∈ B such that (4.1) is not true
in B under [x0/a, x1/b]. Then, in view of (2.2), the submatrix E of B
generated by {a, b} is a finitely-generated model of C, in which (4.1) is
not true under [x0/a, x1/b] as well. Hence, by Lemma 2.7 with M = {A},
there are some set I, some I-tuple C constituted by submatrices of A, some
subdirect product F of C, in which case (F�Σ∼) ∈ DML, for DML 3 DM4

is a variety, and some g ∈ homS
S(F ,<(E)), in which case, by (2.2), F is

a model of C, in which case it is ∧-conjunctive, for A is so (cf. Remark
3.6), but is not a model of (4.1), in which case there are some c, d ∈ F
such that {c,∼Fc} ⊆ DF 63 d >F ∼Fd. Then, c = (I × {b}), in which case
∼Fc = c, and so (F \ DF ) 3 e , ((c ∧F d) ∨F ∼Fd) = ∼Fe 6F d. Hence,
e ∈ {b, n}I , while J , {i ∈ I | πi(e) = n} 6= ∅. Given any ā ∈ A2, set
(a0|a1) , ((J × {a0}) ∪ ((I \ J)× {a1})) ∈ AI . In this way, we have:

F 3 c = (b|b), (4.2)

F 3 e = (n|b), (4.3)

F 3 (c ∧F e) = (f|b), (4.4)

F 3 (c ∨F e) = (t|b). (4.5)

Consider the following complementary cases:

1. either {b} forms a subalgebra of A or J = I.
Then, by (4.2), (4.3), (4.4) and (4.5), f , {〈x, (x|b)〉 | x ∈ A} is an
embedding of A into F , in which case g′ , (g ◦ f) ∈ homS(A,<(E)),
and so, by Corollary 2.3, Lemma 3.2 and Remark 3.6, g′ is injective.
In this way, g′ is an isomorphism from A onto the submatrix G ,
(<(E)�(img g′)) of <(E), and so h , g′−1 ∈ homS

S(G,A).

2. {b} does not form a subalgebra of A and J 6= I.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case
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φA(b) = f and ψA(b) = t, where φ , (x0 ∧ (ϕ ∧ ∼ϕ)) and ψ ,
(x0 ∨ (ϕ ∨ ∼ϕ)), and so, by (4.2), we get:

F 3 φF(c) = (f|f), (4.6)

F 3 ψF(c) = (t|t). (4.7)

Moreover, in that case, both A is regular and {f, b, t} forms a specular
subalgebra of A. And what is more, e′ , {〈a′, 1× {a′}〉
| a′ ∈ A} is an embedding of A into A1 such that {1 × {x} |
x ∈ {f, t}} = e′[{f, t}] ⊆ e′[A]. In this way, Lemma 4.1 with 1,
A and e′ instead of I, B and e, respectively, used tacitly through-
out the rest of the proof, is well-applicable to A. Then, since J 6=
∅ 6= (I \ J), by (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7), we see
that f , {〈〈x, y〉, (x|y)〉 | 〈x, y〉 ∈ (A u 2)} is an embedding of
H , (A u 2) into F , while h′ , (π0�(A u 2)) ∈ homS

S(H,A). Then,
g′ , (g◦f) ∈ homS(H,<(E)), and so g′ is a surjective strict homomor-
phism from H onto the submatrix G , (<(E)�(img g′)) of <(E). And
what is more, by Lemma 3.2 and Remark 3.6, A is simple. Hence, by
Remark 2.2 and Proposition 2.5, we get (ker g′) ⊆ a(H) = (kerh′).

Therefore, by Remark 2.4, h , (h′ ◦ g′−1
) ∈ homS

S(G,A).

Thus, in any case, there are some submatrix G of E/θ, where θ , a(E),
and some h ∈ homS

S(G,A). Then, D , (E�ν−1
θ [G]), being a submatrix of

E , is so of B, in which case h′′ , (νθ�D) ∈ homS(D,G) is surjective, and
so is h′′′ , (h ◦ h′′) ∈ homS(D,A). On the other hand, by Lemma 3.2 and
Remark 3.6, A is simple. Hence, by Proposition 2.5, ϑ , a(D) = (kerh′′′).

Therefore, by Remark 2.4, νϑ ◦h′′′−1
is an isomorphism from A onto <(D),

as required.

Corollary 4.3. Let C ′ be an extension of C. Suppose either {b} forms
a subalgebra of A or both A is regular and {f, b, t} forms a specular subal-
gebra of A (in particular, Σ = Σ∼[01]), while the rule (4.1) is not satisfied
in C ′. Then, C ′ = C.

Proof: In that case, (x1 ∨ ∼x1) 6∈ T , C ′({x0,∼x0}), so, by the struc-
turality of C ′, 〈FmωΣ, T 〉 is a model of C ′ (in particular, of C), in which
(4.1) is not true under the diagonal Σ-substitution. In this way, (2.2) and
Lemma 4.2 complete the argument.
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Proposition 4.4. Let M be a class of Σ∼-matrices. Suppose CDB is de-
fined by M. Then, there are some B ∈ M and some submatrix D of B such
that DM4 is isomorphic to D/a(D).

Proof: Note that the rule (4.1) is not satisfied in CDB, because it is not
true in DM4 under [x0/b, x1/n]. Therefore, as CDB is defined by M, there
is some model B ∈ M of CDB not being a model of (4.1), in which case
Lemma 4.2 completes the argument.

Now, we are in a position to argue several interesting corollaries of
Proposition 4.4:

Corollary 4.5. Let M be a class of Σ-matrices. Suppose the logic of
M is an expansion of CDB (in particular, Σ = Σ∼ and the logic of M is
CDB itself). Then, some B ∈ M is not truth-/false-singular. In particular,
any four-valued expansion of CDB (including CDB itself) is defined by no
truth-/false-singular matrix.

