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Abstract

We upgrade [3] to a complete proof of the conjecture NP = PSPACE that is

known as one of the fundamental open problems in the mathematical theory of

computational complexity; this proof is based on [2]. Since minimal propositional

logic is known to be PSPACE complete, while PSPACE to include NP, it suffices

to show that every valid purely implicational formula ρ has a proof whose weight

(= total number of symbols) and time complexity of the provability involved are

both polynomial in the weight of ρ. As is [3], we use proof theoretic approach.

Recall that in [3] we considered any valid ρ in question that had (by the definition

of validity) a “short” tree-like proof π in the Hudelmaier-style cutfree sequent

calculus for minimal logic. The “shortness” means that the height of π and the

total weight of different formulas occurring in it are both polynomial in the weight

of ρ. However, the size (= total number of nodes), and hence also the weight,

of π could be exponential in that of ρ. To overcome this trouble we embedded

π into Prawitz’s proof system of natural deductions containing single formulas,

instead of sequents. As in π, the height and the total weight of different formulas

∗Corresponding author.
1Editorial remark. The subeditor dealing with this paper (Peter Schroeder-

Heister) and the two reviewers were not able to check proofs in all detail and therefore
cannot fully confirm their correctness. However, in view of the importance of the results
claimed and the originality of the logical proof methods employed, and in accordance
with the aim of the journal as a forum for the wide dissemination of original results
by rapid publication, they agree that the paper should be available to the scientific
community in published form to enable further discussion.

Presented by: Peter Schroeder-Heister
Received: November 13, 2019
Published online: August 15, 2020

c© Copyright for this edition by Uniwersytet  Lódzki,  Lódź 2020
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of the resulting tree-like natural deduction ∂1 were polynomial, although the size

of ∂1 still could be exponential, in the weight of ρ. In our next, crucial move, ∂1
was deterministically compressed into a “small”, although multipremise, dag-like

deduction ∂ whose horizontal levels contained only mutually different formulas,
which made the whole weight polynomial in that of ρ. However, ∂ required a

more complicated verification of the underlying provability of ρ. In this paper

we present a nondeterministic compression of ∂ into a desired standard dag-like

deduction ∂0 that deterministically proves ρ in time and space polynomial in the

weight of ρ.2 Together with [3] this completes the proof of NP = PSPACE.

Natural deductions are essential for our proof. Tree-to-dag horizontal com-

pression of π merging equal sequents, instead of formulas, is (possible but) not

sufficient, since the total number of different sequents in π might be exponential

in the weight of ρ – even assuming that all formulas occurring in sequents are

subformulas of ρ. On the other hand, we need Hudelmaier’s cutfree sequent cal-

culus in order to control both the height and total weight of different formulas

of the initial tree-like proof π, since standard Prawitz’s normalization although

providing natural deductions with the subformula property does not preserve

polynomial heights. It is not clear yet if we can omit references to π even in the

proof of the weaker result NP = coNP.

Keywords: Natural deduction, sequent calculus, minimal logic, computational

complexity.

1. Introduction

In [3] we presented a dag-like version of Prawitz’s [9] tree-like natural deduc-
tion calculus for minimal logic, NM→, and left open a problem of computa-
tional complexity of the dag-like provability involved ([3, Problem 22]). In
this paper we show a solution that proves the conjecture NP = PSPACE.
To explain it briefly first consider standard notion of provability. Recall
that our basic deduction calculus NM→ includes two basic inferences

(→ I) :

[α]
...
β

α→ β
, (→ E) :

α α→ β

β

2It is doubtful that ∂ is convertible into ∂0 by a polynomial-time deterministic TM.
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and one auxiliary repetition rule (R) :
α

α
, where [α] in (→ I) indicates

that all α-leaves occurring above β-node exposed are discharged assump-
tions.

Definition 1.1. A given (whether tree- or dag-like) NM→-deduction ∂
proves its root-formula ρ (abbr.: ∂ ` ρ) iff every maximal thread connecting
the root with a leaf labeled α is closed (= discharged), i.e. it contains a
(→ I) with conclusion α→ β, for some β. A purely implicational formula
ρ is valid in minimal logic iff there exists a tree-like NM→-deduction ∂ that
proves ρ;3 such ∂ is called a proof of ρ.

Remark 1.2. Tree-like constraint in the definition of validity is inessential.
That is, for any dag-like ∂ ∈NM→ with root-formula ρ, if ∂ ` ρ then

ρ is valid in minimal logic. Because any given dag-like ∂ can be unfolded
into a tree-like deduction ∂′ by straightforward thread-preserving bottom-
up recursion. To this end every node x ∈ ∂ with n > 1 distinct conclusions
has to be replaced by n distinct nodes x1, · · · , xn ∈ ∂′ with correspond-
ing single-node conclusions and identical premises of x. This operation
obviously preserves the closure of threads, i.e. ∂ ` ρ infers ∂′ ` ρ.

