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THE APPLICATION OF MIXTURE MODELS
IN CLUSTERING OF THE EUROPEAN
UNION COUNTRIES

Abstract. In finite mixture models, each component corresponds to a cluster. In the 1990’s
finite mixture models were extended by mixing standard linear regression models and generalized
models (Wedel, Kamakura, 1995). An important area of application of mixture models and also of
their extensions is in marketing segmentation, where finite mixture models replace more
traditional cluster analysis and cluster-wise regression techniques. The article presents an
application of mixture models in economic analysis, i.e. clustering of the EU countries.
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I. FINITE MIXTURE MODELS

Finite mixture models are a popular technique for modelling unobserved
heterogeneity or approximating general distribution functions. They are used in
a lot of different areas such as astronomy, biology, economics, marketing or
medicine . An overview of mixture models is given in Titterington, Smith and
Makov (1985) or McLachlan and Peel (2000).

The mixture is assumed to consist of s components where each component
follows a parametric distribution. Each component has a weight assigned which
indicates the a-priori probability for an observation to come from this
component and the mixture distribution is given by the weighted sum over the
u components. If the weights depend on other variables, these are referred to as
concomitant variables.

The mixture model is given by

S

X,0,0) = 7 (0,0)f,()]x.0,), (1)
s=1

where:
/., — density function of component s,
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y —dependent variable,
x — vector of independent variables,

o (@) — the concomitant variables and their parameters,
©® . — the component specific parameter vector for the density function f,,
® - the vector of all parameters for the mixture density function f(),

@ = (TS’aS’G)S) b
7,— the prior probability of component s, (7, (®,a)>0A lers (o,0) =1),

O, £0,Vs =l

In marketing, choice behaviour is often modelled with a use of marketing
mix variables such as price, promotion and display. Based on the assumption
that groups of respondents vary in terms of different price or promotion
elasticities, there are mixtures of regressions which are fitted both to model
consumer heterogeneity and to segment the market. Socio-demographic
variables such as age and gender have often been shown to be related to different
market segments even though they generally do not perform well when used to
a-priori segment the market. The relationship between the behavioural and the
socio-demographic variables is then modeled through concomitant variables
models where the group sizes (i.e. the weights of the mixture) depend on the
socio-demographic variables.

We assume that the component specific densities are from the same
parametric families. If f, is from the exponential family of distributions and for

each component a generalized linear model is fitted (GLM’s McCullagh and
Nelder 1989), these models are also called GLIMMIX (Wedel and DeSarbo
1995).

The posterior probability that observation (x, y) belongs to class 7 is given by

Lf0xe,)
> f0x8)

P(rix,7,0) = @)

II. PARAMETER ESTIMATION OF MIXTURE MODELS

The parameters of the mixture model are usually estimated by maximum
likelihood using the Expectation-Maximization (EM) algorithm (Dempster et al.
[1977]). The log-likelihood of a sample of n observations {(x;,,),...,(X,,V,)}

is given by
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logL=>"log f(y,|x,,.0)= Zlog(Zlog 7, f,(i[x.. 0, >J : 3)
i=1 i=1 s=1

and can usually not be maximized directly. Each EM iteration consists of two
steps — an E-step and an M-step:

— E step — estimation of the posfterior class probabilities for each
observation:

lais:P(s|Xiayi’®s)a (4)

using equation (2) and derivation of the prior class probabilities:
. 1o
Ts = ; Z pis (5)
i=1

— M step — maximization of the log-likelihood for each component
separately using the posterior probabilities as weights:

I(y]x,.0,.7.p,) =Y. by loglr, /,(3,[x;.0,)]. (6)

i=l s=1

The E and M steps are repeated until the likelihood improvement falls under
a pre-specified threshold or a maximum number of iterations is reached. The EM
algorithm does not to have to be used for mixture models only, but it rather
provides a general framework for fitting models on incomplete data. Suppose we
augment each observation (X;,y;) with an unobserved multinomial variable

zZ; =[zi1,...,ziu], where z, =1 if (x;,y;,) belongs to class s and z, =0
otherwise. The EM algorithm can be used to maximize the likelihood on the
“complete data” (X;,y;,z;); the z, encode the missing class information.

