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Abstract

The dynamic epistemic logic for actual knowledge models the phenomenon of

actual knowledge change when new information is received. In contrast to the

systems of dynamic epistemic logic which have been discussed in the past litera-

ture, our system is not burdened with the problem of logical omniscience, that is,

an idealized assumption that the agent explicitly knows all classical tautologies

and all logical consequences of his or her knowledge. We provide a sound and

complete axiomatization for this logic.
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1. Introduction

During the mid-twentieth century, the attention of many logicians and
philosophers focused on epistemic modalities, and the first systems of epis-
temic logic were developed, such as those of Jerzy  Loś [10] and Arthur
Pap [11]. An interest in these systems was then heightened when Jaakko
Hintikka [5] applied the concept of possible worlds semantics to epistemic
operators. Originally, possible worlds semantics was formulated by Saul
Kripke [6, 7] for the logic of necessity and possibility. The semantics de-
veloped by Kripke has since been adapted to epistemic logic, prompting
the development of modal epistemic logics. Modal epistemic logics have
become not only helpful tools for the formalization of certain intuitions
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connected with the concepts of knowledge, belief and information; but have
also become a subject of interest to scientists in fields such as game theory,
computer science, cognitive science, decision theory, artificial intelligence
(AI) and cryptology.

The increase of interest in epistemic logic among representatives
of other scientific disciplines has lead to new goals for the application of
the logic of knowledge and beliefs. Epistemic logics started to be per-
ceived as formal systems whose aim is to capture the phenomenon of epis-
temic change as a result of the flow of information between various agents.
But standard modal epistemic logics have a clearly static character: they
model the agent’s information state at a given time, but do not enable us
to express how this state can change when new information is received.
Thus, the need to develop formal systems that allow for capturing the
phenomenon of epistemic change led to a dynamic turnover in epistemic
logic.

Dynamic epistemic logics are not free of the shortcomings typical of
standard epistemic logics. Both make use of possible worlds semantics, and
inherit its drawbacks. This concerns logical omniscience, i.e. the contro-
versial assumption underlying epistemic logics built on the basis of possible
worlds semantics, according to which the agent knows all classical (propo-
sitional) tautologies, and all logical consequences of his or her knowledge.

So far, at least a dozen different proposals have been made to solve the
problem of logical omniscience1. Many authors have recognized that this
problem illustrates the fact that epistemic logics do not model the actual
knowledge of agents (explicit knowledge), but only potential knowledge
(implicit knowledge), for which the discussed assumptions are not prob-
lematic (Levesque [8], Fagin, Halpern [2], van Benthem [1]). If standard
epistemic logic models potential knowledge, it is still an open question how
to develop a system that enables us to model actual knowledge. Ronald
Fagin and Joseph Y. Halpern [2] have constructed such a logic for actual
knowledge of non-omniscient agents. The main aim of this article is to
develop a dynamic epistemic logic that is built on the ideas formulated by
Fagin and Halpern. We present the axiomatization for such a system, we
propose a semantics for it and finally we prove the soundness and com-
pleteness theorem.

1The most important of these proposals are discussed in detail by Fagin et al. [3]
and Sim [15].
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2. Modal epistemic logics

The formal language of modal epistemic logics LMEL, is the common lan-
guage for a wide class of logics.

Definition 1. Let V ar denote the set of sentential variables and let Ag
denote the set of agents. The language of modal epistemic logics LMEL is
defined inductively as follows:

ϕ ::= p | ¬ϕ | ϕ→ ϕ | Kiϕ,

where p ∈ V ar and i ∈ Ag. The set of all LMEL formulas is denoted by
ΓLMEL

.

LMEL is an extension of the language of propositional logic with epistemic
operators Ki for every agent i ∈ Ag. The intended interpretation of Kiϕ
is “agent i knows that ϕ”. In the case where we are only dealing with
one agent, we can omit the index. Other classical logical constants can be
defined in the standard way.

The semantics of modal epistemic logics are constructed on the basis
of the semantics that Kripke [6, 7] proposed for the logic of possibility and
necessity.

Definition 2. An epistemic model is a structureM=(W, {Ri : i∈Ag} , v),
where

• W 6= ∅ is a set of epistemic states,

• Ag 6= ∅ is a set of agents,

• Ri ⊆W ×W is an epistemic accessibility relation for any i ∈ Ag,

• v : V ar 7→ P (W ) is a valuation function which to every p ∈ V ar
assigns the set of epistemic states in which p is true.