Formal verification of the assertion ∂ ` ρ is simple, as follows – whether
for tree-like or generally dag-like ∂. Every node x ∈ ∂ is assigned, by
descending recursion, a set of assumptions A (x) such that:

1. A (x) := {α} if x is a leaf labeled α,

2. A (x) := A (y) if x is the conclusion of (R) with premise y,

3. A (x) := A (y) \ {α} if x is the conclusion of (→ I) with label α→ β
and premise y,

4. A (x) := A (y) ∪ A (z) if x is the conclusion of (→ E) with premises
y, z.

This easily yields

Lemma 1.3. Let ∂ ∈NM→ (whether tree- or dag-like). Then ∂ ` ρ ⇔
A (r) = ∅ holds with respect to standard set-theoretic interpretations of ∪

3Equivalently: ρis valid in minimal logic iff it is deducible in Hilbert-style cal-
culus with axioms α → (β → α), (α→ (β → γ)) → ((α→ β)→ (α→ γ)) and
inference (→ E), also known as modus (ponendo) ponens; the equivalence follows from
corresponding deduction theorem.
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and \ in A (r), where r and ρ are the root and root-formula of ∂, respec-

tively. Moreover, A (r)
?
= ∅ is verifiable by a deterministic TM in |∂|-

polynomial time, where by |∂| we denote the weight of (i.e. total number of
symbols occurring in) ∂.4

Now let us upgrade NM→ to NM[
→ by adding a new separation rule (S)

(→ S) :

n times︷ ︸︸ ︷
α · · · α

α
(n arbitrary)

whose identical premises are understood disjunctively: “if at least one
premise is proved then so is the conclusion” (in contrast to ordinary con-
junctive inference: “if all premises are proved then so is the conclusion”).
Note that in dag-like deductions the nodes might have several conclusions
(unlike in tree-like ones). The modified assignment A in NM[

→ (that works
in both tree-like and dag-like cases) is defined by adding to old recursive
clauses 1–4 (see above) a new clause 5 with new separation symbol s:

5. A (x) = s (A (y1) , · · · , A (yn)) if x is the conclusion of (S) with
premises y1, · · · , yn.

Claim 1.4. For any dag-like deduction ∂ ∈NM[
→ whose root r is labeled ρ,

ρ is valid in minimal logic, provided that A (r) reduces to ∅ (abbr.: A (r) B
∅) by standard set-theoretic interpretations of ∪, \ and nondeterministic
disjunctive valuation s (t1, · · · , tn) := ti, for any chosen i ∈ {1, · · · , n}.
Moreover, the assertion A (r) B ∅ (that is also referred to as ‘∂ proves ρ’)
can be confirmed by a nondeterministic TM in |∂|-polynomial time.

This claim reduces to its trivial NM→ case (see above). For suppose
that A (r) B ∅ holds with respect to a successive nondeterministic valuation
of the occurrences s. This reduction determines a successive ascending
(i.e. bottom-up) thinning of ∂ that results in a “cleansed” (S)-free dag-
like deduction ∂0 ∈NM[

→, while A (r) B ∅ in ∂ implies A (r) = ∅ in ∂0.
Since (S) does not occur in ∂0 anymore, we have ∂0 ∈NM→. By previous
considerations with regard to NM→ we conclude that ρ is valid in minimal
logic, which can be confirmed in |∂|-polynomial time, as required.

4The latter is completely analogous to the well-known polynomial-time decidability
of the circuit value problem (see also Appendix).
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Since minimal logic is PSPACE complete ([11, 12]), in order to arrive
at the desired conclusion NP = PSPACE it will suffice to show that for
any valid ρ there is a modified dag-like deduction ∂ ∈NM[

→ of ρ satisfying
A (r) B ∅, and hence a dag-like deduction ∂0 ∈NM→ satisfying A (r) = ∅,
whose size and maximal formula weight are polynomial in |ρ|. But this is
a consequence of [3] that formalized basic theory of dag-like deducibility
in question (elaborated by the first author). For in [3] we presented a de-
terministic tree-to-dag horizontal compression of a given “short” tree-like
deduction of ρ in NM→ that is obtained by embedding a derivation of ρ
in a Hudelmaier-style [5] cutfree sequent calculus. It resulted in a suitable
|ρ|-polynomial dag-like deduction frame together with a |ρ|-exponential lo-
cally coherent set of maximal threads, in the multipremise expansion of
NM→ (called NM∗→; multiple premises involved arise by merging equal
conclusions of different rules). In this paper we observe that such a pair
determines a deduction in NM[

→ that admits a fundamental set of chains
(see below). Moreover, we show that such NM[

→-deduction is convertible
by the appropriate nondeterministic dag-to-dag horizontal cleansing into
the required NM→ deduction satisfying A (r) = ∅.5