One of the well known limitations of the EM algorithm is that convergence
can be slow. There can also be numerical instabilities at the margin of parameter
space, and if the component gets to contain only a few observations during the
iterations, parameter estimation in the respective component may be
problematic. As a result, numerous variations of the basic EM algorithm
described above exist, most of them exploiting features of special cases for

0.



198 Ewa Witek

III. MODEL SELECTION

In order to select the optimal clustering model, several measures have been
proposed (McLachlan and Peel [2000]). Three information criteria are available
in flexmix package of R: BIC (Bayesian Information Criterion), AIC (Akaike
Information Criterion) and ICL (Integrated Completed Likelihood). The criteria
are defined as

BIC, =2log p(x,)|0®,, M) +v, log(n), 7

AIC, = -2log p(x,y|®,,M ) +2v,, (8)

ICL, =—2log p(x, .20, M) —%log(n) , )

where log p(x,y,z (:)S,MS) is the maximized loglikelihood for the model M _,

v, is the number of parameters to be estimated in the mixture model and # is the
sample size.

The fit of a mixture model to a given data set can only improve as more
terms are added to a model. Hence, likelihood cannot be used directly in the
assessment of models for cluster analysis. In the criteria mentioned above a term
to the loglikelihood is added to penalize the complexity of the model. The first
term in BIC, AIC and ICL criteria measures the goodness-of-fit, whereas the
second term penalizes model complexity. One selects model that minimizes
either AIC, BIC or ICL. Quantitatively, those criteria differ only by the factor

by which v, is multiplied. Qualitatively, the criteria provide a mathematical

formulation of the principle of parsimony in model building, although for large
data sets their behavior is rather different.

In general, BIC was found to be consistent under correct specification of the
family of the component densities (Kass and Raftery 1995, Keribin 2000),
whereas BIC selected too many components when one of the true, normally
distributed components was substituted by a different distribution, such as the
uniform distribution. AIC tends to select too many components even for a correctly
specified mixture.



The Application of Mixture Models in Clustering of the European... 199

IV. IDENTIFIABILITY OF MIXTURE MODELS

The identifiability of many mixture models remains open question.
Statistical models are in general represented by parameter vector @ which
consists of the component weights and the component specific parameters
determine a mixture distribution, i.e., there is a mapping from the parameter
space to the model space. For identifiability this mapping has to be injective, i.e. for
each model in the model space there is a unique parameter vector in the parameter
space which is mapped to the model. Lack of identifiability can be a problem for
model estimation or if the parameters are interpreted. A comprehensive overview of
this topic is beyond the scope of this paper, however, users of mixture models
should be aware of this problem:

e Relabeling of components: mixture models are only identifiable up to
a permutation of the component labels. For EM-based approaches this only
affects interpretation of results, but is no problem for parameter itself.

e Opverfitting: if a component is empty or two or more components have the
same parameters, the data generating process can be represented by a smaller
model with fewer components. This kind of unidentifiability can be avoided by
requiring that the prior weights 7, are not equal to zero and that the components

specific parameters are different.

e Generic unidentifiability: it has been shown that mixtures of univariate
normal, gamma, exponential, Couchy and Poisson distributions are identifiable,
while mixtures of discrete or continuous uniform distributions are not
identifiable. A special case is the class of mixtures of binomial and multinomial
distributions which are only identifiable if the number of components is limited
with respect to, e.g. the number of observations per person (Titterington et al.
1985, Griin 2002).

V. EXAMPLE

The goal of this example is to find groups of EU countries and to estimate
the regression parameters in each of them. All computations and graphics in this
paper were done in flexmix and clustvarsel packages of R (version 2.7.2).

The data was sourced from AMECO database’. The following variables in
the period 1999-2007 were used in the analysis: y — gross fixed capital

formation, x,— foreign trade shares in the world, x, — balance of current
transaction with the rest of the world, x; — gross domestic product, x, — gross
public debt, £ — the euro area country (binary variable).

! http://ec.europa.eu/economy_finance/db_indicators/db_indicators8646_en.htm
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At the very beginning of our analysis we checked variable’s evidence for
being useful for clustering using the variable selection for model-based
clustering (Raftery and Dean 2006). The variables selected by the variable
selection procedure were (in order of selection) x5, x,, x,.

