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1. INTRODUCTION

Let T" be a continuous random variable denoting the time elapsed up to a
well-defined event, hereafter referred to as the survival time. The survival
function of T' is then defined as

F(z) =P(T > ), (1.1)

and the cumulative hazard function for x € (0,sup{y : F(y) < 1}) takes the
form

A(z) = /Ox djg((;)), where F=1-F. (1.2)
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Let Z be a non-negative random variable which censors on the right the
survival time 7. Denote by G the cumulative distribution function of Z.
We will assume that 7" and Z are independent random variables in the same
probability space (€2, .4, P), and that E denotes the expectation with respect
to P.

Due to right-censoring the variable 7' is possibly unobserved. The only
available information is the smaller one of T" and Z, that is

X =min(T, Z), (1.3)
and the censoring indicator
A=1(X=T), (1.4)

where 1(+) denotes the indicator function.

Throughout the rest of the paper X will be called a censored survival
time.

It follows from (1.3) that X is a random variable with a cumulative dis-
tribution function H, say, which is equal to

H=1-FG, (1.5)

where F=1—Fand G=1-G.

The Kaplan-Meier estimator (K'M) (Kaplan and Meier 1958) and the
Nelson-Aalen estimator (NA) (Nelson 1969; Aalen 1978) are usually used
to estimate the survival and cumulative hazard functions (1.1) and (1.2),
respectively, under random censorship model (1.3)-(1.4).

Statistical properties of KM and N A have been widely studied (see e.g.,
Efron 1967; Breslow and Crowley 1974; Peterson 1977; Winter et al. 1978;
Chen et al. 1982; Chang 1991; Klein 1991; Stute 1994a,b; Pawlitschko 1999;
Satten and Datta 2001). It has been shown, among other things, that both
estimators are biased. The Kaplan-Meier and Nelson-Aalen estimators are
closely related and have also been studied with the use of the counting pro-
cesses and martingale theory (see Aalen 1978).

The Kaplan-Meier estimator KM (z) is undefined if = is greater than
the largest value of X observed in a sample and if the observation is right-
censored. Such a disadvantage makes it sometimes impossible to estimate
F(z) at a fixed point z, especially if z is large.
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Gajek and Gather (1991) considered estimation of a survival distribution
to be an element of a scale family {Fp, 6 € ©} of distributions. They showed
that under Type I censoring the lower bound of the mean squared error of an
estimator of #° is equal to 1, thus it is independent of the sample size n. It is
well-known that the mean squared error can be expressed as the sum of the
variance and the squared bias. As the variance approaches 0 for sufficiently
large n, it follows from their result that under Type I censoring there does
not exist an unbiased estimator of #° based on a fixed-size sample. The more
general conclusion, adequate to the non-parametric right-censorship model,
is that under Type I censoring there does not exist an unbiased estimator of
a distribution function if the sample size is fixed.

In the paper sequential estimators of the survival function F and the
cumulative hazard function A based on random-size samples are considered.
A sequential approach in the estimation under the right-censorship model
was used in the past (e.g., Gardiner and Susarla 1983, 1989). The approach
taken here deals with estimating the survival and cumulative hazard functions
by means of some unbiased and consistent estimators, which are similar to
the well-known Kaplan-Meier and Nelson-Aalen estimators. The adopted
approach allows to estimate F'(x) or A(z) at any fixed point .

The paper is organized as follows. Section 2 introduces the standard
Kaplan-Meier and Nelson-Aalen estimators. In Section 3, a special sequen-
tial sampling scheme is proposed. Section 4 presents random-sample-size es-
timators of F'(z) and A(z) and gives some their statistical properties. Some
simulation results are given in Section 5 and Section 6 contains discussions.