1.1. Recollection of [3]

Recall that ρ is called dag-like provable in NM∗→ iff there is a locally correct

(with respect to inferences of NM∗→) labeled regular dag D̃ = 〈D, s, `f〉
(that may have arbitrary many premises and/or conclusions) with root-
formula ρ, together with a locally coherent mapping G :

−→
e (D) → {0, 1}

that determines a set of threads that confirms alleged validity of ρ, where
−→
e (D) denotes the set of edge-chains in D (see reference in Lemma 5 be-

low). Such D̃ and a pair ∂ =
〈
D̃,G

〉
are called respectively a deduction

frame (or just NM∗→-deduction) and a dag-like proof of ρ in NM∗→.6 In [3]
we proved that the latter notion of dag-like provability of ρ is equivalent
to the validity of ρ in minimal logic (cf. Definition 1). Without loss of

generality we assume that D̃ is horizontally compressed, i.e. `f(x) 6= `f(y)

for all x 6= y on the same level in D, and the weight of D̃ is polynomial
in |ρ| (see [3] and below). Such compression runs by bottom-up recursion

5This yields a “short” certificate for the local coherence statement that itself requires
exponentially many bits to even describe (cf. [1, 4.3.2]).

6Here and below basic notions and notations are imported from [3].
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on the height of a given “short” tree-like deduction with root-formula ρ
by successively merging all nodes with identical formulas occurring in the
corresponding horizontal sections; thus the weight of resulting dag-like de-
duction is polynomial in |ρ|, since so are the height of, and total weight of
different formulas occurring in, the “short” tree-like NM→-input in ques-
tion ( [3]: Ch. 3). We noticed that the local correctness of D̃ is verifiable
in |ρ|-polynomial time, whereas the local coherence of G has no obvious
low-complexity upper bound, as

−→
e (D) is generally exponential (cf. foot-

note 5). The currently proposed upgrade is based on the fundamental sets
of threads, instead of G and

−→
e (D), as follows.

1.2. Upgrade in NM∗
→

Let D̃ = 〈D, s, `f〉 be a given locally correct deduction frame with root-
formula ρ = `f (r), K(D) be the set of maximal ascending chains (also
called threads) consisting of nodes (vertices) u ∈v(D) connecting root r
with leaves. A given set F ⊂K(D) is a fundamental set of threads (abbr.:

fst) in D̃ if the following three conditions are satisfied, where for any Θ =[
r = x0, · · · , xh(D)

]
∈K(D) and i ≤ h (D) we let Θ�xi

:= [x0, · · · , xi].

1. F is dense in D, i.e. (∀u ∈ v (D)) (∃Θ ∈ F) (u ∈ Θ).

2. Every Θ ∈ F is closed, i.e. its leaf-formula `f
(
xh(D)

)
is discharged in

Θ.

3. F preserves (→ E), i.e.

(∀Θ ∈ F) (∀u ∈ Θ) (∀v 6= w ∈ v (D) : 〈u, v〉, 〈u,w〉 ∈ e (D) ∧ v ∈ Θ)
(∃Θ′ ∈ F) (w ∈ Θ′ ∧Θ�u= Θ′ �u) .

Lemma 1.5. Let D̃ be as above and suppose that there exists a fst F in D̃.
Then ρ is dag-like provable in NM∗→.

Proof: Define G :
−→
e (D)→ {0, 1} by G (−→e ) := 1 iff

(
∃
−→
f ⊇ −→e

)
Θ
[−→
f
]
∈

K (D) ∩ F , where Θ
[−→
f
]

contains all nodes occurring in the canonical

thread-expansion of
−→
f . Then ∂ =

〈
D̃,G

〉
is a dag-like proof of ρ. The



Proof Compression and NP Versus PSPACE II 219

local coherence conditions 1, 2, 4, 5 (cf. [3]: Definition 6) are easily verified.
In particular, 4 follows from the third fst condition with respect to F .

Lemma 1.6. For any dag-like proof
〈
D̃,G

〉
of ρ there are D0 ⊆ D, G0 :

−→
e (D0) → {0, 1}, F ⊂K(D0) and a dag-like proof

〈
D̃0, G0

〉
of ρ such that

F is a fst in D̃0.

Proof: Let F := {Θ ∈ K (D) : G (−→e [Θ]) = 1} for −→e [Θ] := −→em ∈ −→e (D)
determined by Θ as specified in [3]: Definition 8. It is readily seen that

such F is a fst in D̃. The crucial condition 3 follows directly from the
corresponding local coherence condition 4 (cf. [3]: Definition 6). Let D0 ⊆
D be the minimum sub-dag containing every edge occurring in

⋃
Θ∈F

Θ and

let D̃0 = 〈D0, s, `
f〉 be the corresponding sub-frame of D̃. Obviously D̃0 is

locally correct. Define G0 :
−→
e (D0) → {0, 1} as in the previous lema with

respect to D0, instead of D. Then ∂ =
〈
D̃0, G0

〉
is a dag-like proof of

ρ. The crucial density of F in D0 obviously follows from definitions of D0

and G0, as every edge in D0 occurs in some thread from F , while for any
−→e ∈ −→e (D0) we have G0 (−→e ) = 1 iff Θ [−→e ] ∈ F .