Definition 3. LetM = (W, {Ri : i ∈ Ag} , v) be an epistemic model. The
satisfiaction relation |= is defined inductively in the following way:

M, s |= p iff s ∈ v(p),
M, s |= ¬ϕ iff M, s 6|= ϕ,
M, s |= ϕ→ ψ iff if M, s |= ϕ, then M, s |= ψ,
M, s |= Kiϕ iff for all t ∈W : if (s, t) ∈ Ri, then M, t |= ϕ,

where p ∈ V ar, ϕ,ψ ∈ ΓLMEL
, and i ∈ Ag.

Definition 4. A formula ϕ ∈ ΓLMEL
is true in an epistemic model M =

(W, {Ri : i ∈ Ag} , v) whenever for any s ∈ W , M, s |= ϕ. We denote this
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by M |= ϕ. A formula ϕ ∈ ΓLMEL
is valid whenever for any epistemic

model M, M |= ϕ. We denote this by |= ϕ.

Let us start from the minimal modal epistemic logic which is denoted
as K.

Definition 5. A proof system for the logic K is given by the following
axiom schemes and inference rules:

all instantiations of propositional tautologies PC

Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ) K

The inference rules:

from ϕ→ ψ and ϕ infer ψ modus ponens

from ` ϕ infer ` Kiϕ Gödel’s rule for Ki

A formula is a K-theorem if it belongs to the least set of formulas that
contain all the axioms, and is closed under the inference rules. If ϕ is a
K-theorem, we write `K ϕ.

The axiom K states that the knowledge operator is closed under impli-
cation. This axiom is accepted in every system of modal epistemic logic.
A list of other familiar epistemic axioms is provided in Table 1.

Table 1. Axioms for knowledge

Name Axiom

D Kiϕ→ ¬Ki¬ϕ
T Kiϕ→ ϕ
4 Kiϕ→ KiKiϕ
5 ¬Kiϕ→ Ki¬Kiϕ

Proof systems for the epistemic logics stronger than K are obtained
by adding other axioms to the system. Table 2 lists the most important
of these logics. It should be emphasized that the S5 logic is generally
considered to be the standard epistemic logic. We get a proof system for
S5 by expanding the proof system for K with the axioms T, 4, and 5.
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Table 2. Some basic epistemic systems

Name Axioms Properties of Ri

KD K ∪ {D} serial
T K ∪ {T} reflexive
S4 T ∪ {4} reflexive, transitive
S5 S4 ∪ {5} reflexive, symmetric, transitive

KD4 KD ∪ {4} serial, transitive
KD45 KD4 ∪ {5} serial, transitive, euclidean

The standard modal epistemic logics are sound and complete with re-
spect to classes of models whose accessibility relations have the properties
expressed in the first-order language, and specified in Table 2.

Theorem 1. Logic S5 is sound and complete with respect to the class of
all equivalence epistemic models, i.e. any formula ϕ ∈ ΓLMEL

is an S5-
theorem iff ϕ is true in all epistemic models, where the accessibility relations
are equivalence relations.

The corresponding theorems for other epistemic logics can be formulated
in the same way based on the content of Table 2. The logic K is sound
and complete with respect to the class of epistemic models with arbitrary
accessibility relations.

Epistemic logics based on possible worlds semantics suffer from the
problem of logical omniscience. The problem of logical omniscience is con-
nected to two rules of inference. This is the Gödel rule according to which
the agent knows all theorems of a given epistemic logic, including all clas-
sical propositional tautologies, and the monotonicity rule which may be
formulated in the following way:

if ` ϕ→ ψ, then ` Kiϕ→ Kiψ.

This rule is a consequence of the application of the Gödel rule and the rule
of modus ponens to the axiom K. It implies that the agent knows all logical
consequences of his or her knowledge. In some applications of epistemic
logics, e.g. in epistemology and game theory, representing the knowledge
of agents with unlimited deductive abilities may be accepted as a justified
idealization. But in the case of representing knowledge of real cognitive
agents, these unrealistic assumptions are undesirable.
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3. The Fagin and Halpern logic

In order to solve the problem of logical omniscience, Fagin and Halpern [2]
propose to add a new epistemic operator to the standard, modal epistemic
logic: an awareness operator. The set of formulas of such an extended
language is characterized in accordance with the following definition.

