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Abstract

We try to translate the intuitionistic propositional logic INT into Brouwer’s

modal logic KTB. Our translation is motivated by intuitions behind Brouwer’s

axiom p → �♦p. The main idea is to interpret intuitionistic implication as modal

strict implication, whereas variables and other positive sentences remain as they

are. The proposed translation preserves fragments of the Rieger-Nishimura lattice

which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately,

INT is not embedded by this mapping into KTB.
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1. Introduction

Brouwer’s modal logic KTB is defined as the normal extension of the
minimal modal logic K with the axioms T = �p → p and B = p →
�♦p . The set of rules consists of the modus ponens, the rule of uniform
substitution and the rule of necessitation. KTB is complete with respect
to reflexive and symmetric Kripke frames. It has been known since the
1930’s when O. Becker [1], and C.I. Lewis and C.H. Langford [5] formulated
the strict form of the Brouwerian axiom p ≺ �♦p, and considered the
appropriate system of logic. It turned out that the Brouwer system is
stronger than the Lewis system S3 and weaker than S5.
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There are some connections between the intuitionistic logic and the
axiom B. For instance, let us quote G.E. Hughes and M.J. Cresswell
[4, p. 57]:

As it is known, L. Brouwer is the founder of the intuition-
ist school of mathematics. The law of double negation does
not hold in intuitionistic logic. Exactly it holds that (i) `INT

p → ¬¬p but (ii) 6`INT ¬¬p → p. Suppose that negation
has a stronger meaning – necessarily negative. Hence ¬p may
be translated as �¬p. The corresponding modal formula to
(i) is p → �¬�¬p, which gives us p → �♦p and obviously
`KTB p → �♦p. If we translate (ii) in this way, we obtain:
�♦p → p, which is not a thesis even of the system S5 defined
below. Hence 6`KTB �♦p→ p. (..) Thus although the connec-
tion with Brouwer is somewhat tenuous, historical usage has
continued to associate his name with this formula.

This motivation will be a starting point for our research. We define
a function t from the intuitionistic propositional language {→,∧,∨,⊥} into
the modal language {→,∧,∨,�,⊥}. Thus, let us define

Definition 1.1.

t(⊥) = ⊥, t(p) = p, t(α→ β) = �(t(α)→ t(β)),
t(α ∧ β) = t(α) ∧ t(β), t(α ∨ β) = t(α) ∨ t(β).

The function t will be the desired translation if the equivalence holds:

α ∈ INT iff t(α) ∈ KTB.

Our translation differs from the standard one (see, for instance,
[3, 7]), known as the Gödel-McKinsey-Tarski translation, for which S4
turns out to be a modal companion of the intuitionistic logic. Note that
the Gödel-McKinsey-Tarski translation maps p onto �p, instead of p, for
any propositional variable p. Nevertheless, we have t(¬p) = �¬p (as
¬p = p→ ⊥) and t(¬¬p) = �¬�¬p = �♦p.

Suppose a logic L is given (in the sequel we deal mainly with KTB).
We write φ =L ψ if both φ → ψ and ψ → ϕ are L–valid. We even
omit the subscript L, and write φ = ψ instead of φ =L ψ, if there is no
risk of misunderstanding. It does not mean, however, that we identify



From Intuitionism to Brouwer’s Modal Logic 345

L–equivalent formulas neither we regard any formula as its equivalence
class in the the so-called Lindenbaum-Tarski’s algebra of L.

In our paper we omit definitions of some logical concepts if they can be
found in standard text-books on modal logic, e.g., [2, 3]

2. Preliminaries

Our function t translates the intuitionistic law of doubled negation onto
Brouwer’s axiom:

t(p→ ¬¬p) = p→ �♦p.

We ask if other intuitionistic theorems are preserved. Let us consider
the law of contraposition in the form: [(p→ q)∧¬q]→ ¬p). After applying
t we get: �[[�(p→ q) ∧�¬q]→ �¬p]. We prove that

Lemma 2.1. �[[�(p→ q) ∧�¬q]→ �¬p] ∈ KTB.