Proof: By contradiction. For suppose every member of M is truth-/false-
singular. Then, M�Σ∼ is a class of truth-/false-singular Σ∼-matrices defin-
ing CDB. Then, by Proposition 4.4, there are some B ∈ (M�Σ∼) and some
submatrix D of B such that DM4 is isomorphic to E , (D/θ), where
θ , a(D), in which case E is truth-/false-singular, for D is so, because
B is so/, while ((D/θ) \ (DD/θ)) ⊆ ((D \ DD)/θ), and so is DM4. This
contradiction completes the argument.

Corollary 4.6. Any four-valued Σ∼-matrix B defining CDB is isomorphic
to DM4.

Proof: By Proposition 4.4, there are then some submatrix D of B and
some isomorphism e from DM4 onto D/θ, where θ , a(D), in which case
4 = |DM4| = |D/θ| 6 |D| 6 |B| = 4, in which case 4 = |D/θ| = |D| = |B|,
and so νθ is injective, while D = B. In this way, e−1 ◦νθ is an isomorphism
from B onto DM4, as required.

This, in its turn, enables us to prove:

Theorem 4.7. Any four-valued Σ-expansion of CDB is defined by a
Σ-expansion of DM4.

Proof: Let B be a four-valued Σ-matrix defining an expansion of CDB.
Then, B�Σ∼ is a four-valued Σ∼-matrix defining CDB itself. Hence, by
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Corollary 4.6, there is an isomorphism e from B�Σ∼ onto DM4. In that
case, e is an isomorphism from B onto the Σ-expansion 〈e[B], e[DB]〉 of
DM4. In this way, (2.2) completes the argument.

Thus, the natural way of construction of four-valued expansions chosen
above does exhaust all of them. And what is more, any of them is defined
by a unique expansion of DM4, as it follows from:

Theorem 4.8. Let B be a Σ-matrix. Suppose (B�Σ∼) = DM4 and B is a
model of C (in particular, C is defined by B). Then, B = A.

Proof: In that case, B, being finite, is finitely-generated. In addition,
by Lemma 3.2 and Remark 3.6, it is simple. Therefore, as A is finite, by
Lemma 2.7 with M = {A}, there are some finite set I, some I-tuple C
constituted by submatrices of A, some subdirect product D of C and some
g ∈ homS

S(D,B) ⊆ hom(D�Σ∼,DM4), in which case, as | img g| = |B| =
4 6= 1, (

⋂
i∈I ker(πi�D)) = ∆D ⊆ (ker g) 6= D2, while {πi�D | i ∈ I} ∈

℘ω(hom(D�Σ∼,DM4)), and so, by Theorem 3.8, there is some i ∈ I such
that ker(πi�D) = (ker g). Hence, as (πi�D) ∈ hom(D, Ci), by Remark 2.4,
e , ((πi�D) ◦ g−1) ∈ hom(B, Ci) ⊆ hom(B,A) is injective, in which case
e[{n, b}] ⊆ {n, b} and e[{f, t}] ⊆ {f, t}, because ∼DM4a = a iff a ∈ {n, b},
for all a ∈ DM4, and so e is diagonal, for (DDM4 ∩ {n, b}) = {b} and
(DDM4 ∩ {f, t}) = {t}. In this way, B = A, for B = A and DB = DA, as
required.

In view of Theorem 4.8, A is said to be characteristic for/of C.

Corollary 4.9. Let Σ′ ⊇ Σ be a signature and C ′ a four-valued
Σ′-expansion of C. Then, C ′ is defined by a unique Σ′-expansion of A.

Proof: Then, by Theorem 4.7, C ′ is defined by a Σ′-expansion A′ of
DM4, in which case C is defined by the Σ-expansion A′�Σ of DM4, and
so (A′�Σ) = A, in view of Theorem 4.8. In this way, Theorem 4.8 completes
the argument.

4.1.1. Minimal four-valuedness

As a one more interesting consequence of Proposition 4.4, we have:

Theorem 4.10. Let M be a class of Σ-matrices. Suppose the logic of M
is an expansion of CDB (in particular, Σ = Σ∼ and the logic of M is CDB
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itself). Then, 4 6 |B|, for some B ∈ M. In particular, any four-valued
expansion of CDB (including CDB itself) is minimally four-valued.

Proof: In that case, CDB is defined by M�Σ∼, and so, by Proposition 4.4,
there are some B ∈ M and some submatrix D of B�Σ∼ such that DM4 is
isomorphic to D/θ, where θ , a(D). In this way, 4 = |DM4| = |D/θ| 6
|D| 6 |B|, as required.

4.2. Variable sharing property

Lemma 4.11. C is theorem-less iff {n} forms a subalgebra of A.

Proof: First, assume {n} forms a subalgebra of A, in which case A�{n} is
a truth-empty submatrix of A, and so C is theorem-less, in view of (2.2).

Conversely, assume {n} does not form a subalgebra of A. Then, there is
some ϕ ∈ Fm1

Σ such that ϕA(n) 6= n, in which case (ϕA(n) ∨A ∼AϕA(n)) ∈
DA, and so ((x0 ∨ ∼x0) ∨ (ϕ ∨ ∼ϕ)) ∈ C(∅), as required.

Lemma 4.12. C has no inconsistent formula iff {b} forms a subalgebra
of A.

Proof: First, assume {b} does not form a subalgebra of A. Then, there is
some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case (ϕA(b) ∧A ∼AϕA(b)) 6∈
DA, and so ((x0 ∧ ∼x0) ∧ (ϕ ∧ ∼ϕ)) is an inconsistent formula of C.