The optimal number of clusters was chosen using information criteria.
Figure 1 gives a plot of AIC, BIC and ICL criteria mentioned in section III of
this article.
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Figure 1. AIC, BIC, ICL values
Source: Own computations based on AMECO database.

In several applications, the BIC approximation to the Bayes factor has
performed quite well (Fraley and Raftery [1998], [2002]), so we decided to
choose the number of components according to this criterion.

The model which was chosen as the best is a finite mixture of two regression
models with y— gross fixed capital formation as a dependent variable, x, — the

trade shares in the world, x, — balance of current transaction with the rest of the

world as independent variables and E — the euro area country as a concomitant
variable. In further analysis we ran the test for significance of regression
coefficients. For x, the coefficient of the second component was not significantly
different from 0. The significant parameter estimates of both components, the
estimated prior probabilities 7, and »,— the number of observations assigned to

the corresponding clusters are presented in Table 1.
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Table 1. The significant parameter estimates of two components in the mixture

Cluster

Ts

Regression model

0,33

y=29.,18x; +0,12x; —15,09

1I

0,67

y=4,24x +0,15x; +193

Source: Own research.

Histograms or rootograms of the posterior class probabilities can be used to
visually assess the cluster structure (Tantrum, Murua, and Stuetzle, 2003).
Rootograms are very similar to histograms, the only difference is that the height
of the bars correspond to square roots of counts rather than the counts
themselves, hence low counts are more visible and peaks are less emphasized.
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Figure 2. Rootogram

Source: Own computations based on of AMECO database.

A rootogram of the posterior probabilities of the observations is shown in
Figure 2. It can be used for arbitrary mixture models and indicates how well the
observations are clustered by mixture. For ease of interpretation the observations

with a-posteriori probability less than eps=10" were omitted as otherwise the
peak at zero dominated the plot. The posteriors of two components have modes
at 0 and 1, indicating well-separated clusters (Leisch, 2004).
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VI. CONCLUSIONS

We have shown the use of the mixture models in classification of EU
countries. The analysis of mixture models yields two groups of countries. The
first class is characterized by an average foreign trade share of 2.87%, an
average GDP of € 788.22 bn € and gross fixed capital formation at the average
level of € 164.2 bn. Those are mostly old Euro zone member states: Germany,
Austria, the Netherlands, France, Ireland, Greece, Spain, Italy, Portugal. As far
as the second class is concerned the average values are: X, =0.75%,

€ x; =178.69 bn, € y=33.73 bn. This class remaining the rest of EU countries,

not belonging to the Euro area yet, with the exception of Belgium, Luxemburg,
Finland and new Euro area country- Slowenia. We could think that investment in
the new European Union countries” will be much higher than in the first class of
countries. However, different reports show that the greatest investment ever
made by the EU through cohesion instruments (worth € 308 billion in 2004
prices) will be made in the period 2007-2013. 82% of the total amount will
concentrate on the “convergence” objective, under which the poorest member
states and regions are eligible. We expect that the gross fixed capital formation
will be much higher for countries of the second class in 5 years time.
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WYKORZYSTANIE MODELI MIESZANEK DO KLASYFIKACJI
KRAJOW UNII EUROPEJSKIEJ

Modele mieszanek, ktorych skladowe charakteryzowane sa przez rozklady prawdo-
podobienstw (tzw. rozklady sktadowe mieszanki) juz od dawna znajduja swoje zastosowanie
w taksonomii. Wedel i Kamakura (1995) przedstawili pojecie modelu mieszanek w szerszym
yjeciu — rozktady sktadowe okreslone sg za pomocg funkcji regresji lub uogdlnionych modeli
liniowych (GLM). Modele te =znajduja zastosowanie przede wszystkim w badaniach
marketingowych. W artykule przedstawiono charakterystyke modeli mieszanek, sposobow
estymacji jej parametrow, wyboru stosownej liczby sktadnikéw mieszanki, a takze przyktad
wykorzystania modeli mieszanek do klasyfikacji krajow Unii Europejskie;j.