Proof: Suppose that �[[�(p → q) ∧ �¬q] → �¬p] 6∈ KTB. Then exists
a KTB-model M = 〈W,R, V 〉 and a point x1 ∈W such that:

x1 |= �(p→ q) ∧�¬q (2.1)

x1 6|= �¬p (2.2)

From (2.2) there is another point, say x2 such that x1Rx2 and x2 6|= ¬p,
which means that x2 |= p. From (2.1) it follows that for all xi ∈ W such
that x1Rxi, we have: xi |= p→ q and xi |= ¬q. Hence it holds also at the
point x2. Then we obtain:

x2 |= (p→ q), x2 |= p, x2 |= ¬q . (2.3)

This is a contradiction.

On the other hand, one may notice that this contraposition law in the
form : (p→ q)→ (¬q → ¬p) after translation is not a theorem of KTB.

Lemma 2.2. �[�(p→ q)→ �(�¬q → �¬p)] 6∈ KTB.

Proof: Let us consider a KTB-model M = 〈W,R, v〉 such that W =
{x1, x2, x3}, xiRxj iff |i − j| ≤ 1 and v(p) = {x3} and v(q) = ∅. Then
we get x2 |= �¬q and x2 6|= �¬p. Hence x2 6|= �¬q → �¬p and x1 6|=
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�(�¬q → �¬p). Also xi |= p→ q for i = 1, 2. Then x1 |= �(p→ q).
Hence x1 6|= �(p→ q)→ �(�¬q → �¬p).

From the above, it follows that the law of importation: [p→ (q → r)]→
[(p∧q)→ r] is preserved but the exportation [(p∧q)→ r]→ [p→ (q → r)],
is not. The negative results for formulas in two and more variables make
us study the monadic fragment of intuitionistic logic. At least, the axiom
B is a formula in one variable and B turns out to be the translation of the
appropriate intutionistic law. Although the deficiency of the modal analog
of the exportation law in KTB will be an impediment, we might expect
that the monadic language is more fit for our translation.

3. Monadic formulas in KTB

As it is known, see for instance [10], intuitionistic formulas containing only
one variable, say p, may be enumerated as follows:

Definition 3.1.

α0 = ⊥, α1 = p, α2 = p→ ⊥,
α2n+1 = α2n ∨ α2n−1, α2n+2 = α2n → α2n−1, for any n ≥ 1

αω = p→ p.

Every monadic formula is equivalent in the intuitionistic logic to one
of the αm’s. Therefore, the formulas give rise to the so-called Rieger-
Nishimura algebra R, which is a single-generated free Heyting algebra (see
Figure 1). The order relation in the algebra may be defined as follows:

α ≤ β iff α→ β ∈ INT.

Our aim is to check if the algebra is preserved under the translation t
or, more specifically, whether the translations of the formulas αn give rise
to the same algebra in the logic KTB.

The translations of αn’s do not cover all monadic modal formulas which
means that there are monadic modal formulas, for instance ¬p or ♦p, which
are not equivalent to any t(αn). It will also turn out that the translation
t does not preserve the equivalence of (intuitionistic) formulas. We shall
start out, however, our considerations with the observation that the ”bot-
tom” fragment of the Rieger-Nishimura algebra, consisting of the formulas
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α0, α1, α2, α3, α4, is preserved under the translation. Thus, in KTB, all
”intuitionistic” relations between the formulas α0 − α4 are preserved:

Observation 1. p ∧�¬p = �♦p ∧�¬p = � ((p ∨�¬p)→ ⊥) = ⊥
�♦p ∧ (p ∨�¬p) = p
�(�♦p → ⊥) = �(�♦p → �¬p) = �(p → �¬p) = �((p ∨ �¬p) →
�¬p) = �(p→ ⊥) = �¬p
�(�¬p → ⊥) = �((p ∨ �¬p) → p) = �(�¬p → p) = �((p ∨ �¬p) →
�♦p) = �♦p

Adding t(α5) = �♦p ∨ �¬p destroys the → structure of the algebra.
In KTB, we do not have �[(�♦p ∨ �¬p) → p] = p though α5 → α1 is

αω

...