Conversely, assume {b} forms a subalgebra of A. Let us prove, by
contradiction, that C has no inconsistent formula. For suppose some ϕ ∈
Fmω

Σ is an inconsistent formula of C, in which case ϕ ∈ Fmα
Σ, for some

α ∈ (ω \ 1), while xα ∈ C(ϕ). Let h ∈ hom(FmωΣ,A) extend (Vα × {b}) ∪
(Vω\α × {f}). Then, h(ϕ) = b ∈ DA, whereas h(xα) = f 6∈ DA. This
contradiction completes the argument.

Theorem 4.13. The following are equivalent:

(i) C satisfies VSP;

(ii) C has neither a theorem nor an inconsistent formula;

(iii) both {n} and {b} form subalgebras of A.

Proof: First, (ii) is a particular case of (i). Next, (ii)⇒(iii) is by Lemmas
4.11 and 4.12.
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Finally, assume (iii) holds. Consider any φ, ψ ∈ Fmω
Σ such that V ,

Var(φ) and Var(ψ) are disjoint. Let h ∈ hom(FmωΣ,A) extend (V × {b}) ∪
((Vω \ V ) × {n}). Then, h(φ) = b ∈ DA, whereas h(ψ) = n 6∈ DA. Thus,
ψ 6∈ C(φ), and so (i) holds, as required.

Corollary 4.14 (cf. Theorem 4.2 of [9] for the case Σ = Σ∼). C has no
proper extension satisfying VSP.

Proof: Consider any extension C ′ of C satisfying VSP, in which case C,
being a sublogic of C ′, does so as well, and so, by Theorem 4.13(i)⇒(iii),
{b} forms a subalgebra of A. Moreover, as C ′ is ∧-conjunctive, for A is so
(cf. Remark 3.6), (4.1) is not satisfied in C ′, for Var(x0 ∧∼x0) = {x0} and
Var(x1 ∨ ∼x1) = {x1} are disjoint. In this way, Corollary 4.3 completes
the argument.

Perhaps, this is the principal specific maximality of C in addition to
the standard one studied in the next subsection.

4.3. Maximality

Lemma 4.15. Any proper submatrix B of A defines a proper extension C ′

of C.

Proof: For consider the following complementary cases:

1. b ∈ B.
Then, n 6∈ B, for B 6= A, while (n ∧B b) = f, whereas (n ∨B b) = t.
In that case, (x0 ∨ ∼x0) ∈ (C ′(∅) \ C(∅)).

2. b 6∈ B.
Then, B is not ∼-paraconsistent, as opposed to A, and so is C ′, as
opposed to C.

Thus, in any case, C ′ 6= C, as required, in view of (2.2).

Clearly, A is consistent (and truth-non-empty), and so C is (inferen-
tially) consistent. In this connection, we have:

Theorem 4.16. C is [inferentially] maximal iff A has no proper consistent
[truth-non-empty] submatrix.

Proof: First, consider any proper consistent [truth-non-empty] submatrix
B of A. Then, by Lemma 4.15, the logic C ′ of B is a[n inferentially]
consistent proper extension of C, and so C is not [inferentially] maximal.
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Conversely, assume A has no proper consistent [truth-non-empty] sub-
matrix. Consider any [inferentially] consistent extension C ′ of C. Then,
x0 6∈ T , C ′(∅[∪{x1})[3 x1], while, by the structurality of C ′, 〈FmωΣ, T 〉
is a model of C ′ (in particular, of C), and so is its consistent [truth-non-
empty] finitely-generated submatrix B = 〈Fm2

Σ,Fm2
Σ ∩T 〉, in view of (2.2).

Hence, by Lemma 2.7 with M = {A}, there are some finite set I, some
I-tuple C constituted by consistent [truth-non-empty] submatrices of A,
some subdirect product D of C, and some g ∈ homS

S(D,B/a(B)), in which
case, by (2.2), D is a consistent model of C ′, and so, in particular, I 6= ∅.
Moreover, for any i ∈ I, as Ci is consistent [and truth-non-empty] subma-
trix of A, Ci = A is truth non-empty anyway. Hence, by the following
claim, both D 3 a , (I × {f}) and D 3 b , (I × {t}}):

Claim 4.17. Let I be a finite set, C ∈ S∗∗(A)I and B a subdirect product
of C. Then, {I × {f}, I × {t}} ⊆ B.

Proof: In that case, B�Σ+ is a finite lattice, so it has both a zero a
and a unit b. Consider any i ∈ I. Then, as Ci is both consistent and
truth-non-empty, by the following claim, we have {f, t} ⊆ Ci:

Claim 4.18. Let D ∈ S∗∗(A). Then, {f, t} ⊆ D.

Proof: In that case, we have ({f, n}∩D) 6= ∅ 6= ({b, t}∩D). In this way,
the fact that (n ∧A b) = f, while ∼Af = t, whereas ∼At = f, completes the
argument.

Therefore, since πi[B] = Ci, there are some c, d ∈ B, such that πi(c) = f
and πi(d) = t, in which case we have (c∧B a) = a and (d∨D b) = b, and so,
as (πi�B) ∈ hom(B�Σ+,Ci�Σ+), we eventually get πi(a) = (f ∧A πi(a)) = f
and πi(b) = (t∨Aπi(b)) = t. Thus, B 3 a = (I×{f}) and B 3 b = (I×{t}),
as required.

Next, if {f, t} ( A [distinct from {n}] did form a subalgebra of A,
A�{f, t} would be a proper consistent [truth-non-empty] submatrix of A.
Therefore, there are some φ ∈ Fm2

Σ and j ∈ 2 such that φA(f, t) = 〈j, 1− j〉.
Likewise, if {f, 〈j, 1− j〉, t} ( A [distinct from {n}] did form a subal-
gebra of A, A�{f, 〈j, 1− j〉, t} would be a proper consistent [truth-non-
empty] submatrix of A. Therefore, there is some ψ ∈ Fm3

Σ such that
ψA(f, 〈j, 1− j〉, t) = 〈1− j, j〉. In this way, {φA(f, t), ψA(f, φA(f, t), t)} =
{n, b}. Then, D ⊇ {φD(a, b), ψD(a, φD(a, b), b)} = {I×{n}, I×{b}}. Thus,
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{I × {c} | c ∈ A} ⊆ D. Hence, as I 6= ∅, {〈c, I × {c}〉 | c ∈ A} is an em-
bedding of A into D, in which case, by (2.2), C is an extension of C ′, and
so C ′ = C, as required.