Definition 6. Let V ar be the set of sentential variables, and let Ag be the
set of agents. The language of the modal epistemic logics with awareness
operator LMEL-A is defined inductively as follows:

ϕ ::= p | ¬ϕ | ϕ→ ϕ | Kiϕ | Aiϕ,

where p ∈ V ar and i ∈ Ag. The set of all LMEL-A formulas is denoted by
ΓLMEL-A

.

The intended interpretation of Aiϕ is “the agent i is aware that ϕ” or “the
agent i is informed that ϕ”2. The Ai operator can be applied to a formula
independently of the Ki operator.

Fagin and Halpern [2] note that if an agent knows something, then the
agent cannot be completely unaware of it. For this reason, the authors
introduce a distinction between potential and actual knowledge. The po-
tential knowledge is modeled by the operator Ki for any i ∈ Ag, while we
are concerned with the actual knowledge that ϕ, when ϕ is a subject of
potential knowledge and the agent is aware that ϕ. Thus, we have a new
epistemic operator – the actual knowledge operator defined in the language
LMEL-A for any formula ϕ and any agent i ∈ Ag as follows:

Eiϕ
def
= Aiϕ ∧Kiϕ.

The semantics for LMEL-A is a modified version of the semantics for
LMEL.

Definition 7. A model of LMEL-A is the epistemic model of Definition 2
with the awareness function: M = (W, {Ri : i ∈ Ag} , {Ai : i ∈ Ag} , v),
where Ai : W 7→ P (ΓLMEL-A

) is the awareness function for any i ∈ Ag.

2The philosophical aspects of the awareness approach are discussed in detail by Sillari
[14].
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Definition 8. Let M = (W, {Ri : i ∈ Ag} , {Ai : i ∈ Ag} , v) be an epis-
temic model with the awareness function and let i ∈ Ag. Then Definition 3
is extended with the following condition:

M, s |= Aiϕ iff ϕ ∈ Ai(s).

Referring to this definition and the way the Ei operator was defined for any
i ∈ Ag, we get the following condition for the actual knowledge operator:

M, s |= Eiϕ iff ϕ ∈ Ai(s) and for all t ∈ W : if (s, t) ∈ Ri, then
M, t |= ϕ.

Let L denote the modal epistemic logic, while L-A denotes its exten-
sion obtained by adding to the proof system of L all formulas which are
instantiations of the following schema:

Eiϕ↔ (Aiϕ ∧Kiϕ).

Fagin and Halpern [2, p. 67] proved the soundness and completeness of
KD45-A logic with respect to the above-mentioned semantics with the
awareness function3. The soundness and completeness of S5-A can be
proved in a completely analogous fashion.

Theorem 2. Logic S5-A is sound and complete with respect to the class
of all equivalence epistemic models with the awareness function, i.e. any
formula ϕ ∈ ΓLMEL-A

is an S5-A-theorem iff ϕ is true in all epistemic
models with the awareness function, where the accessibility relations are
equivalence relations.

It should be noted that the E operator does not behave like a normal
modal operator. In particular, the formula Ei(p ∨ ¬p) is not valid in epis-
temic logics with awareness, because agents may not realize that p ∨ ¬p.
There is also no equivalence between the formulas Ei(p∧ q) and Ei(q∧ p),
because we may want to model the knowledge of an agent who does not
have to see the equivalence relation between the formulas p∧q and q∧p. The
equivalence of Axiom 4 and 5 do not have to apply to the actual knowledge
– although, of course, it is possible to add such axioms to the proof systems.
Neither (Eiϕ ∧AiEiϕ)→ EiEiϕ, nor (¬Eiϕ ∧Ai¬Eiϕ)→ Ei¬Eiϕ has to
be valid in Fagin and Halpern’s logic. It should be emphasized, however,

3The authors use the concepts of knowledge and belief interchangeably. They work
primarily on the logic KD45-A, because the acceptance of the T axiom for beliefs is
not justified.
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that some properties of explicit knowledge are equivalent to properties of
implicit knowledge. The schema for actual knowledge equivalent to the K
axiom is (Eiϕ ∧ Ei(ϕ→ ψ) ∧Aiψ)→ Eiψ. The rule corresponding to the
Gödel rule has now the following form: if ` ϕ, then ` Aiϕ→ Eiϕ.