α13

α12 α11

α9 α10

α7α8

α5 α6

α3α4

α1 α2

α0

Figure 1
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�♦p p ∨�¬p

p �¬p

⊥

Figure 2

intuitionistically equivalent to α1. It is clear that we should not expect our
translation preserves →. Moreover, it is not true that

ϕ =INT ψ ⇒ t(ϕ) =KTB t(ψ).

Let us concentrate on the lattice structure of R and ask if the Rieger-
Nishimura lattice (not Heyting algebra) is preserved under the translation
t in KTB. Obviously, the fragment of the lattice consisting of α0 − α5 is
preserved. However, even such modified hypothesis turns out to be false as
adding t(α6) = �(�♦p → p) to the picture destroys the lattice structure.
In the Rieger-Nishimura lattice we have: α2n+3 ∧ α2n+4 = α2n+1, for any
n ≥ 0. We prove that t does not preserve this equation for n ≥ 1. First,
note that:

Lemma 3.2. t[(α2n+3 ∧ α2n+4)→ α2n+1] ∈ KTB, for any n ≥ 1.

Proof: We need to show:

{[t(α2n+1) ∨ t(α2n+2)] ∧�[t(α2n+2)→ t(α2n+1)]} → t(α2n+1) ∈ KTB

which is quite obvious.

Before we prove that

t[α2n+1 → (α2n+3 ∧ α2n+4)] 6∈ KTB, for any n ≥ 1 (3.1)

we shall consider the simplest case when n = 1.
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Lemma 3.3. t[α3 → (α5 ∧ α6)] 6∈ KTB.

Proof: We shall prove that t(α3)→ {�[t(α4)→ t(α3)] ∧ t(α5)} 6∈ KTB.
Let us take the model M1 = 〈W,R, v〉 where W = {x0, x1}, and R is the
total relation on W , and xi |= p iff i = 0.

Then we have x0 |= p, which gives x0 |= p∨�¬p and hence x0 |= t(α3).
Thus, x1 |= �♦p and this means that x1 |= t(α4). We have x1 6|= p and
x1 6|= �¬p. Hence we get x1 6|= p∨�¬p which shows x1 6|= t(α3). It means
that x1 6|= t(α4) → t(α3) and x0 6|= �[t(α4) → t(α3)]. Thus, we proved
x0 6|= t(α3)→ {�[t(α4)→ t(α3)] ∧ t(α5)}.

For proving (3.1), we shall define some special KTB-models which are
extensions of the above M1. Let

Definition 3.4. Mn = 〈Wn, Rn, vn〉, for n ≥ 2, where Wn = {x0, x1,
x2, ..., xn}, Rn is reflexive and symmetric on Wn, and

x0Rxi iff i 6= 1, for any i ≤ n; (3.2)

x1Rxi iff i 6∈ {0, 3}, for any i ≤ n; (3.3)

x2Rxi , for any i ≤ n; (3.4)

x3Rxi iff i 6∈ {1, 4}, for any i ≤ n; (3.5)

if 3 < k < n− 1, then xkRxi iff i 6∈ {k + 1, k − 1},
for any i ≤ n;

(3.6)

¬xn−1Rxn. (3.7)

The valuation vn is defined: vn(p) = {x0}. See Figure 3.