Together with [3]: Corollaries 15, 20 these lemmata yield

Corollary 1.7. Any given ρ is valid in minimal logic iff there exists a pair〈
D̃,F

〉
such that D̃ is a locally correct deduction frame with root-formula

ρ = `f (r) and F being a fst in D̃. We can just as well assume that D̃ is
horizontally compressed and its weight is polynomial in that of ρ.

Remark 1.8. We can’t afford F to be polynomial in ρ. However, the exis-
tence of F enables a nondeterministic polytime verification of A (r) B ∅ in
the corresponding modified dag-like formalism, as follows. This collapsing
makes the trick.

2. Modified dag-like calculus NM[
→

As mentioned above, our modified dag-like deduction calculus, NM[
→, in-

cludes inference rules (→ I), (→ E), (R), (S) (see Introduction). (→ I),
(R) and (→ E) have one and two premises, respectively, whereas (S) has
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two or more ones. NM[
→-deductions are graphically interpreted as labeled

rooted regular dags (abbr.: redags, cf. [3]) ∂ = 〈v (∂) ,e (∂)〉 , whose nodes
may have arbitrary many parents (conclusions) – and children (premises),
just in the case (S), – if any at all. The nodes (x, y, z, ...) are la-
beled by `f with purely implicational formulas (α, β, γ, ρ, ...). For the
sake of brevity we’ll assume that nodes x are supplied with auxiliary
height numbers h (x) ∈ N, while all inner nodes also have special labels
`n (x) ∈ {i, e, r, s} showing the names of the inference rules (→ I), (→ E),
(R), (S) with conclusion x. The roots and root-formulas are always desig-

nated r and ρ := `f (r), respectively. The edges 〈x, y〉 ∈e(∂) ⊂v(∂)
2

are
directed upwards (thus r is the lowest node in ∂) in which x and y are called
parents and children of each other, respectively. The leaves l(∂) ⊆v(∂)
are the nodes without children. Tree-like NM[

→-deductions are those ones
whose redags are trees (whose nodes have at most one parent).

Definition 2.1. A given NM[
→-deduction ∂ is locally correct if conditions

1–2 are satisfied, for arbitrary nodes x, y, z, u.

1. ∂ is regular (cf. [3]), i.e.

(a) if 〈x, y〉 ∈e(∂) then x /∈ l(∂) and y 6= r,

(b) h (r) = 0,

(c) if 〈x, y〉 , 〈x, z〉 ∈e(∂) then h (y) = h (z) = h (x) + 1.

2. ∂ formalizes the inference rules, i.e.

(a) if `n (x) =r and 〈x, y〉 , 〈x, z〉 ∈e(∂) then y = z and `f (y) =
`f (x) [: rule (R)],

(b) if `n (x) = i and 〈x, y〉 , 〈x, z〉 ∈e(∂) then y = z and `f (x) =
α→ `f (y) for some (uniquely determined) α [: rule (→ I)],

(c) if `n (x) =e and 〈x, y〉 , 〈x, z〉 , 〈x, u〉 ∈e(∂) then |{y, z, u}| = 2
and if y 6= z then either `f (z) = `f (y) → `f (x) or else `f (y) =
`f (z)→ `f (x) [: rule (→ E)],

(d) if `n (x) = s and 〈x, y〉 ∈e(∂) then `f (y) = `f (x) and `n (y) 6= s
[: rule (S)].

NM∗→ is easily embeddable into NM[
→. Namely, consider a locally

correct NM∗→-deduction frame D̃ = 〈D, s, `f〉.7 The corresponding locally

7For brevity we omit h, as every h (x) is uniquely determined by x.
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correct dag-like NM[
→-deduction ∂ arises from D by ascending recursion

on the height. The root and basic configurations of types (→ I), (→ E),

(R) in D̃ should remain unchanged. Furthermore, if x has several groups of
premises in D, i.e. |s (x,D)| > 1 (cf. [3]) then in ∂ we separate these groups
via (S) with |s (x,D)| identical premises; for example this multipremise

NM∗→-configuration in D̃

β γ γ → (α→ β)

α→ β

γ → (α→ β)

goes to this NM[
→ -configuration in ∂

(→ I)

(S)

(→ I)
β

α→ β
(→ E)

γ γ → (α→ β)

α→ β

α→ β

γ → (α→ β)
.