Obviously, actual knowledge will have additional properties once we
put some further restrictions on the awareness function. For example, the
fact that the order of presentation of the conjuncts does not matter can be
captured by the axiom Ai(ϕ ∧ ψ) ↔ Ai(ψ ∧ ϕ), and in systems satisfying
this restriction Ei(ϕ ∧ ψ) ↔ Ei(ψ ∧ ϕ) is a valid formula. The fact that
an agent is aware of a formula if and only if he is aware of its negation
can be captured by the axiom Aiϕ↔ Ai¬ϕ, and in systems satisfying this
restriction Eiϕ↔ Ei¬¬ϕ is valid.

4. Dynamic epistemic logic for non-omniscient agents

Our goal will be to construct a dynamic epistemic logic for actual knowl-
edge of non-omniscient agents. Although similar motivations have been
formulated by Rasmussen [13], the author developed his system only from
an axiomatic point of view and has not provided a model theory for his
logic.

In the case of the epistemic logics discussed so far, we have considered
only static semantics, and logics of this kind do not allow for modeling
the phenomenon of the agent’s knowledge change when new information is
received. Dynamic logics, starting from the logic of public announcements
presented by Plaza [12] and Gerbrandy and Groeneveld [4], enable us to
model the phenomenon of knowledge change.

The main idea associated with modeling updated knowledge is that
whenever an agent receives new information, all epistemic states that are
contradictory with this information are removed from an epistemic model
that represents the agent’s knowledge before the new information is re-
ceived. The new information causes a transition from a certain initial
epistemic model to its sub-model, that is, a model bounded by this new in-
formation. This is best illustrated by the so-called Muddy Children Puzzle,
which comes from the book written by Littlewood (1953).

Example 1. Three children come back home after playing in the garden.
During the game, children could get mud on their foreheads. Each child



The Dynamic Epistemic Logic for Actual Knowledge 87

sees the foreheads of the other two, however no child can see his or her own
forehead. Father arranges the children in a row, and then says:

Father: At least one of you has a dirty forehead.

After this announcement he asks:

Father: If you know whether your forehead is dirty, then step forward

None of the children step forward. Father repeats himself a second time.
Again nothing happens. Yet, when the father repeats himself for a third
time, all of the remaining children step forward.
Let us assume that we have the following trio of children: a, b, c. We will
use propositional variables pa, pb, pc to denote that relevant children have
dirty foreheads. The graphical representation of the initial model of this
situation is shown in Figure 1. The relation of accessibility in this model is
reflexive, but the arrows symbolising this fact are left out from the figures
in order to achieve better graphical clarity.
The sequence of epistemic interactions begins from the father’s first an-
nouncement: “At least one of you has a dirty forehead”, which means that
pa∨pb∨pc holds. Let us note thatM, 7 6|= pa∨pb∨pc. Therefore world 7 is
contradictory to the introduced information and should be eliminated. We
leave it to the reader to analyze consequences of the remaining announce-
ments and to solve the puzzle.

Definition 9. Let M = (W, {Ri : i ∈ Ag} , {Ai : i ∈ Ag} , v) be an epis-
temic model with the awareness function. The updated model by the new
information ϕ is defined as a tupleM|ϕ=(W ′, {R′i : i∈Ag} , {A′i : i∈Ag} , v′),
where:

W ′ = {s ∈W :M, s |= ϕ},
R′i = Ri ∩ (W ′ ×W ′), for any i ∈ Ag,

A′i = A|W ′ , for any i ∈ Ag,

v′(p) = v(p) ∩W ′, for any p ∈ V ar.

In other words, the model M|ϕ is the model M restricted to all those
epistemic states where ϕ holds.

To express that a sentence is true as a result of an announcement,
we expand the language LMEL−A by the dynamic operator [ϕ]ψ for any
formulas ϕ,ψ ∈ ΓLMEL-A

.
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Fig. 1. Model M (initial model)

Definition 10. Let V ar be the set of sentential variables and let Ag be the
set of agents. The language of dynamic epistemic logic with the awareness
operator LDEL-A is defined inductively as follows:

ϕ ::= p | ¬ϕ | ϕ→ ϕ | Kiϕ | Aiϕ | [ϕ]ϕ,

where p ∈ V ar and i ∈ Ag. The set of all LDEL-A formulas is denoted by
ΓLDEL-A

.