Observation 2. If i ≤ n, then in the model Mn it holds that

xi |= ♦p ⇔ i 6= 1 xi |= t(α2) ⇔ i = 1;

xi |= t(α3) ⇔ i = 0, 1 xi |= t(α4) ⇔ i = 0, 3;

xi |= t(α5) ⇔ i = 0, 1, 3 xi |= t(α6) ⇔ i = 1, 4;

xi |= t(α7) ⇔ i = 0, 1, 3, 4 xi |= t(α8) ⇔ i = 3, 5.
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Figure 3. The frame of M7

Further:

xi 6|= t(α4)→ t(α3) ⇔ i = 3; xi |= �[t(α4)→ t(α3)] ⇔ i = 1, 4;

xi 6|= t(α6)→ t(α5) ⇔ i = 4; xi |= �[t(α6)→ t(α5)] ⇔ i = 3, 5;

xi 6|= t(α8)→ t(α7) ⇔ i = 5; xi |= �[t(α8)→ t(α7)] ⇔ i = 4, 6.

Then we get:

Lemma 3.5. If 2 ≤ n ≤ k and i ≤ n , then in the model Mk it holds that

(i) xi |= t(α2n+1) iff i ≤ n+ 1 and i 6= 2;

(ii) xi 6|= t(α2n)→ t(α2n−1) iff i = n+ 1;

(iii) xi |= �[t(α2n)→ t(α2n−1)] iff i = n or i = n+ 2, (for n ≥ 3).

Proof: We prove it by induction on n. Let n = 2. Then, from Obser-
vation 1, we get: xi |= t(α5) iff i = 0, 1, 3. Also xi 6|= t(α4) → t(α3) iff
i = 3. Further xi |= �[t(α4)→ t(α3)] iff i = 1 or i = 4. For n = 3, from
Observation 1, we get xi |= t(α7) iff i = 0, 1, 3, 4, and xi 6|= t(α6) → t(α5)
iff i = 4, and xi |= �[t(α6)→ t(α5)] iff i = 3 or i = 5.

Assume our lemma holds for n and prove it also holds for n + 1. We
have t(α2n+3) = t(α2n+2)∨t(α2n+1) and t(α2n+2) = �(t(α2n)→ t(α2n−1)).
From our inductive hypothesis (i) and (ii), we get xi |= t(α2n+3) iff i ≤ n+2
and i 6= 2.
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Let us consider t(α2n+2) → t(α2n+1). As t(α2n+2) = �[t(α2n) →
t(α2n−1)], we get xi 6|= t(α2n+2)→ t(α2n+1) iff i = n+ 2, by our inductive
hypothesis (i) and (iii).

From the above and the definition of the relation Rn, it follows that
xi |= �[t(α2n+2)→ t(α2n+1)] iff i = n+ 1 or i = n+ 3.

Then we may prove that (3.1) holds.

Lemma 3.6. For any n ≥ 2 we get

t[α2n+1 → (α2n+3 ∧ α2n+4)] 6∈ KTB

Proof: We take advantage of the model Mn. From Lemma 3.5 we get
xn |= t(α2n+1) and xn 6|= t(α2n+4), for any n ≥ 2.

We see that the Rieger-Nishimura lattice loses, after the translation t,
some meets of classes of formulas. Since the joins are preserved by the
definition of the translation, we conclude that the obtained structure is
a join semi-lattice, only. Figure 3 presents the diagram of the (Rieger-
Nishimura) join semi-lattice which is preserved under the translation t.
Note that the received structure is infinite as from Lemma 3.5 we get

Corollary 3.7. For any n ≥ 1, we have t(α2n−1) → t(α2n+1) ∈ KTB
and t(α2n+1)→ t(α2n−1) 6∈ KTB.

We also conclude that the function t is a translation for some classes of
formulas.

Corollary 3.8. For any n, k ≥ 1, we have:

1. α2n−1 → α2k−1 ∈ INT iff t(α2n−1)→ t(α2k−1) ∈ KTB,

2. α2n−2 → α2k−1 ∈ INT iff t(α2n−2)→ t(α2k−1) ∈ KTB.