Corresponding `f- and `n-labels are induced in an obvious way. Note that
the weight of ∂ is linear in that of D̃.8

Now suppose that there is a fst F in a chosen NM∗→-deduction frame

D̃, and let F [ be the image of F in ∂. It is readily seen that F [ is also a
dense and (→ E) preserving set of closed threads in ∂ (see NM∗→-clauses
1–3 in Ch. 1.2). That is, F [ is a dense set of closed threads in ∂ such that
for every Θ ∈ F [ and (→ E)-conclusion x ∈ Θ, `n (x) =e→, with premises
y and z, if y ∈ Θ then there is a Θ′ ∈ F [ such that z ∈ Θ′ and Θ coincides
with Θ′ below x.

2.1. Modified dag-like provability

We formalize in NM[
→ the modified assignment A : ∂ 3 x ↪→ A (x) ⊆

FOR (∂).

Definition 2.2 (Assignment A). Let ∂ be any locally correct dag-like
NM[

→-deduction. We assign nodes x ∈ ∂ with terms A (x) by descending
recursion 1–5.

8Recall that according to [3] we can just as well assume that D̃ is horizontally
compressed and its weight is polynomial in that of ρ.
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1. A (x) := {α} if x is a leaf and `f (x) = α.

2. A (x) := A (y) if `n (x) = r and 〈x, y〉 ∈e(∂).

3. A (x) := A (y)\{α} if `n (x) = i, 〈x, y〉 ∈e(∂) and `f (x) = α→ `f (y).

4. A (x) := A (y) ∪A (z) if `n (x) = e and 〈x, y〉 , 〈x, z〉 ∈ e (∂).

5. A (x) := s (A(y1) , · · · , A(yn)) if `n (x) = s and (∀i∈ [1, n]) 〈x, yi〉 ∈
e(∂).

Definition 2.3 (Nondeterministic reduction). Let ∂ and A be as above, r
the root of ∂, S a set of formulas occurring in ∂. We say that A (r) reduces
to S (abbr.: A (r) B S) if S arises from A (r) by successive (in a left-to-
right direction) substitutions A (u) = s (A (v1) , · · · , A (vn)) := A (vi), for
a fixed chosen i ∈ {1, · · · , n} and for any occurrence A (u) in A (w) and in
A (w′), for every w′ below w, provided that u is a premise of w such that
`n (u) = s,9 while using ordinary set-theoretic interpretations of ∪ and \.
We call ∂ a modified dag-like proof of ρ = `f (r) (abbr.: ∂ ` ρ) if A (r) B ∅
holds.10

Example 2.4. Previously shown configuration yields a ∂ such that ∂ 0 ρ :

β ;A = {β}
α→ β : i ;A = {β}

γ ;A = {γ} γ → (α→ β) ;A = {γ → (α→ β)}
α→ β : e ;A = {γ, γ → (α→ β)}

α→ β : s ;A = s ({β} , {γ, γ → (α→ β)})
γ → (α→ β) : i ;A = s ({β} , {γ → (α→ β)})

where `n (r) = i, `f (r) = ρ = γ → (α→ β) and A (r) = s({β},
{γ → (α→ β)}). Note that A (r) B {β} and A (r) B {γ → (α→ β)},
although A (r) 7 ∅.

To obtain an analogous dag-like proof of (say) ρ′ := β → (γ → (α→ β))
we’ll upgrade ∂ to such ∂′ :

9This operation is graphically interpreted by deleting u along with vj for all j 6= i.
10The nondeterminism in question is encoded in s of Clause 5.
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β ;A={β}
α→ β : i ;A={β}

γ ;A={γ} γ → (α→ β) ;A={γ → (α→ β)}
α→ β : e ;A={γ, γ → (α→ β)}

α→ β : s ;A = s ({β} , {γ, γ → (α→ β)})
γ → (α→ β) : i ;A = s ({β} , {γ → (α→ β)}) \ {γ}

β → (γ → (α→ β)) : i ;A = s ({β} , {γ → (α→ β)}) \ {γ} \ {β}

and let s ({β} , {γ, γ → (α→ β)}) := {β}. Then A (r) B ∅ , i.e. ∂′ ` ρ′
holds.

Lemma 2.5. Every modified dag-like proof of ρ is convertible to a dag-like
NM→-proof of ρ.

Proof: Let ∂ be a given NM[
→-proof of ρ. Its NM→-conversion is defined

by a simple ascending recursion, as follows. Each time we arrive at a w
whose premise u is a conclusion of (S), we replace u by its premise that
is “guessed” by a given nondeterministic reduction leading to A (r) B ∅
– alternatively, we can replace this (S) by the corresponding repetition
(R). It is readily seen that the resulting dag-like deduction ∂0 with the
same root-formula ρ is locally correct and (S)-free, and hence it belongs
to NM→. Obviously A (r) B ∅ in ∂ infers A (r) = ∅ in ∂0, and hence ∂0

proves ρ in NM→.

This lemma is generalized by

Lemma 2.6. Let D̃ be any locally correct deduction frame in NM∗→ with
root-formula ρ that admits some fst. There exists a dag-like NM→-proof
of ρ whose weight does not exceed that of D̃.