2. KAPLAN-MEIER AND NELSON-AALEN
ESTIMATORS

Consider a sample of the form
(X17A1>7(X27A2)7"'7(XnaAn)7 (21)

where (X;,A;), ¢ = 1,2,...,n are independent copies of (X, A), and n is a
fixed positive integer.
The original Nelson-Aalen estimator can be expressed as follows

1(X;, <z, A;=1)
Z ST, = X) (2.2)
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Let X,., = max{Xy, X, ..., X,} and A, be an indicator variable concomi-
tant to X, i.e., Ay = A; if X, = X;. The Kaplan-Meier estimator can
be then defined as

( Az
H{i:Xin}<1_W> for 2 < X

j=1

KM(x) =40 for & > Xy, if Ay =1 (2:3)

 undefined for z > X, if Ap) =0,

under an initial assumption that KM (x) = 1if {i : X; <z} = 0.
Evaluation of KM (z) is much easier if we use a formula based on the
so-called ordered sample.

Let (z;,0;) be a realization of (X;, A;) and <; be a relation defined as
follows

(JZ'Z,(SZ) < (.CI?j,&j) <~ (.ﬁl?l < Z'j) V (JTZ =T AN 51 > (5]) (24)
The ordered sample can be expressed as
(Xlzn7 A[l])a (X2:n7 A[Q])a ceey (Xn:rm A[n])a (25)

where (Xj.,,, Ap) represents an i-th observation in the sequence (2.1) ordered
according to the relation <;.
Now (2.3) is equivalent to

r Ay
H{i:Xlgngx} <1 - n——z[—:—l> for x < Xn:n

KM(x) =40 for > Xy, if Ay =1 (2:6)

| undefined for . > X, if Ap) =0,

3. SEQUENTIAL SAMPLING SCHEME

In this section a special type of the sequential sampling scheme is introduced.
This scheme supplies random-size samples and allows to construct unbiased
versions of the Kaplan-Meier and Nelson-Aalen estimators.
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Assume that we observe a sequence (X7, A1), (Xa, Ag), ... until for a fixed
number k£ > 2 of individuals we get X;, > xo, j = 1,2,...,k, where zg is
a fixed, positive real value such that o < sup{z : H(xz) < 1} and H is a
common cumulative distribution function of the X;’s.

Let Nj, be a total number of individuals observed. It follows that N, is a
random variable distributed according to the negative binomial distribution
with parameters k and p=1— H(xy). Its probability distribution function
takes the form

-1
P(Ny=n) = (Z_l)pk’(l—p)”_k, n=kk+1,....

The proposed sampling scheme provides us with the random-size sample
(Xl,Al),(XQ,AQ),...,(XNk,ANk). (31)
The ordered sample can be derived from (3.1) by the use of the relation <;

(Xlsza A[l])y (XQ:Nky A[Q])7 R (XNk:Nka A[Nk]) (32)

4. THE PROPOSED ESTIMATORS

Definition 4.1. Sequential Nelson-Aalen estimators of the cumulative haz-
ard A(z), x < zg are given by the formula

Ty X -1

=1

r<xzy, keNEk>2  (4.1)

Deﬁni_tion 4.2. Sequential Kaplan-Meier estimators of the survival proba-
bility F(x), © < x¢ are given by the formula

EMy(z) = [] (1-

{i:X; <z}

A
Z;V:kl 1(Xj 2 Xi) -1

), r<zy, keNk>2 (4.2)

under an initial assumption that KMy(x) =1 if {i : X; <z} = 0.
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Note that (4.1) as well as (4.2) define two classes of estimators of A(x) and
F(z), respectively, for any fixed integer & > 2 and for any fixed real value
xo € (0,sup{z : H(x) < 1}).

It is worth also noting that on the right-hand sides of (4.1) and (4.2) there
is Zjvz’“l 1(X; > X;) — 1, as opposed to the sum 7 | 1(X; > X;) appearing
in (2.2) and (2.3).

