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ONE-SIDED SEQUENT SYSTEMS FOR
NONASSOCIATIVE BILINEAR LOGIC: CUT

ELIMINATION AND COMPLEXITY

Abstract

Bilinear Logic of Lambek amounts to Noncommutative MALL of Abrusci. Lam-
bek proves the cut–elimination theorem for a one-sided (in fact, left-sided) se-
quent system for this logic. Here we prove an analogous result for the nonassocia-
tive version of this logic. Like Lambek, we consider a left-sided system, but the
result also holds for its right-sided version, by a natural symmetry. The treat-
ment of nonassociative sequent systems involves some subtleties, not appearing
in associative logics. We also prove the PTime complexity of the multiplicative
fragment of NBL.

Keywords: Substructural logic, Lambek calculus, nonassociative linear logic, se-
quent system, PTime complexity.

1. Introduction

Multiplicative-Additive Linear Logic (MALL) was introduced by Girard
[8]. Noncommutative MALL (where product ⊗ is noncommutative) is due
to Abrusci [1]. This logic, presented as a one-sided (precisely: left-sided1)
sequent system was studied by Lambek [10] under the name: Classical
Bilinear Logic. Lambek proved the cut–elimination theorem for this system
in a syntactic way.

1Two-sided systems admit sequents Γ⇒ ∆, right-sided ⇒ ∆, left-sided Γ⇒
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The present paper studies an analogous system for Nonassociative Bilin-
ear Logic (NBL), being a version of Bilinear Logic with nonassociative ⊗.
Some related logics, restricted to multiplicative connectives and not ad-
mitting multiplicative constant (nor the corresponding unit elements in
algebraic models), were studied in [5, 3] under the name: Classical Nonas-
sociative Lambek Calculus (CNL). CNL contains one (cyclic) negation ∼,
satisfying a∼∼ = a in algebras. Buszkowski [4] considers a weaker logic,
called Involutive Nonassociative Lambek Calculus (InNL), with two nega-
tions ∼,−, satisfying a−∼ = a = a∼−.

Here we provide a syntactic proof of the cut–elimination theorem for
one-sided systems of NBL in the language ⊗,⊕,∼,−,∧,∨, 0, 1 (also ⊥,>).
Our notation is different from that of [8, 1]. In particular, we write ⊕ for
coproduct (par), ∨ for additive disjunction and 0 for ⊥, following standards
of substructural logics [6]. ⊗,⊕,∼,−, 0, 1 are reffered to as multiplicative
connectives and contants, while ∧,∨,⊥,> as additive ones. In algebras, 1
(resp. 0) is interpreted as the unit element for product (resp. coproduct),
∧ (resp. ∨) as meet (resp. join) in a lattice and ⊥ (resp. >) as the least
(resp. the greatest) element.

We follow the path presented in [4]. NBL is InNL extended by the
multiplicative constants and additive connectives. All the statements and
proofs in this paper are similar to these in [4], so we skip the parts that
are identical and focus on the differences. The crucial difference is that
Buszkowski [4] considers only sequents consisting of at least two formulas,
which makes the proofs much simpler. Here we consider all nonempty
sequents.

We write a complete proof of the cut–elimination theorem for a left-
sided system (a nonassociative version of the system from [10]) without
⊥,> (these constants are added in the subsection 4.1). In subsection 4.2
we obtain an analogous result for a right-sided system, using a natural
symmetry of both systems.

InNL is a conservative extension of Nonassociative Lambek Calculus
(NL), due to Lambek [9]; see [5, 3]. It can be shown that NBL is a con-
servative extension of NL with 1 (NL1). These logics have applications in
linguistics as type logics for categorial grammars [10, 5, 3] and seem quite
natural from the perspective of modal logics, where ⊗ can be regarded as
a binary possibility operator.
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NL and NL1 are usually presented as intuitionistic systems with se-
quents Γ ⇒ A; in NL Γ must be nonempty. The syntax of the left-sided
system for NBL is quite similar to that of NL1 (in a richer language).

The proof of cut elimination for nonassociative logics is roughly sim-
ilar to those for associative linear logic [1, 8, 9], but the nonassociative
framework involves some new subtleties. For instance, the rule (r-shift),
expressing the algebraic compatibility condition (see below), must be re-
placed by weaker rules. In the resulting system (r-shift) and two rules for
∼∼ and −− are shown to be admissible (Lemmas 2.2 and 2.4), which is
essentially used in the final proof (Theorem 1). Our proof partially follows
that from [4] for InNL, but the richer language makes it more complicated.

In our sequent systems, negations appear at variables only (so we con-
sider formulas in negation normal form). Negations of arbitrary formulas
are defined in metalanguage. Some systems with negations of formulas in
the language were considered in [2] (right-sided) and [6] (two-sided). The
system from [2] does not have the subformula property. That from [6] uses
sequents Γ⇒ ∆. The cut–elimination theorem for this system is proved in
[6] by algebraic methods.

Having the cut–elimination theorem, we can prove the decidability of
NBL. In the last section we show that the multiplicative fragment of NBL
(MNBL) is PTime. The algorithm essentially uses cut elimination. An
analogous result for InNL is given in [4].

By atoms in NBL-language we mean two constants: 0 and 1, and p(n),
where p is any variable and n ∈ Z. By p(n) we denote p∼∼···∼, where ∼
is iterated n times, if n ≥ 0, and p−−···−, where − is iterated −n times, if
n < 0. ∼ and − are involutive negations in NBL, but we do not consider
them as connectives, because they occur only with non-constant atoms. It
means that the formulas are in negation normal form. The connectives are:
⊗ (product), ⊕ (coproduct), ∧ (meet) and ∨ (join).

We define metalanguage negations for every NBL-formula:

0∼ = 1 0− = 1 1∼ = 0 1− = 0

(p(n))∼ = p(n+1) (p(n))− = p(n−1)

(A⊗B)∼ = B∼ ⊕A∼ (A⊗B)− = B− ⊕A−

(A⊕B)∼ = B∼ ⊗A∼ (A⊕B)− = B− ⊗A−
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(A ∧B)∼ = A∼ ∨B∼ (A ∧B)− = A− ∨B−

(A ∨B)∼ = A∼ ∧B∼ (A ∨B)− = A− ∧B−

One shows: A∼− = A−∼ = A by induction on formulas.

Definition 1.1. We define bunches:

(i) The empty bunch ε is a bunch.

(ii) Every formula is a bunch.

(iii) If Γ and ∆ are bunches, then (Γ,∆) is also a bunch.