4.4. Subclassical expansions

Lemma 4.19. Let B be a (simple) finitely-generated consistent truth-non-
empty model of C. Then, the following hold:

(i) B is ∼-paraconsistent, if ∼(x0 ∧ ∼x0) is true in B and {f, t} does
not form a subalgebra of A;

(ii) A�{f, t} is embeddable into B/a(B) (resp., into B itself), if {f, t}
forms a subalgebra of A.

Proof: Put E , (B/a(B)) (resp., E , B). Then, by Lemma 2.7 with M =
{A}, there are some finite set I, some I-tuple C constituted by consistent
truth-non-empty submatrices of A, some subdirect product D of C and
some g ∈ homS

S(D, E), in which case, by (2.2), D is consistent, and so, in
particular, I 6= ∅. Hence, by Claim 4.17, both D 3 a , (I × {f}) and
D 3 b , (I × {t}}). Consider the following respective cases:

(i) ∼(x0 ∧∼x0) is true in B and {f, t} does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm2

Σ such that ϕA(f, t) ∈ {n, b}. Take
any i ∈ I 6= ∅. Then, {f, t} = πi[{a, b}] ⊆ Ci. Moreover, (πi�D) ∈
homS(D, Ci), in which case, by (2.2) and (2.3), Ci is a model of ∼(x0∧
∼x0), and so n 6∈ Ci, for ∼A(n∧A∼An) = n 6∈ DA. And what is more,
Ci is a subalgebra of A. Hence, ϕA(f, t) ∈ Ci, and so ϕA(f, t) = b,
for n 6∈ Ci. Then, D 3 c , ϕD(a, b) = (I × {b}), in which case
∼Dc = c ∈ DD, and so D, being consistent, is ∼-paraconsistent, and
so is B, in view of (2.2), as required.

(ii) {f, t} forms a subalgebra of A.
Then, F , (A�{f, t}) is∼-classical, and so simple, in view of Example
3.1 and Lemma 3.2. Finally, as {I × {d} | d ∈ F} ⊆ D and I 6=
∅, e , {〈d, I × {d}〉 | d ∈ F} is an embedding of F into D, in
which case, (g ◦ e) ∈ homS(F , E), and so Corollary 2.3 completes the
argument.
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Theorem 4.20. C is ∼-subclassical iff {f, t} forms a subalgebra of A, in
which case A�{f, t} is isomorphic to any ∼-classical model of C, and so its
logic is the only ∼-classical extension of C.

Proof: Let B be a ∼-classical model of C, in which case it is simple (cf.
Example 3.1 and Lemma 3.2) and finite (in particular, finitely-generated)
but is not ∼-paraconsistent.

First, consider any a ∈ B. Then, {a,∼Ba} 6⊆ DB, for B is ∼-classical,
in which case (a ∧B ∼Ba) 6∈ DB, for B is ∧-conjunctive, because C is so,
since A is so (cf. Remark 3.6), and so ∼B(a ∧B ∼Ba) ∈ DB, for B is
∼-classical. Thus, ∼(x0 ∧ ∼x0) is true in B. Hence, by Lemma 4.19(i),
{f, t} forms a subalgebra of A.

Conversely, assume {f, t} forms a subalgebra of A, in which case D ,
(A�{f, t}) is a ∼-classical model of C, by (2.2), and embeddable into B,
by Lemma 4.19(ii), so is isomorphic to B, for |D| = 2 = |B|. Then, (2.2)
completes the argument.

In view of Theorem 4.20, the unique ∼-classical extension of a ∼-
subclassical four-valued expansion C of CDB is said to be characteristic
for C and denoted by CPC. Its specific maximality feature is as follows:

Theorem 4.21. Let C ′ be an inferentially consistent extension of C. Sup-
pose {f, t} forms a subalgebra of A. Then, A�{f, t} is a model of C ′.

Proof: Then, x1 6∈ C ′(x0) 3 x0, while, by the structurality of C ′,
〈FmωΣ, C ′(x0)〉 is a model of C ′ (in particular, of C), and so is its consis-
tent truth-non-empty finitely-generated submatrix 〈Fm2

Σ,Fm2
Σ ∩C ′(x0)〉, in

view of (2.2). In this way, (2.2) and Lemma 4.19(ii) complete the argu-
ment.

On the other hand, the reservation “inferentially” cannot, generally
speaking, be omitted in the formulation of Theorem 4.21, as it ensues
from:

Example 4.22. When Σ = Σ∼, {n} forms a subalgebra of A, in which
case B , (A�{n}) is a consistent truth-empty submatrix of A, and so,
by (2.2), the logic C ′ of B is a consistent but inferentially inconsistent
extension of C. Then, C ′ is not subclassical, because any classical logic
is inferentially consistent, for any classical matrix is both consistent and
truth-non-empty.
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4.5. Axiomatic extensions

Lemma 4.23. Suppose A is regular and {f, t} forms a subalgebra of it.
Then, so does {f, b, t}.

Proof: By contradiction. For suppose {f, b, t} does not form a subalgebra
of A, in which case there is some ϕ ∈ Fm3

Σ such that ϕA(f, b, t) = n.
Therefore, as t v b, by the regularity of A and the reflexivity of v, we
get ϕA(f, t, t) v n. Hence, ϕA(f, t, t) = n 6∈ {f, t}. This contradicts to the
assumption that {f, t} forms a subalgebra of A, as required.