Proof: Let ∂ be the NM[
→-deduction of ρ induced by D̃ and F any fst

in D̃. Furthermore, let F [ be the image of F in ∂ (see above). We will
show that F [ determines successive left-to-right s-eliminations
s (A (y1) , · · · , A (yn)) ↪→A (yi) inside A (r) leading to a desired reduction
A (r) B ∅. These eliminations together with a suitable sub-fst F [0 ⊆ F [
arise as follows by ascending recursion along F [. Let x with `n (x) = e be
a chosen lowest conclusion of (→ E) in ∂, if any exists. By the density of
F [, there exists Θ ∈ F [ with x ∈ Θ; we let Θ ∈ F [0. Let y and z be the
two premises of x and suppose that y ∈ Θ. By the third fst condition there
exists a Θ′ ∈ F [ with z ∈ Θ′ and Θ�x= Θ′ �x; so let Θ′ ∈ F [0 be the corre-
sponding “upgrade”of Θ. In the case z ∈ Θ we let Θ′ := Θ. Note that Θ�x
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determines substitutions A (u) = s (A (v1) , · · · , A (vn)) := A (vi) in all
parents of (S)-conclusions u occurring in both Θ and Θ′ below x (cf. Defi-
nitions 10, 11), if any exist, and hence also s-eliminations A (u) ↪→ A (vi)
in the corresponding subterms of A (r). The same procedure is applied to
the nodes occurring in Θ and Θ′ between x and the next lowest conclu-
sions of (→ E); this yields new “upgraded” threads Θ′′,Θ′′′, · · · ∈ F [0 and
s-eliminations in the corresponding initial fragments of A (r). We keep
doing this recursively until the list of remaining s-occurrences in Θ ∈ F [0
is empty. The final “cleansed” s-free form of A (r) is represented by a set
of formulas that easily reduces to ∅ by ordinary set-theoretic interpretation
of the remaining operations ∪ and \, since every Θ ∈ F [0 involved is closed.
That is, the correlated “cleansed” deduction ∂0 is a locally correct dag-like
deduction of ρ in the (S)-free fragment of NM[

→, and hence it belongs to
NM→; moreover the set of ascending threads in ∂0 is uniquely determined
by the remaining rules (R), (→ I), (→ E) (cf. analogous passage in the
previous proof). Now by the definition these “cleansed” ascending threads
are all included in F [0 and hence closed with respect to (→ I).11 This yields
a desired reduction A (r) B ∅, i.e. A (r) = ∅, in ∂0. Hence ∂0 proves ρ in

NM→. Obviously the weight of ∂0 does not exceed the weight of D̃.

Operation ∂ ↪→ ∂0 is referred to as horizontal cleansing (cf. Introduc-
tion). Together with Remark 2 and Corollary 7 this yields

Corollary 2.7. Any given ρ is valid in minimal logic iff it is provable in
NM→ by a dag-like deduction ∂0 whose weight is polynomial in |ρ| and
such that ∂0 ` ρ can be confirmed by a deterministic TM in |ρ|-polynomial
time.12

Theorem 2.8. PSPACE ⊆ NP and hence NP = PSPACE.

Proof: Minimal propositional logic is PSPACE-complete (cf. e.g. [7, 11,
12]). Hence PSPACE ⊆ NP directly follows from Corollary 15. Note
that in contrast to [3] here we use nondeterministic arguments twice. First
we “guess” the existence of “short” Hudelmaier-style cutfree sequential de-
duction of ρ that leads (by deterministic compression) to a “small” natural

deduction frame D̃ that is supposed to have a fst F . Then we “guess”

11These threads may be exponential in number, but our nondeterministic algorithm
runs on the polynomial set of nodes.

12See Appendix for a more exhaustive presentation.
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the existence of a “cleansed” modified subdeduction that confirms in |ρ|-
polynomial time the provability of ρ with regard to

〈
D̃,F

〉
.

Corollary 2.9. NP = coNP and hence the polynomial hierarchy col-
lapses to the first level.

Proof: NP=PSPACE implies coNP=coPSPACE=PSPACE=NP
(see also [8, 1]).

Corollary 2.10. PSPACE (in particular NP) problems are nondetermin-
istically decidable in polynomial time. To put it more precisely, for any
given PSPACE language L ⊆ {0, 1}∗ there exists a polynomial p : N→ N
and a polynomial-time TM M such that for every x ∈ {0, 1}∗ there ex-

ists u ∈ {0, 1}p(|x|) satisfying x ∈ L ⇔ M(x, u) = 1 (i.e.: “u provides a
polynomial test for x ∈?L”).13

Proof: By theorem 16, it suffices to deal with the NP-complete problem
of boolean satisfiability. Let ϕ (−→v ) be a given boolean formula, where −→v
is a list of propositional variables that is encoded by x ∈ {0, 1}∗. Let
x ∈ L abbreviate ϕ (−→v ) ∈ SAT, then x /∈ L ⇔ ¬ϕ (−→v ) ∈ VAL. By
Corollary 17, SAT and VAL are both in NP. This yields the result by an
obvious nondeterministic combination of standard NP-verifications of both
conjectures x ∈ L and x /∈ L.