3.1. Modal counterpart of Glivienko’s theorem

Glivienko’s theorem says that the double negation of any classically valid
propositional formula is intuitionistically valid. Its analog for the modal
logics S5 and S4 states that α ∈ S5 iff ♦�α ∈ S4, see [6]. There are
other results in this subject e.g Rybakov [8] proved that �♦α → �♦β ∈
K4 iff ♦α → ♦β ∈ S5. Recently Shapirovsky [9] generalizes Glivenko’s
translation for logics of arbitrary finite height.



352 Zofia Kostrzycka
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Figure 4

Our approach to Glivienko’s theorem is more elementary. The trans-
lation t examined in this paper suggests a modal version of this theorem.
One could think that it suffices to take �♦α, instead of the double negation
of the classically valid formula α, to obtain the modal version of Glivienko’s
theorem.

Certainly, it holds for some monadic formulas.

Lemma 3.9. For any n ≥ 1, we have �♦t(α2n+1) ∈ KTB.

Proof: By Corollary 3.7, it suffices to show that �♦t(α3) ∈ KTB which
would be tantamount to prove that ♦(�¬p∨p) ∈ KTB. But in any modal
logic ♦(�¬p ∨ p) = �♦p→ ♦p and �♦p→ ♦p is KT valid.
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One could expect that, for any n ≥ 3, we also have �♦t(α2n) ∈ KTB.
But it is not the case. For instance, using the model M1 (defined in the
proof of Lemma 3.3) one easily shows �♦t(α6) 6∈ KTB.

3.2. From INT into KTB.Altn

We may also consider some extensions of the logic KTB. Let KTB.Altn,
for n ≥ 2, be such an extension with

altn = �p1 ∨�(p1 → p2) ∨ ... ∨�((p1 ∧ ... ∧ pn)→ pn+1).

Logics KTB.Altn are characterized by reflexive and symmetric Kripke
frames, in which one point has at most n successors (including itself),
see [3, p. 82]. We show that there is a simple correlation between the
degree of branching and the possibility of falsifying the formula t(α2n+1).
Namely, we get:

Lemma 3.10. For each n ≥ 2, the model Mn is a minimal KTB-model fal-
sifying t(α2n+1) (which means that any model falsifying this formula con-
tains Mn as a submodel).

Proof: By induction on n. We construct a KTB-model falsifying t(α3).
Because t(α3) = p ∨�¬p then in some point x falsifying t(α3) we have

x 6|= p, (3.8)

x 6|= �¬p. (3.9)

From (3.9) we get that x |= ♦p. Then there must exist a point x∗ ∈ W
such that xRx∗ and x∗ |= p. By (3.8) we know that x∗ 6= x. Then we
obtain two-point model which is isomorphic to M1.

Before we start doing the induction step, we show how the model rises
if we want to falsify the formula t(α5). Because t(α5) = p ∨ �¬p ∨ �♦p
then at the point x we get (3.8), (3.9) and

x 6|= �♦p. (3.10)

From (3.8) and (3.9) we obtain the existence of another point x∗ such
that xRx∗ and x∗ |= p. Also x∗ 6= x. From (3.10) we see that there
must exist another point, say x∗∗ ∈ W such that xRx∗∗ and x∗∗ 6|= ♦p.
Hence x∗∗ 6|= p and x 6|= p. Also x∗∗ 6= x and x∗∗ 6= x∗. We conclude
that ¬x∗Rx∗∗. Then the falsifying model has to have at least three points.
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It is not a cluster and the point x sees two others. Since the situation is
analogous to the one described in M2 we may substitute: x := x2, x

∗ := x0
and x∗∗ := x1. We really have got a minimal model falsifying t(α5).