Lemma 4.24 (cf. Lemma 4.14 of [12] for the case B = {f, t} and Σ = Σ∼).
Let B ∈ S(A). Suppose B ∪ {b} forms a regular subalgebra of A. Then,
any Σ-axiom, being true in B, is so in A�(B ∪ {b}).

Proof: Consider any ϕ ∈ FmΣ not true in A�(B ∪ {b}), in which case
there is some h ∈ hom(FmωΣ,A�(B ∪ {b})) such that h(ϕ) ∈ {f, n}, and so
h(ϕ) v f. Take any b ∈ B 6= ∅. Define a g : Vω → B by setting:

g(v) ,

{
b if h(v) = b,

h(v) otherwise,

for all v ∈ Vω. Let e ∈ hom(FmωΣ,B) ⊆ hom(FmωΣ,A�(B ∪ {b})) extend g.
Then, e(v) = g(v) v h(v), for all v ∈ Vω, in which case, by the regularity
of A�(B ∪ {b}), we have e(ϕ) v h(ϕ) v f, and so we eventually get e(ϕ) ∈
{f, n}, as required.

Lemma 4.25 (cf. Corollary 5.3 of [9] for the case Σ = Σ∼). Suppose {f, b, t}
forms a subalgebra of A/ {f, t}[∪{b}] does [not] form a subalgebra of A.
Then, the logic of A6n/ 6n 6b , (A�({f, b, t}/{f, t})) is the proper consistent
axiomatic extension of C relatively axiomatized by

x1 ∨ ∼x1. (4.8)

Proof: In that case, (Mod (4.8)∩S∗(A)) = S∗(A6n/ 6n 6b). In this way, (2.2),
Corollary 2.9, the consistency of A6n/ 6n 6b and the fact that (4.8) is not true
in A under [x1/n] complete the argument.

Theorem 4.26. [Providing A is regular/has no three-element subalgebra]
C has a proper consistent axiomatic extension if[f ] {f, b, t}/{f, t} forms a
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subalgebra of A [in which case the logic of A6n/ 6n 6b is the only proper consis-
tent axiomatic extension of C and is relatively axiomatized by (4.8)].

Proof: The “if” part is by Lemma 4.25. [Conversely, assume A is regu-
lar/has no three-element subalgebra. Consider any A ⊆ FmΣ such that the
axiomatic extension C ′ of C relatively axiomatized by A is both proper,
in which case A 6= ∅, and consistent, in which case, by Corollary 2.9, C ′

is the logic of S , (Mod(A) ∩ S∗(A)), and so A 6∈ S 6= ∅. Take any
B ∈ S, in which case it is both consistent and, as A 6= ∅, truth-non-empty.
Hence, by Claim 4.18, we have {f, t} ⊆ B. Therefore, if n was in B, then
(B ∪ {b}) would be equal to A/B would belong to {{f, n, t}, A}, in which
case, by Lemma 4.24/the fact that {f, n, t}, being three-element, does not
form a subalgebra of A, A would belong to S. Thus, B ∈ {{f, t}, {f, b, t}}.
Then, by Lemma 4.23/the fact that {f, b, t}, being three-element, does not
form a subalgebra of A, we conclude that {f, b, t}/{f, t} forms a subalge-
bra of A. And what is more, in that case, by Lemma 4.24/the fact that
{f, b, t}, being three-element, does not form a subalgebra of A, we have
A6n/ 6n 6b ∈ S ⊆ S∗(A6n/ 6n 6b), and so, by (2.2), C ′ is equal to the logic of A6n/ 6n 6b.
In this way, Lemma 4.25 completes the argument.]

The logic of DM4[01], 6n is [the bounded version of] the logic of paradox
LP[01] [8] (cf. [10]; viz., in the “unbounded” case, the implication-less
fragment of any paraconsistent Dunn’s RM{(2 · n) + 3} {where n ∈ ω}
– cf. [4] and the proof of Corollary 4.15 of [12]). Therefore, in view of the
regularity of DM4[01], Theorem 4.26 immediately yields:

Corollary 4.27. LP[01] is the only proper consistent axiomatic extension
of C[B]DB and is relatively axiomatized by (4.8).

In Section 5 we consider more classes of expansions of FDE in this
connection.

4.6. Maximal paraconsistency versus paracompleteness

The axiomatic extension of C relatively axiomatized by (4.8) is denoted
by CEM. An/A extension/model of C is said to be paracomplete, provided
it is not that of CEM. Clearly, a submatrix B of A is paracomplete/∼-
paraconsistent iff n ∈ B/both b ∈ B and (B ∩ {n, f}) 6= ∅. In particular,
A is both ∼-paraconsistent and paracomplete, and so is C.
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By A−n we denote the submatrix of A generated by {f, b, t} — this
the least ∼-paraconsistent submatrix of A, the logic of it being denoted by
C−n. (Clearly, A−n = A6n, whenever {f, b, t} forms a subalgebra of A, and
A−n = A, otherwise.)

Lemma 4.28. Let B be a ∼-paraconsistent model of C. Then, there is some
submatrix D of B such that A−n is embeddable into D/a(D).

Proof: In that case, there are some a ∈ DB such that ∼Ba ∈ DB and
some b ∈ (B \DB). Then, in view of (2.2), the submatrix D of B generated
by {a, b} is a ∼-paraconsistent finitely-generated model of C. Hence, by
Lemma 2.7 with M = {A}, there are some finite set I, some I-tuple C
constituted by consistent submatrices of A, some subdirect product E of C
and some g ∈ homS

S(E ,D/a(D)). Hence, by (2.2), E is ∼-paraconsistent,
in which case it is consistent, and so I 6= ∅. Take any a ∈ DE such that
∼Ea ∈ DE . Then, E 3 a = (I × {b}), in which case, for each i ∈ I,
DCi 3 πi(a), and so Ci is truth-non-empty. Therefore, by Claim 4.17, we
also have both E 3 b , (I × {f}) and E 3 c , (I × {t}). Consider the
following complementary cases:

1. {f, b, t} does not form a subalgebra of A.
Then, A−n = A and there is some ϕ ∈ Fm3

Σ such that ϕA(f, b, t)
= n, in which case E 3 ϕE(b, a, c) = (I × {ϕA(f, b, t)}) = (I × {n}),
and so {I × {d} | d ∈ A−n} ⊆ E.