We assume: (Γ, ε) = Γ = (ε,Γ). A sequent in NBL is every nonempty
bunch. We often omit outer parentheses in sequents and formulas.

A context is a bunch containing a special atomic formula x. Contexts
are denoted by capital Greek letters and square brackets, e.g. Γ[ ],∆[ ], etc.
By Γ[∆] we mean the substitution of ∆ for x in Γ[ ].

Now we briefly describe the algebraic models of NBL.

Definition 1.2. An algebra M = (M,⊗,∧,∨,∼,−, 1), where ⊗,∧,∨ are
binary operators, ∼,− are unary operators and 1 is a constant, is called a
lattice ordered (l.o.) involutive unital groupoid, if:

(i) (M,∧,∨) is a lattice;

(ii) (M,⊗, 1) is a unital groupoid;

(iii) if a⊗ b ≤ c, then c− ⊗ a ≤ b− and b⊗ c∼ ≤ a∼, for all a, b, c ∈M ;

(iv) a∼− = a−∼ = a, for all a ∈M .

In the above definition ≤ stands for the lattice order. We can prove for
all a, b ∈M that (b∼⊗a∼)− = (b−⊗a−)∼, so we define a⊕b = (b∼⊗a∼)−.
One proves that 1∼ = 1−, hence we define 0 = 1∼. One can define residuals
(implications) a \ b = a∼⊕ b, a/b = a⊕ b−, satisfying the residuation laws:
a⊗ b ≤ c iff a ≤ c/b iff b ≤ a \ c. One also gets a∼ = 0 \ a, a− = 0/a.

The condition (iii) is referred to as the compatibility condition. One
also proves the implications coverse to (iii).

if c− ⊗ a ≤ b−, then a⊗ b ≤ c

if b⊗ c∼ ≤ a∼, then a⊗ b ≤ c
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It follows from (iii) that negations are antitone: if a ≤ b, then b− ≤ a−
and b∼ ≤ a∼.

There hold De Morgan laws.

(a⊗ b)− = b− ⊕ a− (a ∧ b)− = a− ∨ b−

(a⊗ b)∼ = b∼ ⊕ a∼ (a ∧ b)∼ = a∼ ∨ b∼

(a⊕ b)− = b− ⊗ a− (a ∨ b)− = a− ∧ b−

(a⊕ b)∼ = b∼ ⊗ a∼ (a ∨ b)∼ = a∼ ∧ b∼

The following laws will be useful.

a− ⊗ (a⊕ b) ≤ b

(a⊕ b)⊗ b∼ ≤ a

b ≤ a∼ ⊕ (a⊗ b)

a ≤ (a⊗ b)⊕ b−

if a ≤ b, then a⊗ c ≤ b⊗ c and a⊕ c ≤ b⊕ c

if a ≤ b, then c⊗ a ≤ c⊗ b and c⊕ a ≤ c⊕ b

We define a valuation µ as a homomophism of the algebra of formu-
las into a l.o. involutive unital groupoid. We extend it to sequents by:
µ((Γ,∆)) = µ(Γ)⊗ µ(∆) and µ(ε) = 1.

We say that a sequent Γ is true in M for a valuation µ, if µ(Γ) ≤ 0; we
write M, µ |= Γ. A sequent is said to be valid, if it is true in all algebras
of this kind for all valuations.

2. Nonassociative Bilinear Logic

Now we present a one-sided sequent system for Nonassociative Bilinear
Logic.

We admit axioms:

(a-id) p(n), p(n+1) for any variable p and any n ∈ Z
(a-0) 0
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The rules of the cut-free NBL are:

(r-⊗) Γ[(A,B)]

Γ[A⊗B]

(r-⊕1) Γ[B] ∆, A

Γ[(∆, A⊕B)]
(r-⊕2) Γ[A] B,∆

Γ[(A⊕B,∆)]

(r-1)
Γ[∆]

Γ[(1,∆)]

Γ[∆]

Γ[(∆, 1)]

(r-∧) Γ[A]

Γ[A ∧B]

Γ[A]

Γ[B ∧A]
(r-∨) Γ[A] Γ[B]

Γ[A ∨B]

(r-shift)
(Γ,∆),Θ

Γ, (∆,Θ)

In this paper we show that the cut rules:

(cut∼)
Γ[A] ∆, A∼

Γ[∆]
(cut−)

Γ[A] A−,∆

Γ[∆]

are admissible in the cut-free NBL.
These axioms and rules are valid. By reflexivity of the lattice order we

have 0 ≤ 0, which is (a-0) and p(n) ≤ p(n), which can be easily transformed
into p(n)⊗p(n+1) ≤ 0 by the compatibility condition; (r-⊗) is sound by def-
inition of the valuation; (r-∧) and (r-∨) express the lattice order properties;
(r-1) is valid, because 1 is a neutral element of ⊗.

Rules (r-⊕1) and (r-⊕2) are sound because of the propeties a−⊗(a⊕b) ≤
b and (a⊕ b)⊗ b∼ ≤ a.

We prove that (r-shift) is sound. The following are equivalent:

(µ(Γ)⊗ µ(∆))⊗ µ(Θ) ≤ 0

0− ⊗ (µ(Γ)⊗ µ(∆)) ≤ (µ(Θ))−

1⊗ (µ(Γ)⊗ µ(∆)) ≤ (µ(Θ))−

µ(Γ)⊗ µ(∆) ≤ (µ(Θ))−

µ(∆)⊗ (µ(Θ))−∼ ≤ (µ(Γ))∼
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µ(∆)⊗ µ(Θ) ≤ (µ(Γ))∼

(µ(∆)⊗ µ(Θ))⊗ 0∼ ≤ (µ(Γ))∼

µ(Γ)⊗ (µ(∆)⊗ µ(Θ)) ≤ 0

The system with the cut-rules is strongly complete with respect to
l.o. involutive unital groupoids. We omit a routine proof, using Lindenbaum-
Tarski algebras.

Definition 2.1. By the active formula (resp. active bunch) of a rule we
denote the new formula (bunch) intruduced by this rule.

The rule (r-shift) would complicate our syntactic proof of cut elimina-
tion. In order to avoid that, we define an equivalent cut-free system, where
(r-shift) is replaced by the following rules:

(r-⊕3) A,Γ B,∆

A⊕B, (∆,Γ)
(r-⊕4) Γ, A ∆, B

(∆,Γ), A⊕B

We assume that both Γ and ∆ are nonempty. Otherwise (r-⊕3) and (r-⊕4)
are special cases of (r-⊕2) and (r-⊕1). One can notice that these rules are
just instances of (r-⊕2) and (r-⊕1) with (r-shift) applied to the conclusions.
We define the cut-free NBL0 as the cut-free NBL without (r-shift), but with
(r-⊕3) and (r-⊕4). `NBL0

stands for the provability in the cut-free NBL0.