The formula equivalent to (4.2) is based on the ordered sample (3.2)
KM (x) = H (1—ﬂ) v<z9, k€N k>2 (4.3)
Nk _ /L ) — ) ) —

{i: XN, <z}

Proposition 4.1. The sequential estimators N Ay(x) are unbiased estima-
tors of A(x) for x < xy. The variance of N Ay (x) is expressed by the following
equivalence

1

V(NAL(z)) = /OIE(W)dA(u) for z € (0,z), (4.4)

where My(u) = Zjvz’“l 1(X; > u), and the expectation E(1/M(u)), u € [0, z]

18 equal to
E(M:(u)) — (Poy /0 (1 — v)do, (4.5)

du
where p, = H(x)/H(u), ¢, =1— p,.

Proposition 4.2. The sequential estimators KMy (x) are unbiased estima-
tors of F\(z) for x < xy. If censoring times are fized non-negative values then
the variance of K My(x) satisfies the inequality

J
V(EMi(x)) < [[U; = F?(x) for x € (0,2, (4.6)
=0
Pisiy | e L Pisi] g 1
h TSI s v I - (i NP | E 4.
where Uj p]+1|j+(b+1]|: i :| (Mk;d) qj+1]|: D :| (Mk,]—i_l)’ ( 7)

N
Mk,j = Z 1 (Xz > yj),
=1
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B(-1) = () /Oqjuk’_l(l—u)_kdu, (48)

My, ; qj

1 p] k 1 /q]' & K
— )= (=) — u”(1—u) "du, 4.9
Mk,j+1) (Qj) 4 Jo (1) (4.9)

pﬂ1|j:F(yj+1)/F(yj)a Qi1 = 1=pj5, Pj:ﬁ(l’o)/ﬁ(yj)a q;=1-pj, (4.10)
andy;, j =1,2,...,J are fived censoring times, such that0 < y; <...<y;<w.

Proofs of the Propositions 4.1 and 4.2 were given by Rossa (2005, pp. 40-56).

As it is only slight difference between modified and the standard estima-
tors, the Kaplan-Meier variance estimator V(K M (x)) can be defined as

V(K My(z)) = KM(x) )

i=1

1(X; <z,A;=1)
(Myi = 1)

x € (0,x0], (4.11)

while the Nelson-Aalen variance estimator V (N Ay (x)) can be given as an
empirical counterpart of (4.4)

N

~ 1 XZ S .CIZ',AZ‘ = 1

V(NAW) =3 ( = ) 2 e(0.20). (4.12)
i=1 ki

where Mk,i = Z;V:Igl 1 (Xj > Xz)

Example 4.1. We shall illustrate the idea of the provided estimators using
the data on durability of artificial heart valves.

An artificial heart valve is a device which is implanted in the heart of
patients who suffer from valvular diseases in their heart. There are two main
types of artificial valves, i.e. mechanical and biological ones. When one or
two out of four natural valves of the heart (i.e. tricuspid, pulmonic, mitral
or aortic) has a malfunction then a standard procedure is to replace the
damaged valve by an artificial one. This requires an open-heart surgery.

Let us consider a population G of patients who have received a biological
valve of a given type. Some of them have to be re-operated due to malfunc-
tions of the implant. Let the subject of observation be the time T; which
elapsed up to the first re-operation of an i-th patient randomly drawn from
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G. It is clear that the true survival times T; can be observed for those pa-
tients who were re-operated by the time of the analysis, for other patients
survival times are right-censored. Moreover, some other random causes can
yield independent right-censoring.

Due to censoring survival times 7; are unobserved random variables, but
we can observe pairs (X;, A;), where X; =min(T;}, Z;), is a censored survival
time of an i-th patient, A; = 1(X; = T;) is an indicator variable, and Z; is a
censoring time.

Let F and A denote a common survival function and a common cumu-
lative hazard function of the T;’s, respectively. Suppose that we need to
estimate F(r) and A(x) at any x < 240 (months).

As it was mentioned in Section 1, the original Kaplan-Meier and Nelson-
Aalen estimators give biased estimates of F(x) and A(z), respectively. Their
bias is not negligible, especially if there is a large number of censored ob-
servations in a sample. What is more, the Kaplan-Meier estimator K M (x)
can be undefined if x exceeds the largest value of censored survival times
observed in a sample. Thus, it can be impposible to estimate F(r) at a fixed
x using the K M estimator.