Let us try to falsify the formula t(α7) = t(α5) ∨ t(α6). For falsifying
t(α5) we need the model M2. Then we try to falsify t(α6) at x2 which is
x2 6|= �[t(α4) → t(α3)]. Then there must exist a point, say x3, x2Rx3,
such that x3 6|= t(α4)→ t(α3) what provides to:

x3 |= �♦p, (3.11)

x3 6|= p ∨�¬p. (3.12)

Because (3.12) holds then x3 6= xi for i = 0, 1. Because of (3.11) we get
x3 6= x2. We need a successor of x3 in which p is validated. We may take
x3Rx0. Further, we know that ¬x3Rx1. One should remember that the
relation R is reflexive and symmetric. Then we see that the minimal model
for falsifying t(α7) has to have four points with the relations and valuation
as in M3.

Suppose that our thesis holds for n. Then we know that Mn is a minimal
KTB-model falsifying t(α2n+1) and we take advantage of Observation 1
and Lemma 3.5.

We show that the thesis holds for n+ 1.
We have t(α2n+3) = t(α2n+1)∨t(α2n+2). We want to falsify the formula

at the point x2. For falsifying t(α2n+1) the assumption works and we
get a model Mn such that (Mn, x2) 6|= t(α2n+1). Then we want to get
(Mn, x2) 6|= t(α2n+2) that is (Mn, x2) 6|= �[t(α2n)→ t(α2n−1)].

There must exist a new point, say xn+1 such that x2Rxn+1 and

xn+1 6|= t(α2n)→ t(α2n−1), (3.13)

From Lemma 3.5 we know that the point xn+1 is a new point dif-
ferent from the others. Also x2Rxn+1. Because xn+1 |= t(α2n) and
xn 6|= t(α2n−2) → t(α2n−3) then ¬xnRxn+1. We also conclude that xn+1

sees all other points xi for i 6= n because we want to have xn+1 6|= t(α2n)
for k < n.

Then, adding a new point xn+1 to Mn, with the suitable relations, we
obtain Mn+1.

A correlation between the degree of branching of a frame and the va-
lidity of the formula t(α2n+1) is as follows:
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Theorem 3.11. For each n ≥ 2, t(α2n+1) ∈ KTB.Alti iff i ≤ n.

Proof: If t(α2n+1) 6∈ KTB.Alti then from Lemma 3.10 we conclude that
the minimal model falsifying this formula contains the model Mn+1. In
this model (see Definition 3.4) the point x2 sees all other points (including
itself), hence the degree of branching of Mn+1 is equal to n + 1. Then
i > n. On the other hand, if i > n then among the models for KTB.Alti
is the model Mi, falsifying t(α2n+1).

One may notice that the formulas t(α2n+1), n ≥ 1 written in one vari-
able, have a similar significance as the formulas altn, at least in KTB-
frames.

Corollary 3.12. KTB.Alti = KTB⊕ t(α2n+1) for any n ≥ 1.

4. Specific questions

The main problem concerning our translation is the fact that it does not
preserve the intuitionistic equivalence of formulas. More specifically, it is
not true that

α→ β ∈ INT ⇒ t(α)→ t(β) ∈ KTB.

We suppose our problem might be solved if we significantly modify our
approach. It would be required to opt out from the attempts to define intu-
itionistic connectives in KTB but to translate each formula in its specific
way. Technically, it will relay on adding �k, for some k, to the predecessor
of t(α) → t(β). The number k depends on the difference of modal de-
grees of the antecedent and consequent of the implication. Let us consider
the formula �(t(α4) → t(α3)) ∧ t(α5) = t(α3) which is not theorem of
KTB because the reverse implication is not. See Lemma 3.3. The simple
implication:

(�(t(α4)→ t(α3)) ∧ t(α5))→ t(α3)

which is

{�[�♦p→ (p ∨�¬p)] ∧ (�♦p ∨ p ∨�¬p)} → (p ∨�¬p)

is a theorem of KTB. We see that md{�[�♦p→ (p∨�¬p)]∧ (�♦p∨ p∨
�¬p)} = 3 and md(p ∨ �¬p) = 1. Hence modal degree of the antecedent
is larger than the degree of the consequent.
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In the reverse implication the situation is opposite and we have t(α3)→
[�(t(α4)→ t(α3))∧t(α5)] 6∈ KTB. We propose the following strengthening
of the above formula.