Lemma 2.2. The rule (r-shift) is admissible in NBL0, i.e. `NBL0
(Γ,∆),Θ,

if and only if `NBL0
Γ, (∆,Θ).

Proof: We show only the left-to-right implication. The converse im-
plication is proved analogously. We assume ` (Γ1,Γ2),Γ3 and prove `
Γ1, (Γ2,Γ3) (for better readability, we skip the subscript NBL0, unless it is
necessary). We also assume that none of Γi, (i = 1, 2, 3) is empty. Other-
wise the claim is trivial. We run induction on the proof of (Γ1,Γ2),Γ3.

Firstly, one can easily notice that (Γ1,Γ2),Γ3 cannot be an axiom.
Hence it is the conclusion of a rule.

Let us consider (r-⊗), (r-∧) and (r-∨). All but the last one has only one
premise. The last one has two premises with the same context. The active
formula must occur in one of Γi, (i = 1, 2, 3). We apply the induction
hypothesis to the premise(s) and use again the same rule.

We consider (r-1). If the active bunch occurs in one of Γi we proceed
as above. We have only to consider the case when one of Γi equals 1. We
consider the following instances:
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Γ2,Γ3

(1,Γ2),Γ3

Γ1,Γ3

(Γ1, 1),Γ3

Γ1,Γ2

(Γ1,Γ2), 1

We replace the above instances by the following ones respectively, using
(r-1) in different variant if necessary:

Γ2,Γ3

1, (Γ2,Γ3)

Γ1,Γ3

Γ1, (1,Γ3)

Γ1,Γ2

Γ1, (Γ2, 1)

We consider (r-⊕1). All possible instances with conclusion (Γ1,Γ2),Γ3

are the following:

(1)
(Θ1[B],Θ2),Θ3 ∆, A

(Θ1[(∆, A⊕B)],Θ2),Θ3
(2)

(Θ1,Θ2[B]),Θ3 ∆, A

(Θ1,Θ2[(∆, A⊕B)]),Θ3

(3)
(Θ1,Θ2),Θ3[B] ∆, A

(Θ1,Θ2),Θ3[(∆, A⊕B)]
(4)

B,Θ3 Θ1, A

(Θ1, A⊕B),Θ3

(5)
B (Θ1,Θ2), A

(Θ1,Θ2), A⊕B

(1), (2) and (3) are similar. The active bunch occurs in one of Γi. We
apply the induction hypothesis to the first premise and use the same rule.

For (4), we use (r-⊕2) with the same premises (interchanged). For (5),
we apply the induction hypothesis to the second premise and use (r-⊕2).

We consider (r-⊕2). We have the following instances:

(Θ1[A],Θ2),Θ3 B,∆

(Θ1[(A⊕B,∆)],Θ2),Θ3

(Θ1,Θ2[A]),Θ3 B,∆

(Θ1,Θ2[(A⊕B,∆)]),Θ3

(Θ1,Θ2),Θ3[A] B,∆

(Θ1,Θ2),Θ3[(A⊕B,∆)]

A,Θ3 B,Θ2

(A⊕B,Θ2),Θ3

For the first three cases we proceed like for (1)-(3) above. For the last
case we use (r-⊕3) with the same premises.2

By (r-⊕3) it is not possible to obtain (Γ1,Γ2),Γ3.
We consider (r-⊕4). There are three cases:

2Here one sees an application of (r-⊕3). (r-⊕4) is used in the skipped part of the
proof.



One-Sided Sequent Systems for Nonassociative Bilinear Logic. . . 63

Θ2, A Θ1, B

(Θ1,Θ2), A⊕B
A (Θ1,Θ2), B

(Θ1,Θ2), A⊕B

(Θ1,Θ2), A B

(Θ1,Θ2), A⊕B

For the first case we use (r-⊕1) with the same premises (interchanged).
For the second case we apply the induction hypothesis to the second premise
and use (r-⊕1). For the last case we apply the induction hypothesis to the
first premise and use (r-⊕2).
Corollary 2.3. The cut-free NBL and NBL0 are equivalent, i.e. they
have the same theorems.

We can use NBL0 to prove further properties of NBL.
We need the following rules (called double negation rules):

(r-∼∼)
A,Γ

Γ, A∼∼
(r-−−)

Γ, A

A−−,Γ

Lemma 2.4. The double negation rules are admissible in the cut-free NBL0.

Proof: We prove only the admissibility of (r-∼∼). The proof for the sec-
ond rule is similar. We assume ` C,Θ and show ` Θ, C∼∼. We use outer
induction on the number of connectives in C and inner induction on the
proof of C,Θ.

Let C = p(n). We run the inner induction. Let p(n),Θ be an axiom.
Hence Θ = p(n+1). Then (Θ, C∼∼) = (p(n+1), (p(n))∼∼) = (p(n+1), p(n+2)),
which is an axiom, too.

Now we assume that p(n),Θ is obtained by a rule. p(n) cannot be the
active formula. Then it has to occur in one of the premises. In all but
the following cases we just apply the inner induction hypothesis to the
premise(s) with p(n) and use the same rule.

We consider the following cases:

B p(n), A

p(n), A⊕B
p(n), B A

p(n), A⊕B

The first one is an instance of (r-⊕1) or (r-⊕2). We apply the inner in-
duction hypothesis to the premise with p(n) and apply (r-⊕2). The second
case is an instance of (r-⊕1). We apply the inner induction hypothesis to
the premise with p(n) and use (r-⊕1).
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Let C = 0. We run the inner induction. Let 0,Θ be an axiom. Then
Θ = ε, hence (Θ, 0∼∼) = 0, which is an axiom too. Now we assume that
0,Θ is obtained by a rule. Since C = 0 cannot the active formula, we
proceed as for p(n).

C = 1. We run the inner induction. 1,Θ cannot be an axiom. We
assume that 1,Θ is the conclusion of a rule. We have (Θ, C∼∼) = (Θ, 1). If
1 is not the active formula, we proceed as above. Otherwise we have only
one rule to consider – (r-1) of the form:

Θ

1,Θ

We just use the other variant of (r-1).
We assume that C is not an atom. We run inner induction. Clearly,

C,Θ is not an axiom. So it is obtained by a rule. If C is not the active
formula, we proceed as above. Now we assume that C is the active formula.