Remark 2.11 (“Hilbert-paradise” of PSPACE world). Corollary 18 yields
a following broad conclusion. PSPACE problems are closed under proposi-
tional operations and provability (by Savitch’s theorem) while being (non-
deterministic) decidable in polynomial time (: “in PSPACE there is no
polytime ignorabimus”).

13That is, we rewrite NP condition

(∀x ∈ {0, 1}∗)
(
x ∈ L⇔

(
∃u ∈ {0, 1}p(|x|)

)
M(x, u) = 1

)
(cf. e.g. [1, 2.1]) to

(∀x ∈ {0, 1}∗)
(
∃u ∈ {0, 1}p(|x|)

)
(x ∈ L⇔M(x, u) = 1)

or, more precisely, to

(∀x ∈ {0, 1}∗)
(
¬¬∃u ∈ {0, 1}p(|x|)

)
(x ∈ L⇔M(x, u) = 1) .



226 Lew Gordeev, Edward Hermann Haeusler

References

[1] S. Arora, B. Barak, Computational Complexity: A Modern Ap-

proach, 1st ed., Cambridge University Press, USA (2009).

[2] L. Gordeev, Proof compression and NP versus PSPACE. Part 2, CoRR,

vol. abs/1907.03858 (2019), URL: http://arxiv.org/abs/1907.03858.

[3] L. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE,

Studia Logica, vol. 107(1) (2019), pp. 53–83, DOI: http://dx.doi.org/10.

1007/s11225-017-9773-5.

[4] J. Holm, E. Rotenberg, M. Thorup, Planar Reachability in Linear Space and

Constant Time, CoRR, vol. abs/1411.5867 (2014), URL: http://arxiv.org/

abs/1411.5867.

[5] J. Hudelmaier, An O(n log n)-Space Decision Procedure for Intuitionis-

tic Propositional Logic, Journal of Logic and Computation, vol. 3(1)

(1993), pp. 63–75, DOI: http://dx.doi.org/10.1093/logcom/3.1.63.

[6] H. Ishihara, H. Schwichtenberg, Embedding classical in minimal impli-

cational logic, Mathematical Logic Quarterly, vol. 62(1–2) (2016),

pp. 94–101, DOI: http://dx.doi.org/10.1002/malq.201400099.

[7] I. Johansson, Der Minimalkalkül, ein reduzierter intuitionistischer Formal-

ismus, Compositio Mathematica, vol. 4 (1937), pp. 119–136, URL:

http://www.numdam.org/item/CM 1937 4 119 0.

[8] C. H. Papadimitriou, Computational complexity, Addison-

Wesley (1994).

[9] D. Prawitz, Natural Deduction: A Proof-theoretical Study, Almqvist

& Wiksell (1965).

[10] D. Prawitz, P.-E. Malmnäs, A Survey of Some Connections Between Classi-

cal, Intuitionistic and Minimal Logic, [in:] H. A. Schmidt, K. Schütte, H.-J.
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Appendix: rough complexity estimate

Dag-like proof system NM→

We regard NM→ as NM[
→ without separation rule (S). Moreover, without

loss of generality we suppose that dag-like NM→-deductions ∂ of root-

formulas ρ have polynomial total number of vertices |v (∂)| = O
(
|ρ|4
)

while the weights of formulas and the height numbers involved are bounded
by 2 |ρ| and |v (∂)|, respectively (cf. [3]).

Let LC (∂) and PROV (∂) be abbreviations for ‘∂ is locally correct ’ and
‘∂ proves ρ’, respectively, and let PROOF (∂) := LC (∂) & PROV (∂). We
wish to validate the assertion PROOF (∂) in polynomial time (and space)
by a suitable deterministic TM M . For technical reasons we choose a
formalization of ∂ in which edges are redefined as pairs 〈parent, child〉.
Let ρ, χρ ∈ {i, e}, a = 2 |ρ| and 0 < r < b = O

(
|ρ|4
)

be fixed.

Input of M : List t consisting of tuples t (x) = [x, y1, y2, h, h1, h2, χ, γ,
β1, β2], for all 0 < x ≤ b, where χ ∈ {r, i, e, l} (l stands for ‘leaf’),
while x, y1, y2 ≤ b, h, h1, h2 ≤ b and γ, β1, β2 ≤ a are natural numbers (in
binary) which are thought to encode nodes, nodes’ heights and formulas,
respectively (0 encodes ∅).

The weight of t is O
(
|ρ|4 log |ρ|

)
< O

(
|ρ|5
)

. LC (∂) and PROV (∂)

are verified by M as follows while assuming that: x are parents of yi > 0,
h := h (x), hi := h (yi), γ := `f (x), βi := `f (yi) (i ∈ {1, 2}) and χ := `n (x)
if x is not a leaf, else χ := l.