Since md{[�[t(α4)→ t(α3)]∧ t(α5)]}−md(t(α3)) = 2 then we consider
the formula �3t(α3)→ [�(t(α4)→ t(α3)) ∧ t(α5)] and obtain:

Lemma 4.1. The formula �3t(α3)→ [�(t(α4)→ t(α3)) ∧ t(α5)] is a theo-
rem of KTB.

Proof: Suppose that �3t(α3) → [�(t(α4) → t(α3)) ∧ t(α5)] 6∈ KTB.
Then there exists a model M = 〈W,R, v〉 and a point x ∈W such that

x |= �3t(α3) (4.1)

x 6|= �(t(α4)→ t(α3)) ∧ t(α5) (4.2)

From (4.2) we know that x 6|= �(t(α4)→ t(α3)) or x 6|= t(α5).
I. If x 6|= �(t(α4) → t(α3)) then there is another point, say x2, xRx2

such that x2 6|= t(α4)→ t(α3) what means that

x2 |= t(α4) (4.3)

x2 6|= t(α3) (4.4)

But from (4.1) and from reflexivity of R we know that x2 |= t(α3). This
is a contradiction.

II. If x 6|= t(α5) then since α5 = α3 ∨ α4 then x 6|= t(α3) and x 6|= t(α4).
But x 6|= t(α3) is in contradiction with (4.1).

Despite the above example, one should not expect the following holds:
if α→ β ∈ INT, then

1. if md(t(α)) > md(t(β)) then t(α)→ t(β) ∈ KTB,

2. if md(t(β))−md(t(α)) = k ≥ 0 then �k+1t(α)→ t(β) ∈ KTB.

We show that this is false (even for formulas in one variable). The coun-
terexample is the formula �♦t(α6) = �[�(t(α6)→ ⊥)→ ⊥]. We see that
�[�(t(α6)→ ⊥)→ ⊥] ∈ KTB iff �(t(α6)→ ⊥)→ ⊥ ∈ KTB. Obviously
md(�(t(α6) → ⊥)) > md(⊥). Let us take the model M1, see Definition
3.4. One may easily obtain that M1 6|= �♦t(α6). Hence �♦t(α6) 6∈ KTB.
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Now, let us consider the implication:

t(α)→ t(β) ∈ KTB ⇒ α→ β ∈ INT.

We show that it is false. The counterexample is the following formula
α = ¬¬(T → p) → (T → p) which is equivalent to the strong law of
doubled negation. Obviously α 6∈ INT. But we shall prove that:

Lemma 4.2. t(α) ∈ KTB.

Proof: Let us write the formula t(α) = �[�♦�(T → p) → �(T → p)].
By Brouwer’s axiom we have: ♦�(T → p) → (T → p) ∈ KTB. Then
by the rule of necessitation and the axiom K we obtain �♦�(T → p) →
�(T → p) ∈ KTB. Again by the rule of necessitation we get: �[�♦�(T →
p)→ �(T → p)] ∈ KTB.

5. Conclusions

Since we see that t(INT) 6⊂ KTB, we would like to know what is the
image of INT by the function t.

As it was mentioned above the formula �♦t(α6) 6∈ KTB and moreover
the model falsifying it is the model M1, see Definition 3.4. Actually, M1 is
a two-element cluster. One easily conclude that �♦t(α6) 6∈ S5. Hence it
must be �♦t(α6) ∈ Triv. It means that the least modal logic containing
t(INT) is Triv which is highly unsatisfactory.

Let us add that we do not decide if there is any other translation from
INT into KTB. We leave this problem open. It seems that the intuition-
istic logic is too strong for being translated into any intransitive modal
logic.
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