Let C = A⊗ B. Hence C∼∼ = A∼∼ ⊗ B∼∼. The only possible rule is
(r-⊗) of the form:

(A,B),Θ

C,Θ

We apply Lemma 2.2 to the premise and obtain A, (B,Θ). A and B each
have less connectives than C. By the outer induction hypothesis we get
(B,Θ), A∼∼. By Lemma 2.2, we get B, (Θ, A∼∼), hence by the outer in-
duction hypothesis: (Θ, A∼∼), B∼∼. Lemma 2.2 yields Θ, (A∼∼, B∼∼). So
Θ, C∼∼ arises by (r-⊗).

Let C = A⊕B. Then C∼∼ = A∼∼⊕B∼∼. The only possible rules are
(r-⊕1) (or (r-⊕2)), (r-⊕2) and (r-⊕3) of the following form:

A B,Θ

A⊕B,Θ
A,Θ B

A⊕B,Θ
A,Θ2 B,Θ1

A⊕B, (Θ1,Θ2)
(Θ = (Θ1,Θ2))

For the first case, we apply the outer induction hypothesis to both premises
and use (r-⊕1) as below:

A∼∼ Θ, B∼∼

Θ, C∼∼

For the second case we apply the outer induction hypothesis to both
premises and use (r-⊕2). For the third case we apply the outer induction
hypothesis for both premises and use (r-⊕4).
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Let C = A ∧ B. Then C∼∼ = A∼∼ ∧ B∼∼. We have the following
instances if (r-∧):

A,Θ

A ∧B,Θ
B,Θ

A ∧B,Θ

In both cases we apply the outer induction hypothesis to the premise and
use the same rule.

The last case is C = A ∨ B. Hence C∼∼ = A∼∼ ∨ B∼∼. We have the
following instance of (r-∨):

A,Θ B,Θ

A ∨B,Θ

We apply the outer induction hypothesis to both premises and use the same
rule.

One can easily conclude the following:

Corollary 2.5. ` A−,Γ if and only if ` Γ, A∼.

3. Cut elimination

Now we are ready to prove the cut–elimination theorem. The lemmas
we have already proved are very useful and with them the proof is much
simpler.

Theorem 3.1. The cut rules are admissible in the cut-free NBL0 (NBL).

Proof: We have to show:

(1) if ` Θ[C] and ` Ψ, C∼, then ` Θ[Ψ];

(2) if ` Θ[C] and ` C−,Ψ, then ` Θ[Ψ].

By Corollary 2.5 it suffices to show (1), because (2) follows (1) immediately.
As above, ` we denote provability in the cut-free NBL0.

The proof proceeds by the outer induction on the number of connec-
tives in C, the intermediate induction on the proof of Θ[C] and the inner
induction on the proof of Ψ, C∼.
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We run the outer induction.

1◦. C = p(n). Then C∼ = p(n+1). We run the intermediate induction.
Let Θ[C] be an axiom. We have two possibilities: p(n), p(n+1) and

p(n−1), p(n). We run the inner induction.
If Ψ, C∼ is an axiom, then Ψ = p(n) = C. Now let Ψ, C∼ be the

conclusion of a rule. C∼ cannot be the active formula of any rule. We
apply the inner induction hypothesis to the premise(s) with C∼ and use
the same rule.

We consider the following special case:

A B,C∼

A⊕B,C∼
,

with Ψ = A⊕B. This may be obtained by (r-⊕1) or (r-⊕2). We apply the
inner induction hypothesis to the premise B,C∼ and use (r-⊕1).

We assume that Θ[C] is not an axiom, hence it is obtained by a rule.
C cannot be the active formula of any rule. Hence it occurs in at least
one premise, so we apply the intermediate induction hypothesis to the
premise(s) with C and use the same rule.

2◦. C = 0. Then C∼ = 1. We run the intermediate induction.
Let Θ[0] be an axiom, then Θ[C] = C = 0 and Θ[Ψ] = Ψ. We run the

inner induction. Ψ, 1 cannot be an axiom, hence it is obtained by a rule.
If C∼ = 1 is not the active formula of a rule, we proceed as for C = p(n).
If 1 is the active formula, then the rule is (r-1) of the form:

Ψ

Ψ, 1
,

The premise is Ψ = Θ[Ψ].
Now let Θ[C] be the conclusion of a rule. C = 0 cannot be the active

formula of any rule. We apply the intermediate induction hypothesis to
the premise(s) with C = 0 and use the same rule.

3◦. C = 1. Then C∼ = 0. We run the intermediate induction.
Θ[1] cannot be an axiom, hence it is obtained by a rule. If C = 1 is an

active formula, then Θ[1] is obtained by (r-1) admitting ∆ = ε in Θ[∆] as
the premise. We run the inner induction. If Ψ, 0 is an axiom, then Ψ = ε
and Θ[Ψ] = Θ[ε]. Let Ψ, 0 be obtained by a rule. C∼ = 0 cannot be the
active formula of any rule, so we proceed as for C = p(n).
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4◦. C is not an atomic formula. We run the intermediate induction.
Since C is not atomic, Θ[C] cannot be an axiom, hence it has to be

the conclusion of a rule. If C is not the active formula, we apply the
intermediate induction hypothesis to the premise(s) with C and use the
same rule. We assume that C is the active formula.

4.1◦. C = A⊗B. So C∼ = B∼ ⊕A∼ and Θ[C] arises by (r-⊗):

Θ[(A,B)]

Θ[A⊗B]

We run the inner induction. Ψ, C∼ is not an axiom, hence it is the conclu-
sion of a rule.

In the cases when C∼ does not occur in the active bunch, we apply the
inner induction hypothesis to Θ[C] and the premise(s) with C∼, and use
the same rule.

For example:
Γ[(D,E)], C∼

Γ[D ⊗ E], C∼

changes into:
Θ[Γ[(D,E)]]

Θ[Γ[D ⊗ E]]
,

where Ψ = Γ[D ⊗ E].
We consider cases when C∼ occurs in the active bunch, but is not the

active formula.
D E,C∼

D ⊕ E,C∼
D,C∼ E

D ⊕ E,C∼

We apply the inner induction hypothesis to the premise with C∼ and use
(r-⊕1).