A sequential approach described in Sections 3 and 4 gives unbiased es-
timators of F(r) and A(z) at any o < x, where x; is fixed in advance.
However, a specific sampling scheme has to be applied.

Let us assume that patients are successively drawn from G until censored
survival times X; (i.e. times to re-operation, possibly censored) of k of them
exceed zp months. Let k = 2, xy = 240 (months) and assume that the
following sample is observed

(10,1), (244,0), (44,1), (210,1), (167,0), (151,0), (74,1),
(238,0), (141,0), (96,1), (135,0), (54,0), (125,0), (119,0),
(114,0), (109,0), (75,0), (133,1), (23,1), (10,0), (241,0).

Using the <; relation, the ordered sample takes the form

(10, 1), (10, 0), (23, 1), (44, 1), (54, 0), (74, 1), (75, 0),
(96, 1), (109,0), (114,0), (119,0), (125,0), (133,1), (135,0),
(141,0), (151,0), (167,0), (210,1), (238,0), (241,0), (244,0).

The survival and cumulative hazard functions estimated by means of
KMy (z) and NAg(z) for £ = 2 and = € [0,240] are given in (4.13) and
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(4.14), respectively. Both estimators are plotted on Figures 1 and 2.

p

1 for z < 10
0.950 for 10 <z < 23
0.897 for 23 <z < 44
0.844 for 44 <x <74
KMs(z) = or el (4.13)
0.788 for 74 <x <96
0.727 for 96 < x < 133
0.636 for 133 <z < 210
\0.424 for 210 < x < 240,
(0 for z < 10
0.050 for 10 <z <23
0.106 for 23 < x < 44
0.165 for 44 < 74
NAy(z) = or =TS (4.14)
0.232 for 74 <x <96
0.309 for 96 <z < 133
0.434 for 133 <z < 210
0.767 for 210 < 2 < 240.
1.000 4—
0.950] e
0.897 —
0.844 —_—
0.788 1 —_—
0.7274 —_
0.636 1
0.424 4 —
10 23 44 74 96 133 210 240

Figure 1. The Kaplan-Meier curve K My (z), = € [0, 240].



A. Rossa, ”Estimation of Survival Distributions ...”, SQA, 2008, vol. 27 10

0.767 —_—

0.434 1

0.309 4 —_—
0.232 4 —

0.165 4 —_—
0.106 4 —

0.050 4  ommmmm

10 2|3 4|4 7|4 9|6 15‘)3 2 iO 2210

Figure 2. The Nelson-Aalen curve NAy(z), x € [0, 240].

5. A SIMULATION STUDY

To see the dependency of the variances of KMj(z) and NAy(z) on k and
xo and to study some properties of the variance estimators V(K M (x;)) and

A

V(N Ag(x;)) a simulation analysis was performed. In the study survival times
T; were simulated from:

— gamma distribution I'(«, 5) with the probability distribution function
proportional to z® exp{—/0z},

— Weibull distribution Wei(/3, ) with the survival function (SDF’) equal
to exp{—02"}; a special case of this family of distributions is the ex-
ponential distribution Exp(f3) (for v = 1),

— log-normal distribution logN(u, o),

— Gompertz distribution Gom(/3, ) with SDF equal to
exp{7y (1—exp{—pBz})},

— Pareto distribution Par(3,~) with SDF equal to (1 + fz)77,

— Log-logistic distribution logL(3,~) with SDF equal to 1/(1 + z7).

Censoring times Z; were simulated from an exponential distribution Exp((3)
with a fixed value of the mean time to censoring ( yielding an assumed



A. Rossa, ”Estimation of Survival Distributions ...”, SQA, 2008, vol. 27 11

censoring fraction p = P(T; > Z;). Both survival and censoring times
were then used to determine pairs (X;, A;), where X; = min(7;, Z;) and
A =1(X;,=Tp).