The narrow interpretation of the formula [ϕ]ψ is “after a public an-
nouncement ϕ, it holds that ψ”. However, the default interpretation of the
dynamic operator is wider, and [ϕ]ψ should be read as “after an epistemic
update with ϕ, it holds that ψ” or simply “after obtaining information ϕ, it
holds that ψ”. Thus, one may get the updated epistemic model not only as
a result of public announcements but also as a result of other acts, such as
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observation or positive verification. Depending on the context, a formula
[ϕ]ψ can be interpreted, for example, as “after the observation that ϕ, it
holds that ψ” or “after publicly verifying the truth of ϕ, it holds that ψ”.

Definition 11. Let M = (W, {Ri : i ∈ Ag} , {Ai : i ∈ Ag} , v) be an epis-
temic model with the awareness function and let s ∈W . Then Definition 8
is extended with the following condition:

M, s |= [ϕ]ψ iff if M, s |= ϕ, then M|ϕ, s |= ψ,

where M|ϕ is a model M restricted to all those epistemic states where ϕ
holds.

We propose the following proof system for the logic DEL-A, i.e. the
dynamic epistemic logic for actual knowledge of non-omniscient agents.

Definition 12. A proof system for the logic DEL-A with the operators
Ki and Ai for any i ∈ Ag, and the dynamic operator [ ] is given by the
following axioms and inference rules:

all instantiations of propositional tautologies

Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

Kiϕ→ ϕ

Kiϕ→ KiKiϕ

¬Kiϕ→ Ki¬Kiϕ

Eiϕ↔ (Aiϕ ∧Kiϕ)

[ϕ]p↔ (ϕ→ p)

[ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

[ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)

[ϕ]Kiψ ↔ (ϕ→ Ki[ϕ]ψ)

[ϕ]Aiψ ↔ (ϕ→ Aiψ)

[ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ

The inference rules:

from ϕ→ ψ and ϕ infer ψ modus ponens

if ` ϕ, then ` Kiϕ Gödel’s rule for Ki

if ` ϕ, then ` [ψ]ϕ, for any ψ ∈ ΓLDEL−A
Gödel’s rule for [ ]
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Let us note that the axioms for the dynamic operator extending the axioms
of the S5-A logic to the axioms of the DEL-A logic enable us to eliminate
announcements, one by one, from a formula of the language LDEL-A, by
giving a logically equivalent formula without announcements.

To prove the soundness and completeness theorems for the logic
DEL-A, we shall define a translation function t : ΓLDEL-A

7→ ΓLMEL-A

which will enable us to translate any formula of the language of dynamic
epistemic logic with the awareness operator into a formula of static epis-
temic logic with such an operator.

Definition 13. The translation function t : ΓLDEL-A
7→ ΓLMEL-A

is defined
as follows:

t(p) = p,
t(¬ϕ) = ¬t(ϕ),
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ),
t(Kiϕ) = Kit(ϕ),
t(Aiϕ) = Ait(ϕ),
t([ϕ]p) = t(ϕ→ p),
t([ϕ]¬ψ) = t(ϕ→ ¬[ϕ]ψ),
t([ϕ](ψ ∧ χ)) = t([ϕ]ψ ∧ [ϕ]χ),
t([ϕ]Kiψ) = t(ϕ→ Ki[ϕ]ψ),
t([ϕ]Aiψ) = t(ϕ→ Aiψ),
t([ϕ][ψ]χ) = t([ϕ ∧ [ϕ]ψ]χ).

In the next step, we shall define a measure of complexity of formulas of
the language LDEL-A, that is, the function that assigns a natural number
to each formula of that language.

Definition 14. The complexity measure m : ΓLDEL-A
7→ N is defined in

the following way:

m(p) = 1,
m(¬ϕ) = 1 +m(ϕ),
m(ϕ ∧ ψ) = 1 +max(m(ϕ),m(ψ)),
m(Kiϕ) = 1 +m(ϕ),
m(Aiϕ) = 1 +m(ϕ),
m([ϕ]ψ) = (4 +m(ϕ)) ·m(ψ).