2. {f, b, t} forms a subalgebra of A.
Then, A−n = {f, b, t}, and so {I × {d} | d ∈ A−n} ⊆ E.

Thus, in any case, {I × {d} | d ∈ A−n} ⊆ E. Then, as I 6= ∅, e ,
{〈d, I × {d}〉 | d ∈ A−n} is an embedding of A−n into E , in which case
(g ◦ e) ∈ homS(A−n,D/a(D)), and so Corollary 2.3, Lemmas 3.2, 3.3 and
Remark 3.6 complete the argument.

Theorem 4.29. A−n is a model of any ∼-paraconsistent extension of C.
In particular, C−n is the greatest ∼-paraconsistent extension of C, and
so maximally ∼-paraconsistent, in which case an extension of C is ∼-
paraconsistent iff it is a sublogic of C−n.
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Proof: Consider any ∼-paraconsistent extension C ′ of C, in which case
x1 6∈ T , C ′({x0,∼x0}), and so, by the structurality of C ′, 〈FmωΣ, T 〉 is a
∼-paraconsistent model of C ′, and so of C. Then, (2.2) and Lemma 4.28
complete the argument.

Corollary 4.30 (cf. the reference [Pyn 95b] of [10]). Let B be a Σ-ex-
pansion of DM4, 6n. Then, the logic of B is maximally ∼-paraconsistent.

Proof: In that case, there is clearly a Σ-expansion A′ of DM4 such that
B is a submatrix of A′, so Theorem 4.29 completes the argument.

Corollary 4.30 [with Σ = Σ∼] covers Dunn’s RM3 [4] [subsumes Theo-
rem 2.1 of [10]].

Theorem 4.31. The following are equivalent:

(i) C is maximally ∼-paraconsistent;

(ii) C = C−n;

(iii) CEM 6= C−n;

(iv) {f, b, t} does not form a subalgebra of A;

(v) CEM is not ∼-paraconsistent;

(vi) CEM is not maximally ∼-paraconsistent;

(vii) any ∼-paraconsistent extension of C is paracomplete;

(viii) no expansion of LP is an extension of C;

(ix) CEM is not an expansion of LP ;

(x) C−n is paracomplete;

(xi) A has no proper ∼-paraconsistent submatrix;

(xii) any ∼-paraconsistent submatrix of A is paracomplete;

(xiii) CEM is either ∼-classical, if C is ∼-subclassical, or inconsistent,
otherwise;

(xiv) any consistent non-∼-classical extension of C is paracomplete.
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Proof: First, (i)⇒(ii) is by (2.2). Next, both (ii)⇒(i), (vi)⇒(iii) and
(x)⇒(vii) are by Theorem 4.29. Moreover, (ii)⇒(x) is by the paracom-
pleteness of C. In addition, (xiii)⇒(xiv) is by Theorems 4.20 and 4.21,
because any consistent logic with theorems is inferentially consistent.

Further, assume {f, b, t} forms a subalgebra of A, in which case A−n =
A 6n, and so, by Lemma 4.25, CEM = C−n is an expansion of LP . Thus,
both (iii)⇒(iv) and (ix)⇒(iv) hold.

Conversely, assume (iv) holds. Let S be the set of all non-paracomp-
lete consistent submatrices of A, in which case, by Corollary 2.9, CEM is
defined by S. Consider any B ∈ S. Since it is not paracomplete, we have
n 6∈ B, in which case f ∈ B, for it is consistent, and so t = ∼Af ∈ B.
Therefore, by (iv), b 6∈ B, for {f, t} ⊆ B 63 n. Thus, B = {f, t}. In this way,
by Theorem 4.20, either S = {B}, in which case CEM is ∼-classical, if C
is ∼-subclassical, or S = ∅, in which case CEM is inconsistent, otherwise.
Thus, (xiii) holds.

Furthermore, (xii)⇔(xi)⇔(x)⇔(iv)⇒(ii) are immediate.
Finally, (ix/viii) is a particular case of (viii/vii). Likewise, (vi) is a

particular case of (v), while (v) is a particular case of (vii), whereas (vii)
is a particular case of (xiv), as required.

It is Theorem 4.31(i)⇔(iv) that provides a quite useful algebraic cri-
terion of the maximal ∼-paraconsistency of C inherited by its four-valued
expansions, in view of Corollary 4.9, applications of which are demonstrated
in Section 5.

Combining Lemmas 4.23, 4.24, Theorems 4.20, 4.31 and (2.2), we im-
mediately get:

Corollary 4.32. Suppose C is ∼-subclassical and A is regular. Then, C
is not maximally ∼-paraconsistent and CPC(∅) = CEM(∅).

Concluding this subsection, we explore the least non-∼-paraconsistent
extension CEM+NP of CEM, viz., that which is relatively axiomatized by
the Ex Contradictione Quodlibet rule:

{x0,∼x0} ` x1. (4.9)

Lemma 4.33. Let I be a finite set, C ∈ {A, 〈A, {t, n}〉, 〈A, {t}〉}I and B a
consistent non-∼-paraconsistent submatrix of

∏
i∈I Ci. Then,

hom(B, 〈A, {t}〉) 6= ∅.
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Proof: Consider the following complementary cases:

· B is truth-empty.
Take any i ∈ I 6= ∅, for B is consistent. Then, h , (πi�B) ∈ hom(B,A).
Moreover, DB = ∅ ⊆ h−1[{t}]. Hence, h ∈ hom(B, 〈A, {t}〉), as required.