In the simulation study a prescribed number M = 10000 of repetitions
was considered. In each repetition pairs (X7, A1), (X2, Ag),... were simu-
lated until for £ of them the inequality X;, > xo, j = 1,2,..., k was satisfied,
where a positive real value xg and an integer k£ were fixed in advance. Next,
the estimators (4.1), (4.2), (4.11), (4.12) at some x € [0, 2] were evaluated.
Finally, the variances V(K My (z)), V(N Ag(z)) of the estimators (4.1), (4.2)

as well as the expectations E (V(K]\/[k(x))>, E <V(NAk(3:))> of the estima-

tors (4.11), (4.12) were approximated by means of the following formulae

VM) ~ - fj (KMP @)~ Fa) (51)
V(N A (x % i (VAP (@) A(:z:))2 | (5.2)
E (V(KMk ) fj VU (K My (2)) (5.3)
E(V(NA(@) ~ % ﬁl VY (N Ay()) (5.4)

where KM (2), NAYY (), VU (K My (2)) and V) (N A, (z)) denote esti-
mates of the respective estimators obtained in an j-th repetition.
Figures 3 and 4 exhibit typical behavior of V' (K M (x)), V (N Ag(x)) and

E <V(KMk(x))), E <V(NAk(x))) for various k, xy for the whole range of
x € [0, z).
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0.08 ;
0.06
E (V(KMk(a:))> 0.04
0.02 -

0.08 -
0.06 -
V(K Mi(z)) 0.04 1
0.02 1

0.27 -
0.20 -
(NAk(af))) 0.13 1
0.06 -

<

B(

0.27 7
0.20 -
V(NAg(z)) 0.13-
0.06 -

0.0

0.08 -
0.06
0.04
0.02

0.08 -
0.06 -
0.04 -
0.02 -

0.27
0.20
0.13 1
0.06

0.27%"

0.20
0.13
0.06

0.0

Figure 3. Expectations E (V(KMk(x))>, E (V(NAk(i'))>

and variances V (K My (z)), V (NAg(z)) for x € [0, z¢],
k =2,5,10 (solid, dashed and dotted lines, respectively),
F ~T(2;5), censoring fraction p ~ 0.7.
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0.10

0.07 4

0.04

0.01

0.10 -
0.07 1
V(K M,
(KMy(a) o]

0.01 +

0.0
0.38 7
0.28 -
B (V(NAK) 0.18-

0.08 1

0.38 -
0.28 -
V(NAg(z)) 0.18 -

0.08 1

—

0.0

0.5

10 1.

o = 1.5

5

0.10

0.07 1

0.04

0.01 ~

13

0.10

0.07 4

0.04

0.01 ~

0.2

0.38 7
0.28 1
0.18 1
0.08 1

0.2

0.38 1
0.28 1
0.18 1
0.08 1

0.2

0.2

0.7

12 1.7

o = 1.7

Figure 4. Expectations E (V(KMk(x))>, E (V(NAk(x))>

and variances V (K My(z)), V (N Ag(z)) for = € [0, z¢],
k =2,5,10 (solid, dashed and dotted lines, respectively),
F ~ Wei(0.1; 5), censoring fraction p =~ 0.7.
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6. DISCUSSIONS

In the paper two classes of sequential estimators N Ag(z) and K M (z) were
proposed. Both classes are based on a specific sequential sampling scheme.
In the scheme two parameters have to be fixed in advance, i.e. an integer
k > 2 and a positive value zy such that xg<sup{z : H(z)<1}. In order to
choose a proper value of g, even if H remains unknown, it is sufficient to
know the maximal possible values t and z, say, of the survival and censoring
times, respectively. Then for any z € (0, min(¢, z)) there is H(zq) < 1.

It is worth also noting that N Ay (x) and K My (x) are consistent estimators
because they are unbiased with variances converging to 0 as E(Ny) — oo.
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