The Dynamic Epistemic Logic for Actual Knowledge 91

The choice of such values for the complexity measure of formulas of the
language LDEL-A seems arbitrary, but it allows us to prove the following
lemma:

Lemma 1. For all ϕ,ψ, χ ∈ ΓLDEL-A
:

(i) m(ψ) ≥ m(ϕ), if ϕ is a sub-formula of ψ,

(ii) m([ϕ]p) > m(ϕ→ p),

(iii) m([ϕ]¬ψ) > m(ϕ→ ¬[ϕ]ψ),

(iv) m([ϕ](ψ ∧ χ)) > m([ϕ]ψ ∧ [ϕ]χ),

(v) m([ϕ]Kiψ) > m(ϕ→ Ki[ϕ]ψ),

(vi) m([ϕ]Aiψ) > m(ϕ→ Aiψ),

(vii) m([ϕ][ψ]χ) > m([ϕ ∧ [ϕ]ψ]χ).

Proof: By induction on the complexity of a formula.

(i) Proof by induction on ψ. In the base step, it is enough to note that if
ψ is a sentential variable, then m(ψ) = 1. In this case m(ψ) ≥ m(ψ) holds.
Let us assume the following inductive hypothesis: m(ψ) ≥ m(ϕ) if ϕ is a
sub-formula of ψ, and m(χ) ≥ m(ϕ) if ϕ is a sub-formula of χ.

(Case of negation) Suppose that ϕ is a sub-formula of ¬ψ. Then ϕ = ψ
or ϕ is a sub-formula of ψ. In the first case, the theorem holds
because m(ϕ) = m(ψ) < m(ψ) + 1 = m(¬ψ). In the second case,
we have m(ψ) ≥ m(ϕ) due to the inductive hypothesis. Therefore,
m(¬ψ) = m(ψ) + 1 ≥ m(ϕ).

(Case of conjunction) Let us assume that ϕ is a sub-formula of ψ∧χ. Then
ϕ = ψ ∧ χ or ϕ is a sub-formula of ψ or χ. In the first case, trivially
m(ψ ∧ χ) ≥ m(ϕ). Let us consider the second case and assume
that ϕ is a sub-formula of ψ. Then, from the inductive hypothesis,
m(ψ) ≥ m(ϕ) and consequently m(ψ ∧ χ) = 1 + max(m(ψ),m(χ)) >
m(ψ) ≥ m(ϕ). If ϕ is a sub-formula of χ, then by analogy we get
m(ψ ∧ χ) ≥ m(ϕ).

(Case of the operators Ki and Ai) By analogy to the case of negation.

(Case of the dynamic operator) Let us assume that ϕ is a sub-formula of
ψ[χ]. Then ϕ = [ψ]χ or ϕ is a sub-formula of ψ or χ. In the first
case, m([ψ]χ) ≥ m(ϕ). Let us consider the second case, and assume
that ϕ is a sub-formula of ψ. Since we know that m([ψ]χ) = (4 +
m(ψ)) ·m(χ) and m(χ) ≥ 1, from the inductive hypothesis it follows
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that m(ψ) ≥ m(ϕ), therefore m([ψ]χ) ≥ m(ϕ). By analogy, we get
m([ψ]χ) ≥ m(ϕ), when ϕ is a sub-formula of χ.

(ii) Since m([ϕ]p) = (4 + m(ϕ)) · m(p) = 4 + m(ϕ), and m(ϕ → p) =
m(¬(ϕ∧¬p)) = 1+m(ϕ∧¬p) = 1+max(m(ϕ),m(¬p)) = 1+max(m(ϕ), 2),
therefore m(ϕ→ p) = 1+m(ϕ) or m(ϕ→ p) = 3. In both cases m([ϕ]p) >
m(ϕ→ p).

(iii) Since m([ϕ]¬ψ) = (4 + m(ϕ)) ·m(¬ψ) = (4 + m(ϕ)) · (1 + m(ψ)) =
4+m(ϕ)+4·m(ψ)+m(ϕ)·m(ψ), and m(ϕ→ ¬[ϕ]ψ) = m(¬(ϕ∧¬¬[ϕ]ψ)) =
1 + m(ϕ ∧ ¬¬[ϕ]ψ) = 2 + max(m(ϕ),m(¬¬[ϕ]ψ)) = 2 + max(m(ϕ), 2 +
((4+m(ϕ)) ·m(ψ))) = 2+max(m(ϕ), 2+4 ·m(ψ)+m(ϕ) ·m(ψ)), therefore
m(ϕ→ ¬[ϕ]ψ) = 2 +m(ϕ) or m(ϕ→ ¬[ϕ]ψ) = 4 + 4 ·m(ψ) +m(ϕ) ·m(ψ).
In both cases m([ϕ]¬ψ) > m(ϕ→ ¬[ϕ]ψ).