· B is truth-non-empty.
Then, B ⊆ AI is finite, for both I and A are so, and so is DB ⊆ B.
Hence, as B�Σ+ is a lattice, DB, being non-empty, has a least element a,
in which case, as B is consistent but not ∼-paraconsistent, ∼Ba 6∈ DB,
and so there is some i ∈ I, in which case h , (πi�B) ∈ hom(B, Ci), such
that h(∼Ba) 6∈ DCi . If there was some b ∈ DB such that h(b) 6= t, we
would have Ci ∈ {A, 〈A, {t, n}〉} and ({b, n} ∩ DCi) 3 h(b) 6A h(a) 6A

h(b), for DB 3 a 6B b, in which case we would get h(a) = h(b), and so
h(∼Ba) = ∼Ah(a) = ∼Ah(b) = h(b) ∈ DCi . Thus, h ∈ hom(B, 〈A, {t}〉),
as required.

Corollary 4.34. Let I be a finite set, C ∈ {A, 〈A, {t, n}〉, 〈A, {t}〉}I and B
a consistent non-∼-paraconsistent non-paracomplete submatrix of

∏
i∈I Ci.

Then, {f, t} forms a subalgebra of A and hom(B,A6n 6b) 6= ∅.

Proof: Then, by Lemma 4.33, there is some h ∈ hom(B, 〈A, {t}〉) 6= ∅, in
which case D , (img h) forms a subalgebra of A, and so h ∈ homS(B,D),
where D , (〈A, {t}〉�D). Hence, by (2.3), D is not paracomplete. There-
fore, as (4.8) is true in 〈A, {t}〉 under neither [x1/b] nor [x1/n], we have
(D∩{b, n}) = ∅. On the other hand, D, being non-paracomplete, is truth-
non-empty, for D 6= ∅. Therefore, t ∈ D, in which case f = ∼At ∈ D, and
so D = {f, t}, in which case D = (A�D) = A6n 6b, as required.

Theorem 4.35. Suppose C is [not] maximally ∼-paraconsistent. Then,
CEM+NP is consistent iff C is ∼-subclassical, in which case CEM+NP is
defined by [A6n×]A6n 6b.

Proof: First, assume CEM+NP is consistent, in which case x0 6∈ T ,
CEM+NP(∅), while, by the structurality of CEM+NP, 〈FmωΣ, T 〉 is a model
of CEM+NP (in particular, of C), and so is its consistent finitely-generated
submatrix B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.2). Hence, by Lemma 2.7,

there are some finite set I, some C ∈ S(A)I , some subdirect product D of
it, in which case this is a submatrix of AI , and some h ∈ homS

S(D,<(B)),
in which case, by (2.2), D is a consistent model of CEM+NP, so it is neither
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∼-paraconsistent nor paracomplete. Thus, by Corollary 4.34 and Theorem
4.20, C is ∼-subclassical.

Conversely, assume C is ∼-subclassical. Consider the following comple-
mentary cases:

· C is maximally ∼-paraconsistent.
Then, by Theorems 4.20 and 4.31(i)⇒(v,xiii) CEM+NP = CEM = CPC

is defined by the consistent A6n 6b, and so, in particular, is consistent, as
required.

· C is not maximally ∼-paraconsistent.
Then, by Theorem 4.31(iii/iv)⇒(i), CEM is defined by A−n = A6n. More-
over, by Theorem 4.20, {f, t} forms a subalgebra of A, and so of A6n, in which

case A6n 6b is a submatrix of A6n, and so, by (2.2), B , (A6n×A6n 6b) is a model
of CEM. Moreover, {a,∼Aa} ⊆ {t}, for no a ∈ {f, t}. Therefore, B is not ∼-
paraconsistent, so it is a model of CEM+NP. Conversely, consider any finite
set I, any C ∈ S(A6n)I and any subdirect product D ∈ Mod(CEM+NP) of C,
in which case D is a non-∼-paraconsistent non-paracomplete submatrix of
AI . Put J , hom(D,B). Consider any a ∈ (D \DD), in which case D is
consistent, and so, by Corollary 4.34, there is some g ∈ hom(D,A6n 6b) 6= ∅.

Moreover, there is some i ∈ I, in which case f , (πi�D) ∈ hom(D,A6n),
such that f(a) 6∈ DA6n . Then, h , (f × g) ∈ J and h(a) 6∈ DB. In this
way, (

∏
∆J) ∈ homS(D,BJ). Thus, by (2.2) and Theorem 2.8, CEM+NP

is finitely-defined by the consistent six-valued B, and so is consistent and,
being finitary, for both (4.8) and (4.9) are finitary, while the four-valued C
is finitary, is defined by B, as required.

Corollary 4.36 (cf. the last assertion of Theorem 4.13 of [12] for the case
Σ = Σ∼). Let B be a Σ-expansion of DM4,6n. Suppose {f, t} forms a sub-
algebra of B. Then, the extension of the logic of B relatively axiomatized
by (4.9) is defined by B × (B�{f, t}).

Proof: In that case, there is clearly a Σ-expansion A′ of DM4 such that
B is a submatrix of A′, so Theorems 4.20, 4.31 and 4.35 complete the
argument.

This is equally applicable to, in particular, RM3 [4] and subsumes
specific results concerning purely-implicative expansions of C[B]DB obtained
ad hoc in [14] (cf. the last paragraph of Subsection 5.3).
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5. Miscellaneous examples

We entirely follow notations of the previous sections.