Let C∼ be the active formula:

Ψ, A∼ B∼

Ψ, C∼
Ψ, B∼ A∼

Ψ, C∼
Ψ2, B

∼ Ψ1, A
∼

(Ψ1,Ψ2), C∼

The first case is obtained by (r-⊕1). We apply the outer induction hy-
pothesis to Θ[(A,B)] and Ψ, A∼ and then to Θ[(Ψ, B)] and B∼, obtaining
Θ[Ψ]. The second one is obtained by (r-⊕1) or (r-⊕2). We proceed as
above: we apply twice the outer induction hypothesis to both premises.
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The third case is obtained by (r-⊕4), where Ψ = (Ψ1,Ψ2). We apply the
outer induction hypothesis twice, obtaining Θ[(Ψ1,Ψ2)] = Θ[Ψ].

4.2◦. C = A ⊕ B, then C∼ = B∼ ⊗ A∼. We have to consider four
cases, one for each (r-⊕i).

(1)
Γ[B] ∆, A

Γ[(∆, A⊕B)]

We run the inner induction. Ψ, C∼ is not an axiom. We skip cases
when C∼ is not the active formula of a rule (in these cases we proceed as
above). We consider (r-⊗) as the only possibility:

Ψ, (B∼, A∼)

Ψ, C∼

We apply Lemma 2.2 (admissibility of (r-shift)) to Ψ, (B∼, A∼), then we
apply the outer induction hypothesis to ∆, A and (Ψ, B∼), A∼ and obtain:
∆, (Ψ, B∼). By Lemma 2.2 and the outer induction hypothesis applied to
Θ[B] and (∆,Ψ), B∼ we obtain Γ[(∆,Ψ)] = Θ[Ψ].

(2)
Γ[A] B,∆

Γ[(A⊕B,∆)]

We run the inner induction and consider the same instance as above.
We apply Lemma 2.2 to Ψ, (B∼, A∼), obtaining (Ψ, B∼), A∼. By Corollary
2.5 we get A−, (Ψ, B∼). We use Lemma 2.2 and apply the outer induction
hypothesis to (A−,Ψ), B∼ and B,∆. We obtain (A−,Ψ),∆ and apply
Lemma 2.2 and Corollary 2.5. We use the outer induction hypothesis with
(Ψ,∆), A∼ and Γ[A], obtaining Γ[(Ψ,∆)] = Θ[Ψ].

(3)
A,Γ B,∆

A⊕B, (∆,Γ)

We run the inner induction and consider the same instance as above.
We apply Lemma 2.2 to Ψ, (B∼, A∼) and obtain (Ψ, B∼), A∼. We apply
Corollary 2.5 and get A−, (Ψ, B∼). We use Lemma 2.2 and apply the outer
induction hypothesis to (A−,Ψ), B∼ and B,∆. We have (A−,Ψ),∆. We
apply Lemma 2.2 and Corollary 2.5. We use the outer induction hypothesis
to (Ψ,∆), A∼ and A,Γ, obtaining (Ψ,∆),Γ. We use Lemma 2.2.

(4)
Γ, A ∆, B

(∆,Γ), A⊕B
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We run the inner induction and consider the same instance as above.
We apply Lemma 2.2 to Ψ, (B∼, A∼), obtaining (Ψ, B∼), A∼. We apply the
outer induction hypothesis to (Ψ, B∼), A∼ and Γ, A. We get Γ, (Ψ, B∼).
We use Lemma 2.2 and apply the outer induction hypothesis to (Γ,Ψ), B∼

and ∆, B. We obtain ∆, (Γ,Ψ) and use Lemma 2.2.
4.3◦. C = A∧B. So C∼ = A∼ ∨B∼. We have the following instances:

Θ[A]

Θ[C]

Θ[B]

Θ[C]

We run the inner induction. Ψ, C∼ is not an axiom. We skip the cases
with C∼ not being the active formula. We have only one possibility:

Ψ, A∼ Ψ, B∼

Ψ, C∼

We apply the outer induction hypothesis to Θ[A] and Ψ, A∼ or to Θ[B]
and Ψ, B∼, depending on the proof of Θ[C]. In both cases we obtain Θ[Ψ].

4.4◦. C = A ∨B. So C∼ = A∼ ∧B∼. We have the following case:

Θ[A] Θ[B]

Θ[C]

We run the inner induction. Ψ, C∼ cannot be an axiom. We consider
only the cases with C∼ as the active formula:

Ψ, A∼

Ψ, C∼
Ψ, B∼

Ψ, C∼

In the first case we apply the outer induction hypothesis to Θ[A] and Ψ, A∼

and in the second case to Θ[B] and Ψ, B∼.

One can easily prove the strong completness of NBL (with the cut
rules) with respect to l.o. involutive unital groupoids. Let X be any set of
bunches. We say that formulas A,B are equivalent (A ' B) if and only if
X ` A,B∼ and X ` A−, B. It is easy to check that ' is a congruence. The
quotient algebra is l.o. involutive unital groupoid. We define µ(p(0)) = [p]',
µ(p(n+1)) = µ(p(n))∼ for n ≥ 0 and µ(p(n−1)) = µ(p(n))− for n ≤ 0. One
proves µ(A) = [A]', hence µ((Γ,∆)) = [Γ]' ⊗ [∆]'. If X 6` Γ, then
µ(Γ) 6≤ 0.
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4. Other systems

4.1. The additive constants

The presented Nonassociative Bilinear Logic admits only multiplicative
constants. We can extend this system by additive constants > and ⊥.
In the sense of algebraic models, they are the greatest and the smallest
elements in the l.o. unital groupoids, respectively, i.e. for all a:

⊥ ≤ a, a ≤ >

In particular ⊥ ≤ 0, hence it should be a theorem.
We extend NBL-language by two constants: > and ⊥. We also add an

axiom:
(a-⊥) Γ[⊥]

which is valid because one proves a⊗⊥ = ⊥ and ⊥⊗ a = ⊥.
This is the only axiom we add. We do not extend NBL with any new

rules. It is interesting that > does not appear explicitly in any axiom nor
any rule, but it is still in the language.

In the metalanguage we also add the following:

⊥∼ = ⊥− = >, >∼ = >− = ⊥

All results presented in this paper are also true for NBL with these con-
stants. > and ⊥ cannot be the active formulas of any rule, so the presented
reasoning remains valid. In every proof we need to add an additional case
for the new axiom.

In the proof of Lemma 2.2 we consider the case when (Γ1,Γ2),Γ3 is an
instance of (a-⊥). In this case ⊥ occurs in one of Γi. Then Γ1, (Γ2,Γ3) is
an instance of (r-⊥), too.