Local correctness

LC (∂) is equivalent to conjunction of the following conditions 1–8 on t
that (according to above assumptions) uniquely determines the underlying
locally correct NM→-deduction ∂ by ascending induction on h.

http://dx.doi.org/10.1007/s00153-003-0179-x
http://dx.doi.org/10.1145/1039488.1039493
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1. If x = x′ then t (x) = t (x′).

2. If t (x) = [x, y1, y2, h, h1, h2, χ, γ, β1, β2] and x′ = yi > 0 (i ∈ {1, 2})
for t (x′) = [x′, y′1, y

′
2, h
′, h′1, h

′
2, χ
′, χ′1, χ

′
2, γ
′, β′1, β

′
2], then h′ = hi and

γ′ = βi.

3. If x = r then h = 0, γ = ρ and χ = χρ.

4. If χ = l then y1 = y2 = β1 = β2 = 0 [: case x ∈ l(∂)].

5. If χ 6= l then y1 + y2 > 0 and h1 = h2 = h+ 1.

6. If χ =r then y2 + β2 = 0 < y1 and γ = β1 [: rule (R)].

7. If χ = i then γ = α→ β1 (for some α) [: rule (→ I)].

8. If χ =e then β2 = β1 → γ [: rule (→ E)].

The verification of conditions 1–8 requires O
(
|ρ|5
)

iterations of basic

queries χ
?
= χ′, u

?
= v, δ

?
= σ, (∃?α) γ = α → β for χ, χ′ ∈ {r, i, e, l},

u, v ≤ b and β, γ, δ, σ ≤ a that are solvable in O (|ρ|) time (note that
α→ β =→αβ in the  Lukasiewicz prefix notation). Summing up there is a

deterministic TM M that verifies LC (∂) in O
(
|ρ|5 · |ρ|

)
= O

(
|ρ|6
)

time

and O
(
|ρ|5
)

space.

Assignment A

A given locally correct NM→-deduction ∂ determines an assignment

A : 0 < x ≤ b ↪→ A (x) ⊆ FOR (∂)

that is defined by the following recursive clauses 1–4 for input t satisfying
above conditions 1–8, where as above t (x) = [x, y1, y2, h, h1, h2, χ, γ, β1, β2],
for all 0 < x ≤ b.

1. A (x) := {γ} if χ = l.

2. A (x) := A (y1) if χ =r.

3. A (x) := A (y1) \ {α} if χ = i and γ = α→ β1.

4. A (x) := A (y1) ∪A (y2) if χ = e.
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The length of recursion 1–4 is b = O
(
|ρ|4
)

. Recursion steps produce

(say, sorted) lists of formulas A (x), |A (x)| ≤ b using set-theoretic unions
A ∪B and subtractions A \ {α}. Each recursion step requires O (b · |ρ|) =

O
(
|ρ|5
)

steps of computation. This yields upper bound O
(
|ρ|4 · |ρ|5

)
=

O
(
|ρ|9
)

for A (r)
?
= ∅. Thus PROV (∂) is verifiable in O

(
|ρ|9
)

time and

O (|ρ|) space. Hence by the above estimate of LC (∂) we can safely assume

that PROOF (∂) is verifiable by a deterministic TM M in O
(
|ρ|9
)

time

and O
(
|ρ|5
)

space.

Conclusion 2.12. There exist polynomials p, q, r of degrees 5, 9, 5, respec-
tively, and a deterministic boolean-valued TM M such that for any purely
implicational formula ρ the following holds: ρ is valid in minimal logic iff

there exists a u ∈ {0, 1}p(|ρ|) such that M (ρ, u) yields 1 after q (|ρ|+ |u|)
steps of computation in space r (|ρ|+ |u|). Analogous polynomial esti-
mates of the intuitionistic and/or classical propositional and even quan-
tified boolean validity are easily obtained by familiar syntactic interpreta-
tions within minimal logic (cf. e.g. [6, 10, 12]).

Remark 2.13. Recall that PROV (∂) is equivalent to theassertionthatmax-
imal threads in ∂ are closed. This in turn is equivalent to a variant of
non-reachability assertion: ‘r is not connected to any leaf z in a subgraph
of ∂ that is obtained by deleting all edges 〈x, y〉 with `n (x) = i and `f (x) =
`f (z) → `f (y)’, which we’ll abbreviate by PROV1(∂). Now PROV1(∂) is

verifiable by a deterministic TM in O (|v (∂)| · |e (∂)|) = O
(
|ρ|12

)
time

and O (|ρ| · |v (∂)|) = O
(
|ρ|5
)

space (cf. e.g. [8]). However this does not

improve our upper bound for PROOF (∂). Actually there are known much
better estimates of the reachability problem (cf. e.g. [13, 4]), but at this
stage we are not interested in a more precise analysis.
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