5.1. Classically-negative expansions

Here, it is supposed that Σ contains a unary connective ¬ (classical nega-
tion), while ¬A〈i, j〉 , 〈1− i, 1− j〉, for all i, j ∈ 2, in which case
¬A〈k, 1− k〉 = 〈1− k, k〉, for each k ∈ 2, and so ¬A is not regular, for
b 6v n v b. Then, {f, t} is the only proper subset of A which may form a
subalgebra of A. Thus, by Theorems 4.16, 4.20, 4.26 and 4.31, we have:

Corollary 5.1. C:

(i) has no, if it is not ∼-subclassical, in which case it is maximal, and,
otherwise (in particular, when Σ = (Σ∼[01] ∪ {¬})), a unique proper
consistent axiomatic extension, in which case this is equal to CPC =
CEM;

(ii) is maximally ∼-paraconsistent.

This provides an application of the “non-regular” particular case of
Theorem 4.26. (Another one is provided by the next subsection.) On the
other hand, A is (¬x0 ∨ x1)-implicative. Therefore, in view of Remark
3.6, Corollary 5.1(i) (but the maximality reservation) equally ensues from
Theorem 3.5. After all, Corollary 5.1(ii) provides examples of maximally
paraconsistent four -valued logics. (Others are provided by the next sub-
section.)

5.2. Bilattice expansions

Here, it is supposed that Σ contains binary connectives u and t (knowledge
conjunction and disjunction, respectively), while

(〈i, j〉(u/t)A〈k, l〉) , 〈(min /max)(i, k), (max /min)(j, l)〉,

for all i, j, k, l ∈ 2 (cf., e.g., [11]), in which case (f(u/t)At) = (n/b), and
so, since any non-one-element subalgebra of DM4 contains both f and t, A
has no proper non-one-element subalgebra. Hence, by Theorems 4.16, 4.26
and 4.31, we have:
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{f, t}

{f, b, t}

A

{f, n, t}

Figure 1. The poset S∗(A).

Corollary 5.2. C is inferentially maximal, and so both has no proper
consistent axiomatic extension and is maximally ∼-paraconsistent.

This provides both a one more application of the “non-regular” partic-
ular case of Theorem 4.26 and more examples of maximally paraconsistent
four -valued logics. Moreover, it is bilattice expansions that justify studying
the maximality issue within the framework of FDE expansions.

5.3. Implicative expansions

Here, it is supposed that Σ contains a binary connective ⊃ (implication),
while:

(~a ⊃A ~b) ,

{
~b if a0 = 1,

t otherwise,

for all ~a,~b ∈ 22 (cf. [11]), in which case A is ⊃-implicative, while (f ⊃A f) =
t, whereas (b ⊃A f) = f, and so ⊃A is not regular, for t 6v f v b. From now
on, it is supposed that Σ = (Σ∼[01] ∪ {⊃}) (the opposite case is considered
in a similar way ad hoc, depending upon which of the four subsets of A
depicted at Figure 1 form subalgebras of A). Moreover, submatrices of A
are identified with the carriers of their underlying algebras. Then, since
DM4�{b} is not consistent, while (n ⊃A n) = t 6= n, in which case {n} does
not form a subalgebra of A, the poset S∗(A) forms the diamond depicted
at Figure 1, so, in particular, by Theorems 4.16, 4.20 and 4.31, we have:
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{A \ {n}, A \ {b}}

{A \ {n}}

{f, t}

{A \ {b}}

Figure 2. Proper consistent axiomatic extensions of C.

Corollary 5.3. C is ∼-subclassical but not maximal(ly ∼-paraconsis-
tent).

Note that
∼x1 ⊃ (x1 ⊃ (x2 ∨ ∼x2)) (5.1)

is true in {{f, n, t}, {f, b, t}} but is not true in A under [x1/b, x2/n]. More-
over,

∼x1 ⊃ (x1 ⊃ x0) (5.2)

is true in {f, n, t} but is not true in {f, b, t} under [x1/b, x0/f]. Finally,
(4.8) is satisfied in {f, b, t} but is not satisfied in {f, n, t} under [x1/n]. In
this way, by Theorem 3.5 and Remark 3.6, we eventually get:

Corollary 5.4. Proper consistent axiomatic extensions of C (given by
defining matrix anti-chains) form the diamond depicted at Figure 2 and
are relatively axiomatized as follows (actually, according to the constructive
proof of Lemma 3.4):

{A \ {n}, A \ {b}} : (5.1),

{A \ {b}} : (5.2),

{A \ {n}} : (4.8),

{{f, t}} : {(5.2), (4.8)}.
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This, in particular, shows that the optional precondition in the formu-
lation of Theorem 4.26 is essential for the uniqueness of a proper consistent
axiomatic extension of C.

Concluding this discussion, recall that the [four-element chain] lattice of
all extensions of C [EM] [being a definitional copy of Dunn’s RM3 [4] in the
“unbounded” case] has been found in [14] – taking the general preliminary
part of [12] into account – with using an equally automated method but
as for merely defining matrices. However, the mentioned study does not at
all subsume Corollary 5.4 because of not implying the fact that there is no
more proper consistent axiomatic extension of C other than the four ones
depicted at Figure 2. This goes without saying that the present study has
provided relative axiomatizations quite effectively.

6. Conclusions

Aside from the general results and their numerous generic illustrative ap-
plications, the present paper demonstrates a special value of the conception
of equality determinant studied in [13].

And what is more, the methodological algebraic result of Theorem 3.8,
in its turn, based upon the apparatus of equality determinant well-advanced
in [13], has found more applications within the general topic of FDE ex-
pansions, being however beyond the scopes of the present paper and going
to be discussed elsewhere.

In general, the topic of [extensions of] expansions of Dunn-Belnap’s
four-valued logic is too inexhaustible to be studied within a single paper
comprehensively. The present paper constitutes just a first part of it. Oth-
ers are going to be presented elsewhere.

Acknowledgements. The author is grateful to J. M. Dunn and the
anonymous referee for their comments and our discussions on previous ver-
sions of the paper that have helped improve it.
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