In the proof of Lemma 2.4 we have the outer induction and the in-
ner induction. In the outer one we consider the case when C = ⊥ or
C = >. Neither can be the active formula of a rule, hence we proceed as
in similar cases for other atomic formulas. In the inner induction we have
an additional axiom to consider. We assume that A,Γ[⊥] is an axiom,
hence Γ[⊥], A∼∼ is an axiom, too. Similarly if Γ[⊥], A is an axiom, then
A−−,Γ[⊥] is an axiom.
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Our main result is the cut–elimination theorem. In its proof we use
three inductions: the outer, the intermediate and the inner. We consider
three cases.

1◦. C = ⊥. Then C∼ = >. We run the intermediate induction. Let
Θ[⊥] be an axiom. We run the inner induction. If Ψ,> is an axiom, then
Θ[Ψ] is also an axiom.

If Θ[⊥] or Ψ,> is not an axiom, we proceed as for C = p(n).

2◦. C = >. Then C∼ = ⊥. We run the intermediate induction. If
Θ[>] is an axiom, then Θ[Ψ] is an axiom, too. Let Θ[>] be obtained by a
rule. > is not the active formula of any rule. We apply the intermediate
induction hypothesis to the premise(s) with C = > and use the same rule.

3◦. C 6= ⊥ and C 6= >. We notice that if Θ[C] is an instance of (a-⊥),
then Θ[Ψ] is an axiom. Also, if Ψ, C∼ is an axiom, then Θ[Ψ] is an axiom,
too.

Corollary 4.1. NBL with the additive constants is a conservative exten-
sion of NBL.

4.2. The right-sided system

The presented system is left-sided, but we can consider right-sided and two-
sided systems of that logic. A two-sided system for NBL was considered in
[6]. It is denoted InGL – Involutive Groupoid Logic. InGL treats negations
as connectives, so the logic is much more complex than our system. It is
also non-standard, because in the language there is no coproduct and the
right side of the sequent serves only for technical purposes.

Our system for NBL can be easily translated into right-sided system.
It is dual in the sense that product and coproduct are exchanged, similary
meet and join or 1 and 0. All the results proved here can be translated into
the right-sided system, remaining true.

The language and models remain the same as for the left-sided system.
We modify the definition of valuation. Now µ((Γ,∆)) = µ(Γ)⊕ µ(∆) and
µ(ε) = 0. We say that the sequent Γ is true in M for valuation µ, if
1 ≤ µ(Γ).
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We admit axioms:

(a*-id) p(n+1), p(n) for any variable p and any n ∈ Z

(a*-1) 1

The rules are:

(r*-⊕) Γ[(A,B)]

Γ[A⊕B]

(r*-⊗1) Γ[B] ∆, A

Γ[(∆, A⊗B)]
(r*-⊗2) Γ[A] B,∆

Γ[(A⊗B,∆)]

(r*-0)
Γ[∆]

Γ[(0,∆)]

Γ[∆]

Γ[(∆, 0)]

(r*-∨) Γ[A]

Γ[A ∨B]

Γ[A]

Γ[B ∨A]
(r*-∧) Γ[A] Γ[B]

Γ[A ∧B]

(r*-shift)
(Γ,∆),Θ

Γ, (∆,Θ)

The cut rules obtain the form:

(cut*∼)
Γ[A] A∼,∆

Γ[∆]
(cut*−)

Γ[A] ∆, A−

Γ[∆]

Now we show the way of translating the left-sided system for NBL to
the right-sided system. We extend the metalanguage negations ∼,− to
bunches by (Γ,∆)∼ = (∆∼,Γ∼), ε∼ = ε and similarly for −. Clearly
(Γ∼)− = Γ = (Γ−)∼. We also extend these negations for contexts by
setting: x∼ = x− = x. We obtain Γ[∆]∼ = Γ∼[∆∼] and similarly for −.

Lemma 4.2. The sequent Θ is provable in the left-sided system if and only
if Θ∼ (resp. Θ−) is provable in the right-sided system.

Theorem 4.3. The cut rules (cut*∼) and (cut*−) are admissible in the
cut-free right-sided system for NBL.
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We prove the theorem for (cut*∼). The proof for (cut*−) is similar.

Proof: Let `L,`R denote the provability in the left-sided system and in
the right-sided system, respectively. Assume `R Γ[A] and `L A∼,∆. By
Lemma 4.2, `L Γ∼[A∼] and `L ∆∼, A∼∼. By Theorem 1, `L Γ∼[∆∼]. So
`R (Γ∼[∆∼])−, which yields `R Γ[∆].

We can also extend the right-sided system with the additive constants
⊥ and >. We add the axiom (a*->) Γ[>] and we define ⊥∼ = > = ⊥− and
>∼ = ⊥ = >−. One proves the lemma above for that extended system.

Since NBL is a conservative extension of NL1 (Nonassociative Lambek
Calculus with 1), InNL1 (Involutive Nonassociative Lambek Calculus with
1, i.e. the multiplicative fragment of NBL) and FNL1 (Full Nonassociative
Lambek Calculus with 1), all the results remain true for these weaker logics.

5. PTime complexity

In this section we prove the PTime complexity of the multiplicative frag-
ment of NBL, i.e. MNBL. This system is denoted InNL1 in [4], which
proves the PTime complexity of InNL and claims the same for InNL1. We
provide a proof.

By MNBL we mean NBL without ∧,∨,⊥ and > in the language and
without the corresponding axioms and rules: (a-⊥), (r-∧), (r-∨) (resp.
(a*->), (r*-∧), (r*-∨) for right-sided system). All results proved before
remain true for MNBL, because NBL is a conservative extension. We focus
on the left-sided system. Since we consider only the multiplicative frag-
ment of NBL, we define MNBL0 as NBL0 without additive connectives
and constants.

Definition 5.1. Let T be a set of formulas. Any sequent built from for-
mulas of T is called T–sequent. A T–proof is a proof consisting only of
T–sequents.

In NBL-language we do not treat the negations as connectives, but all
formulas of the form p(n) are atoms. Hence p is not a subformula of p∼ or
p− etc. By theorem 3.1 one obtains the following corollary:
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Corollary 5.2. For every sequent Γ, if Γ is provable in cut-free NBL,
then it has T–proof, where T is the subformula closure of the set of all
formulas in Γ.

The above corollary is called subformula property. Because NBL is a
conservative extension of MNBL, MNBL possess the subformula property.
Hence we can consider only T–proofs for any sequent Γ, where T is a
set of all subformulas of formulas in Γ. In order to prove the PTime
complexity we consider restricted sequents. A sequent is called restricted
if it consists of at most three formulas. The restricted sequents are of the
form: A; (A,B); (A, (B,C)); ((A,B), C).