(iv) Let us assume that m(ψ) ≥ m(χ). Since m([ϕ](ψ ∧ χ)) = (4 +
m(ϕ)) · m(ψ ∧ χ) = (4 + m(ϕ)) · (1 + max(m(ψ),m(χ))) = (4 + m(ϕ)) ·
(1 + m(ψ)) = 4 + m(ϕ) + 4 ·m(ψ) + m(ϕ) ·m(ψ), and m([ϕ]ψ ∧ [ϕ]χ) =
1 + max(m([ϕ]ψ),m([ϕ]χ)) = 1 + max((4 + m(ϕ)) · m(ψ), (4 + m(ϕ)) ·
m(χ)) = 1 + ((4 + m(ϕ)) ·m(ψ)) = 1 + 4 ·m(ψ) + m(ϕ) ·m(ψ), therefore
m([ϕ](ψ∧χ)) > m([ϕ]ψ∧[ϕ]χ). The case where m(χ) ≥ m(ψ) is analogous.

(v) and (vi) are proved in an analogous way to the proof of (iii).

(vii) Since m([ϕ][ψ]χ) = (4 +m(ϕ)) ·m([ψ]χ) = (4 +m(ϕ)) · ((4 +m(ψ)) ·
m(χ)) = ((4+m(ϕ)) ·(4+m(ψ))) ·m(χ) = (16+4 ·m(ϕ)+4 ·m(ψ)+m(ϕ) ·
m(ψ)) ·m(χ), and m([ϕ ∧ [ϕ]ψ]χ) = (4 +m(ϕ ∧ [ϕ]ψ)) ·m(χ) = (4 + (1 +
max(m(ϕ), (4+m(ϕ)) ·m(ψ)))) ·m(χ) = (5+((4+m(ϕ)) ·m(ψ))) ·m(χ) =
(5 + 4 ·m(ψ) +m(ϕ) ·m(ψ)) ·m(χ), therefore m([ϕ][ψ]χ) > m([ϕ∧ [ϕ]ψ]χ).
�

Making use of Lemma 1, we can prove that each formula of LDEL-A is
equivalent to its translation in the logic DEL-A.

Lemma 2. For any formula ϕ ∈ ΓLDEL-A
it holds that `DEL-A ϕ↔ t(ϕ).

Proof: We conduct a proof by induction on m(ϕ). In the base case,
i.e. when ϕ is a sentential variable, according to Definition 13, t(p) = p
and since by Definition 12 all instances of propositional tautologies are
theorems of DEL-A, we obtain `DEL-A p↔ p. Let us assume the following
inductive hypothesis: for any formula ψ such that m(ψ) ≤ n, it holds that
`DEL-A ψ ↔ t(ψ).
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(Case of negation) Let us assume that ϕ is a formula of the form ¬ψ such
that m(¬ψ) = n + 1. Then m(ψ) = n. Therefore, by the inductive
hypothesis, `DEL-A ψ ↔ t(ψ). Hence, `DEL-A ¬ψ ↔ ¬t(ψ). Finally,
according to Definition 13, ¬t(ψ) = t(¬ψ), so `DEL-A ¬ψ ↔ t(¬ψ).

(Case of conjunction) Let us assume that ϕ is a formula of the form ψ∧χ,
such that m(ψ ∧ χ) = n + 1. Referring to Lemma 1(i) and Defini-
tion 14, we get m(ψ) ≤ n and m(χ) ≤ n. Therefore, by virtue of
the inductive hypothesis, `DEL-A ψ ↔ t(ψ) and `DEL-A χ ↔ t(χ).
Therefore, `DEL-A (ψ ∧χ)↔ (t(ψ)∧ t(χ)). Finally, by Definition 13,
`DEL-A (ψ ∧ χ)↔ t(ψ ∧ χ).

(Case of the operators Ki and Ai) By analogy to the case of negation.