We define c(T ) = T ∪T∼∪T−, where T∼ = {A∼ : A ∈ T}, T− = {A− :
A ∈ T}. Now let T be any subformula closed set of formulas, containing 0
and 1.

By MNBLT
1 we mean a new system, defined as follows. The axioms

are 0 and all sequents A−, A and A,A∼ for A ∈ T . The inference rules
are all rules of MNBL0 limited to restricted c(T )–sequents with the active
formula in T and the cut rules (cut∼), (cut−) limited to c(T )–sequents. We
assume that ∆ 6= ε in the cut rules. Notice that we do not limit cut rules
to restricted sequents.

Since T is fixed, we write MNBL1 for MNBLT
1 . The provability in

MNBL1 is denoted by `1. The system MNBL1 posseses an interpolation
property.

Lemma 5.3. If `1 Θ[Ψ], Θ[Ψ] 6= Ψ and Ψ 6= ε, then there exists D ∈ c(T )
such that `1 Θ[D] and either `1 D−,Ψ or `1 Ψ, D∼.

Proof: We proceed by induction on proofs of Θ[Ψ] in MNBL1.
Let Ψ be a formula. We put D = Ψ. Clearly `1 Θ[D]. If Ψ ∈ T , then

Ψ,Ψ∼ is an axiom. If Ψ ∈ T−, then Ψ∼ ∈ T , hence Ψ∼−,Ψ∼ is an axiom.
The case for Ψ ∈ T∼ is analogous.

We assume Ψ is not a formula. Θ[Ψ] cannot be an axiom. We consider
a case for each rule of MNBL1.

(r-⊗). The only possibilities are:

A,B

A⊗B
A, (B,C)

A,B ⊗ C
(A,B), C

A⊗B,C

In all cases all bunches properly contained in the conclusion are formu-
las.
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(r-⊕1). We have the following cases:

(1)
B A

A⊕B
(2)

B C1, A

C1, A⊕B
(3)

C1, B A

C1, A⊕B

(4)
B,C1 A

A⊕B,C1
(5)

B (C1, C2), A

(C1, C2), A⊕B
(6)

C1, B C2, A

C1, (C2, A⊕B)

(7)
B,C1 C2, A

(C2, A⊕B), C1
(8)

(C1, C2), B A

(C1, C2), A⊕B
(9)

C1, (C2, B) A

C1, (C2, A⊕B)

(10)
(C1, B), C2 A

(C1, A⊕B), C2
(11)

C1, (B,C2) A

C1, (A⊕B,C2)
(12)

(B,C1), C2 A

(A⊕B,C1), C2

(13)
B, (C1, C2) A

A⊕B, (C1, C2)

In cases (1)–(4) all bunches properly contained in the conslusion are for-
mulas.

We consider (5). Ψ = (C1, C2). We put D = A−, hence Ψ, D∼ equals
the second premise. Since A ∈ T , A−, A is an axiom. By (r-⊕1) we obtain
A−, A⊕B(= Θ[D]) from this axiom and the first premise.

In (6) and (7) Ψ = (C2, A ⊕ B). We put D = B, so Θ[D] equals the
first premise. We use (r-⊕1) to obtain Ψ, D∼ from the second premise and
the axiom B,B∼, since B ∈ T .

In (8) Ψ = (C1, C2). We put D = B− and proceed in the similar way
as in (5).

We consider (9). Here Ψ = (C2, A ⊕ B). By the induction hypoth-
esis there is a formula E, such that `1 C1, E and `1 E−, (C2, B) or
`1 (C2, B), E∼. We put D = E. By (r-⊕1) with the second premise A
we obtain E−, (C2, A⊕B) or (C2, A⊕B), E∼. Note that Θ[D] = (C1, E).

In (10)–(12) we proceed analogously as in (9). In (13) we proceed as
in (8).

(r-⊕2). The cases are symmetrical and the arguments are similar to
those of (r-⊕1).

(r-⊕3). We have only one possibility:

A,C1 B,C2

A⊕B, (C2, C1)
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Hence Ψ = (C2, C1). Since A ⊕ B ∈ T , then A ⊕ B, (A ⊕ B)∼ is an
axiom. We put D = (A⊕B)∼, hence Θ[D] is the axiom and D−,Ψ is the
conclusion.

(r-⊕4). We have only one possibility:

C1, A C2, B

(C2, C1), A⊕B

Hence Ψ = (C2, C1). Since A⊕B ∈ T , so (A⊕B)−, A⊕B is an axiom. We
put D = (A⊕B)−, hence Θ[D] is this axiom and Ψ, D∼ is the conclusion.

(r-1). We consider the following cases:

(1)
C

1, C
(2)

C

C, 1
(3)

C1, C2

1, (C1, C2)

(4)
C1, C2

(1, C1), C2
(5)

C1, C2

C1, (1, C2)
(6)

C1, C2

(C1, 1), C2

(7)
C1, C2

(C1, C2), 1
(8)

C1, C2

C1, (C2, 1)

In the first two cases conclusions have only formulas as properly contained
bunches.

In (3) and (7) we have Ψ = (C1, C2). We put D = 0, hence Θ[D] can
be obtained from the axiom 0 by (r-1) and D−,Ψ is the conclusion.

In (4)–(6) we put D = C1, hence Θ[D] is the premise. If C1 ∈ T , then
C1, C

∼
1 is an axiom; if C1 ∈ T−, then C1, C

∼
1 is an axiom; if C1 ∈ T∼, then

C−1 , C1 is an axiom. We apply (r-1) to one of those axiom (depending on
C1) and we obtain Ψ, D∼ or D−,Ψ.

In (8) we put D = C2 and proceed analogously.

(cut∼).
Γ[A] ∆, A∼

Γ[∆]

We have Θ[Ψ] = Γ[∆]. If Ψ occurs in Γ[ ], then Γ[A] = Ξ[Ψ][A] and, by the
induction hypothesis, there exists E, such that `1 Ξ[E][A] and `1 E−,Ψ
or `1 Ψ, E∼. We put D = E, then Θ[D] = Ξ[D][∆], which we obtain by
(cut∼) from Ξ[D][A] and ∆, A∼.



One-Sided Sequent Systems for Nonassociative Bilinear Logic. . . 77

If Ψ occurs in ∆, the we use the induction hypothesis for ∆, A∼ and
proceed as above.

Now let Γ[∆] = Γ1[Γ2[∆]] and Ψ = Γ2[∆] and Ψ 6= ∆. Hence Γ[A] =
Γ1[Γ2[A]] and Γ2[A] 6= Γ[A]. We use the induction hypothesis for Γ2[A]
in Γ1[Γ2[A]] to obtain D. We have `1 Γ1[D] and `1 D−,Γ2[D] or `1
Γ2[D], D∼. We obtain `1 D−,Γ2[∆] or `1 Γ2[∆], D∼ by (cut∼) applied
with ∆, D∼.

(cut−). We proceed analogously as for (cut∼).

For a sequent Γ we take T as the subformula closure of the set of all
formulas appearing in Γ, also containing 0 and 1. We define MNBLT

1 as
above.

Lemma 5.4. Γ is provable in MNBL if and only if `1 Γ.

Proof: All axioms of MNBL1 are provable in MNBL, also all rules are
valid in MNBL, since they are the instances of original MNBL rules or
are admissible. Hence if `1 Γ, then ` Γ in MNBL.

Now assume that Γ is provable in MNBL. We show that it is provable
in MNBL1. By Corollary 2.3, Γ is provable in MNBL0. Also, because of
the subformula property, Γ has a T–proof in MNBL0. It suffices to show
that all T–axioms (axioms which are T–sequents) of MNBL0 are provable
in MNBL1 and all rules of MNBL0 limited to T–sequents are admissible in
MNBL1.

If p(n) ∈ T , then p(n), p(n+1) is the axiom A,A∼ of MNBL1. Also 0 is
an axiom of MNBL1.

(r-⊗). We assume that `1 Γ[(A,B)] and Γ[A ⊗ B] is a T–sequent. If
Γ[(A,B)] = (A,B), then `1 Γ[A ⊗ B] (Γ[A ⊗ B] = A ⊗ B). We assume
Γ[(A,B)] 6= (A,B). By Lemma 5.3, there exists D ∈ c(T ), such that `1
Γ[D] and `1 D−, (A,B) or `1 (A,B), D∼. We apply (r-⊗) (in MNBL1) and
obtain D−, A⊗B or A⊗B,D∼. And by one of the cut rules: `1 Γ[A⊗B].

(r-⊕1). We assume that `1 Γ[B] and `1 ∆, A and Γ[(∆, A ⊕ B)] is a
T–sequent. We consider two cases:

∆ = ε. From A and the axiom B,B∼ we obtain A⊕B,B∼ by (r-⊕1)
in MNBL1. By (cut∼) we get Γ[A⊕B].

∆ 6= ε. By Lemma 5.3 we have D ∈ c(T ), such that `1 D,A and
`1 D−,∆ or `1 ∆, D∼. From D,A and the axiom B,B∼ we obtain (D,A⊕
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B), B∼ by (r-⊕1) in MNBL1. By one of the cut rules we obtain (∆, A ⊕
B), B∼ and by (cut∼) we get Γ[(∆, A⊕B)].

(r-⊕2). The argument is similar as for (r-⊕1).

(r-⊕3). We assume that `1 A,Γ and `1 B,∆ and A ⊕ B, (∆,Γ) is a
T–sequent. We apply Lemma 5.3 twice, obtaining D1 for Γ in A,Γ and D2

for ∆ in B,∆. We have `1 A,D1 and `1 B,D2. We use (r-⊕3) in MNBL1

and get A⊕B, (D2, D1). We apply appropriate cut rules for both D1 and
D2 and get A⊕B, (∆,Γ).

(r-⊕4). The argument is analogous to that for (r-⊕3).

(r-1). We assume that `1 Γ[∆] and Γ[(1,∆)] is a T–sequent. By
Lemma 5.3 there isD ∈ c(T ), such that `1 Γ[D] and `1 D−,∆ or `1 ∆, D∼.
We assume that ` D−,∆. The other case is analogous. By Lemma 5.3 we
have E ∈ c(T ), such that `1 D−, E and `1 E−,∆ or `1 ∆, E∼. We apply
(r-1) to D−, E and get D−, (1, E). Now we use one of the cut rules and
obtain D−, (1,∆). We use (cut−) and obtain Γ[(1,∆)]. The argument for
the other variant of (r-1) is the same.

We notice that in MNBL1 if the conclusion is restricted, then the
premises are also restricted. Hence every restricted sequent Γ provable
in MNBL has a proof in MNBLT

1 , where T is defined above.
For every sequent Γ we define f(Γ) as follows: f(A) = A, if A is a

formula and f((Γ1,Γ2)) = f(Γ1) ⊗ f(Γ2). It is clear, that ` Γ if and only
if ` f(Γ). We see that f(Γ) is a restricted sequent.

Let Γ be a restricted sequent. We define the size of Γ as follows:
s(p(n)) = |n|+ 1, s(0) = s(1) = 1, s(A⊗B) = s(A) + s(B) + 1, s(A⊕B) =
s(A) + s(B) + 1, s((Γ1,Γ2)) = s(Γ1) + s(Γ2). By |n| we can take either the
absolute value of n or the length of its binary representation.

We provide an algorithm verifying the provability of this sequent. If we
put n = s(Γ), the complexity is polynomial with respect to n.

First, we compute T in O(n2) time and then c(T ) in O(n) time. Notice
that c(T ) has at most 3n elements, and hence there are O(n3) restricted
c(T )–sequents.

Now we compute the list of all provable sequents of MNBL1. We put
Γ0 = 0,Γ1,Γ2, . . . ,Γk, being the sequence of all axioms of MNBL1.

We iterate over i = 1, 2, . . .. For every i we extend the list with the
new sequents, being the conclusions of of (r-⊕1), (r-⊕2), (r-⊕3), (r-⊕4)
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and the cut rules with the premises Γi and Γj , if applicable, where j < i.
We do not add the sequents, which are already in the list. We also apply
(r-⊗) and (r-1) to every sequent, if applicable, and extend the list with the
conclusions. Since there are O(n3) restricted c(T )–sequents, the procedure
always stops. Assuming that one rule is executed in time O(n), we have
the time O(ni) for every i.

The rough estimation of the complexity is O(n7).

Theorem 5.5. MNBL is PTime.

If we add the additive connectives ∧,∨ to MNBL, we obtain NBL,
which is PSpace. We don’t know the lower bound of complexity. Pentus
[11] proves that MBL (associative MNBL) is NP-complete. BL is PSpace-
complete. Since MNBL is a conservative extension of NL1 (Nonassociative
Lambek Calculus with 1), theorem 5.5 remains true for NL1.
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