(Case of the dynamic operator) Let us assume that ϕ is a formula of the
form [ψ]p, such that m([ψ]p) = n + 1. By virtue of Lemma 1(ii),
m([ψ]p) > m(ψ → p). Hence, m(ψ → p) ≤ n, and by virtue of
the inductive hypothesis, `DEL-A (ψ → p) ↔ t(ψ → p). It follows
from the DEL-A axioms that `DEL-A [ψ]p ↔ (ψ → p). Therefore,
`DEL-A [ψ]p ↔ t(ψ → p), and according to Definition 13, `DEL-A

[ψ]p↔ t([ψ]p). The cases where ϕ takes the form of [ψ]¬χ, [ψ]χ ∧ ξ,
[ψ]Kiχ, [ψ]Aiχ and [ψ][χ]ξ, are proved in an analogous way, referring
to the corresponding points of Lemma 1, the inductive hypothesis, the
axioms of the DEL-A logic and Definition 13. �

Our Lemma 2 is crucial for proving the completeness theorem for the
DEL-A logic.

Theorem 3. Logic DEL-A is sound and complete with respect to the class
of all equivalence epistemic models with the awareness function, i.e. any
formula ϕ ∈ ΓLDEL-A

is a DEL-A theorem iff ϕ is true in all epistemic
models with the awareness function, where the accessibility relations are
equivalence relations.

Proof: (→) The soundness follows from the axioms which are shown to be
valid and the rules of inference which are validity-preserving. The validity
of the axioms without the dynamic operator is guaranteed by the sound-
ness of the logic S5-A. As an illustration of the validity of the remaining
axioms we shall prove that |=DEL-A [ϕ]Aiψ ↔ (ϕ→ Aiψ).
Let M = (W, {Ri : i ∈ Ag} , {Ai : i ∈ Ag} , v) be a model of the logic
DEL-A and let s ∈ W be such that M, s |= [ϕ]Aiψ. We shall show
that M, s |= ϕ→ Aiψ. Let us assume that M, s |= ϕ. Then, according to
Definition 11, we have M|ϕ, s |= Aiψ, which implies M, s |= Aiψ.
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Let M = (W, {Ri : i ∈ Ag} , {Ai : i ∈ Ag} , v) be a model of the logic
DEL-A and let s ∈ W be such that M, s |= ϕ → Aiψ. We shall
show that M, s |= [ϕ]Aiψ. Let us assume that M, s |= ϕ, which im-
plies that M, s |= Aiψ. Since M, s |= ϕ, then s ∈ M|ϕ. Since s ∈ M|ϕ
and M, s |= Aiψ, then finally M|ϕ, s |= Aiψ. This proves that |=DEL-A

[ϕ]Aiψ ↔ (ϕ→ Aiψ).

(←) In order to prove completeness, let us assume that ϕ is DEL-A-
valid, i.e. |=DEL-A ϕ. According to Lemma 2, `DEL-A ϕ ↔ t(ϕ). Hence,
from the soundness, |=DEL-A ϕ ↔ t(ϕ). Therefore, if |=DEL-A ϕ, then
|=DEL-A t(ϕ). Since t(ϕ) does not contain the dynamic operator, we have
|=S5-A t(ϕ), and according to Theorem 2, `S5-A t(ϕ). This implies that
`DEL-A t(ϕ), because the axioms of the logic DEL-A contain the axioms
of S5-A. Hence, if `DEL-A t(ϕ) and `DEL-A ϕ↔ t(ϕ), then `DEL-A ϕ. �

5. Summary

The problem of logical omniscience is a drawback not only of static epis-
temic logics, but also of dynamic epistemic logics. If those systems of logic
are considered to model the concept of potential knowledge represented by
the operator Ki for any agent i, then modeling actual knowledge remains
an open question. This is an interesting problem, since the possible worlds
semantics account has proven to be a highly successful framework for mod-
eling not only epistemic notions such as knowledge, belief and information,
but also the act of epistemic change. Since the possible worlds semantics
framework has been widely adopted not only by philosophers, but also by
computer and cognitive scientists, linguists, and artificial intelligence re-
searchers, it is desirable to establish a dynamic model theory of knowledge
that solves the problem of logical omniscience. In this article we showed
that it is possible to construct a system of dynamic epistemic logic for
actual knowledge of non-omniscient agents. We presented a proof system
and a natural semantics for such a logic, and finally we proved the sound-
ness and completeness theorem. In our system, actual knowledge will have
additional properties once we apply some further restrictions on the aware-
ness function, so it may be seen as a general framework of representing
the actual knowledge change for different, more or less logically competent,
agents. An open problem is extending the logic DEL-A in such a way that
enables us to model the notion of common knowledge.
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