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Abstract: Design‑based estimation of finite population parameters such as totals usually relies on the 
knowledge of inclusion probabilities characterising the sampling design. They are directly incorpo‑
rated into sampling weights and estimators. However, for some useful sampling designs, these prob‑
abilities may remain unknown. In such a case, they may often be estimated in a simulation experi‑
ment which is carried out by repeatedly generating samples using the same sampling scheme and 
counting occurrences of individual units. By replacing unknown inclusion probabilities with such es‑
timates, design‑based population total estimates may be computed. The calculation of required sam‑
ple replication numbers remains an important challenge in such an approach. In this paper, a new 
procedure is proposed that might lead to the reduction in computational complexity of simulations.
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1. Introduction

Following Särndal, Swensson and Wretman (1992: 5), we shall represent a finite 
population as a set of unit indices U = {1, …, N}. Values of a fixed characteristic 
for corresponding population units are represented by a vector y = [y1, …, yN]’. The 
parameter under study is the population total (Hedayat, Sinha, 1991: 2):

 1' .ii U
t y

∈
= =∑ y  (1)

The unordered sample space may be represented by a matrix:

 

0 0 0
0 0 1

1 1 1

ija

… 
 …  = =   
 

… 

   

A   (2)

whose each i‑th row:

 [ ]1 iN,...,i ia a=a  (3)

represents one possible sample with aij = 1 when this sample contains the j‑th unit 
and aij = 0 otherwise. The matrix A has N columns and Z = 2N rows represent‑
ing all possible sequences of zeros and ones of the length N, including an empty 
sample represented by a sequence of N zeros and a census represented by N ones. 
A vector of corresponding sample sizes may be calculated as:

 
'  

1, ..., 1.Zn n n = =  A  (4)

Let an unordered sample: s U⊆  be drawn from U. The sample composition may 
be characterised by a vector of sample membership indicators (Tillé, 2006: 8):

 ( ) ( ) ( )1 ,..., Ns I s I s=   I , (5)

where

 ( )
0 for
1 fori

i s
I s

i s
∈

=  ∉
 (6)

The sampling is equivalent to choosing a certain (say i‑th) row of A so that 
I(s) = ai. It may be done according to a sampling design:

 [ ]1,..., 'ZP P=P , (7)
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which associates a selection probability [ ]0,1  iP ∈ with every row ai for i U∈ , 
so that 1iP∑ = . The expectation of the vector I may be expressed as:

 [ ]1,..., ' 'Nπ π= =ð P A . (8)

Elements of the vector π  are called first‑order inclusion probabilities because 
{ }i Pr i sπ = ∈  for i U∈ . Let us also introduce a vector of corresponding weights:

 1 1
1 ,..., '.Nπ π− − =  d  (9)

One may also define a matrix of second‑order inclusion probabilities (Tillé, 
2006: 17) as:

 ( )
11 1

1

'
N

N NN

diag
π π

π π

 
 Π = = 
  



  



A P A , (10)

where { },ij Pr i j sπ = ∈ . This lets us express the covariance matrix of the vector I as:

 'ππ= Π −C . (11)
The size of the sample s may be expressed as:

 ( ) ( )1's s=n I . (12)
Denote sampled elements as:

 ( ){ }1, ..., n ss i i= . (13)

For any vector u = [u1, …, uN], let:

 ( )
( )1

,...,
n si is u u =  u . (14)

This lets us define sample vectors: y(s), π(s), d(s) which are obtained by omit‑
ting elements corresponding to zeros in I(s) respectively in y, π, d. For known π, the 
design‑unbiased Horvitz‑Thompson (HT) estimator of t may be expressed in the 
form (cf. Narain, 1951; Horvitz, Thompson, 1952):

 ( ) ( )( )ˆ 't s diag s= d I y   (15)

or equivalently:

 ( ) ( ) ( )ˆ 't s s s= d y . (16)
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2. Simulation-based estimation

To calculate the HT estimator, first order inclusion probabilities are needed. Howev‑
er, many sampling procedures are too complicated to calculate them. In particular, 
this is true for spatial sampling (Barabesi, Fattorini, Ridolfi, 1997; Fattorini, Ridolfi, 
1997), order sampling schemes, especially the Pareto scheme (Rosén, 1997), rejec‑
tive sampling (Wywiał, 2003; Boistard, Lopuhaä, Ruiz‑Gazen, 2012; Yu, 2012), 
and sequential sum‑quota sampling schemes (Pathak, 1976; Kremers, 1985). A par‑
ticular example is the greedy sampling scheme (Gamrot, 2014: 223) where costs 
of sampling individual units vary but are known in advance, and the survey budget 
is restricted. Individual units are drawn to the sample sequentially, one‑by‑one, with 
equal probabilities, from a gradually shrinking pool of still‑affordable units. In the 
most pessimistic case, the calculation of inclusion probabilities would require ana‑
lysing all permutations of units, which is unfeasible. If inclusion probabilities do not 
depend on sample observations, then Fattorini (2006; 2009) proposes to perform 
a simulation experiment. It is carried out by generating a large number R of sample 
replications s ˘1, …, sR˘ . Empirical counts of unit occurrences are then calculated as:

 [ ] { } ( )1 1...
,..., 'N ii R

sm m
∈

= = ∑m I . (17)

This enables the calculation of empirical inclusion probabilities:

 π π π = = 1
ˆ ˆ ˆ,..., 'N

m
R

 (18)

and empirical weights:

 
'1 1

1 ,..., .ˆ ˆ ˆNπ π− − =  d  (19)

By omitting elements corresponding to non‑sampled units respectively in 
, , ˆˆm dπ  one may then obtain empirical quantities ( ) ( ) ˆˆ, ,m s s dπ (s) associated with 

the realised sample s. This leads to the calculation of the empirical HT estimator 
in the form:

 ( ) ( )( )'̂t̂ s diag s= d I y  (20)

or equivalently:

 ( ) ( ) ( ).ˆˆ 't s s s= d y  (21)
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3. Setting up the stopping rule

In order to establish a sufficient value of replication number R that guarantees a re‑
quired precision of simulation‑based estimates, Fattorini (2006; 2009) proposes 
the accuracy criterion:

 ( ) ( ) ( ) ( ){ }ˆ ˆ ˆQ R Pr t s t s t sε= − <  (22)

and finds its upper bound on the basis of Bennet’s inequality. On this basis, he pro‑
poses a formula for the sufficient value of R. Later, Gamrot (2013) attempted to im‑
prove over that using asymptotic approximations based on a normal distribution, 
Chernoff‑Hoeffding inequality, and pre‑calculated tables of exact probabilities for 
the restricted maximum likelihood estimator. However, the relative deviation of the 
empirical HT estimator ( )t̂ s  from its “true” value ( )t̂ s  that would be calculated 
for known inclusion probabilities has a complex distribution. The construction 
of an upper bound for it requires the pessimistic assumption of possible high cor‑
relation among sample membership indicators. This leads to very conservative re‑
plication numbers, which results in long calculation time.

In what follows, it is demonstrated that these pessimistic assumptions are of‑
ten overly conservative, and may be improved upon. The value of the empirical 
HT estimator depends on the count vector m. Let Ω be a set of such values of this 
vector for which the condition

 
( ) ( )

( )
ˆ ˆ

ˆ
t s t s

t s
ε

−
<



  (23)

is satisfied so that:

 ( ) { }ÙQ R Pr= ∈m . (24)

Hence, instead of examining the scalar distribution of ( )t̂ s  one may investi‑
gate a much simpler, multivariate distribution of m. As an introductory example, 
let us consider a population of size N = 3, with the sample space and sampling 
design:
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When a sample s corresponding to the sample indicator vector I(s) = [0, 1, 1] 
is drawn, all the columns of the matrix A which contain zeros and correspond 
to non‑sampled units may be disregarded in our analysis because the HT estimator 
does not depend on these units and corresponding inclusion probabilities. Hence, 
it is sufficient to consider a reduced sample space and sampling design:
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P  (26)

with the reduced sample indicator vector I(s) = [1, 1]. Such reduction may be car‑
ried out for populations and samples of any size. However, in a bivariate case, the 
distribution of the vector m = [m1, m2]’ for R sample replications is particularly 
simple and takes the form (Beyer, 1987: 532):

 ( ) ( ) ( ) ( )1 2 1 2
1, 2 11 10 01 00

m a m a R m m aa
a

Pr m m D a p p p p− − − − += ∑ , (27)

where:

 ( ) ( ) ( ) ( )1 2 1 2

!
! ! ! !

RD a
a m a m a R m m a

=
− − − − +

. (28)

In the following examples, we will now discuss in more detail some interest‑
ing special cases of such a bivariate distribution.

Example 1. Let the sample s of size 2 corresponding to the indicator vector 
I(s) = [1, 1] be drawn from the population according to the sampling design P = [0.1, 
0.3, 0.5, 0.1]’. Let us consider four possible sample outcomes: y = [1, 4]’, y = [1, 2]’, 
y = [1, 1]’ and y = [2, 1]’. Assume that 0.1ε =  and R = 100. Distributions of the 
count vector m for all four designs along with resulting values of the accuracy cri‑
terion Q(R) are shown in Figure 1. It is clearly visible that the region Ω shifts when 
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values of the study variable change. This results in higher or lower probabili‑
ties Q(R).

The dependency of Q(R) on sample observations of the study variable are not 
the only important effect. The following example illustrates another one:

Example 2. Let us consider four sampling designs P1, P2, P3, P4 given by Ta‑
ble 1, together with corresponding values of the correlation coefficient ρ between 
the two sample membership indicators corresponding to the first and second unit. 
Let the sample s of size 2 corresponding to the sample membership indicator vec‑
tor I(s) = [1, 1] be drawn from the population and let the following values of the 
study variable be observed: y = [1, 1]. Assume that 0.1ε =  and R = 100. Distribu‑
tions of the count vector m for all four designs along with resulting values of the 
accuracy criterion Q(R) are shown in Figure 2.

Table 1. Distributions of the count vector and correlation coefficients 
of sample membership indicators for certain sampling designs

P1 P2 P3 P4

p00 0.49 0.35 0.25 0.10
p01 0.01 0.15 0.25 0.40
p10 0.01 0.15 0.25 0.40
p11 0.49 0.35 0.25 0.10
ρ 0.96 0.40 0.00 –0.6

Source: own elaboration

Despite its simplicity, the example shows that the probability Q(R) depends 
on the correlation ρ between sample membership indicators. It is high for the least 
favourable case extreme of positive correlation that is tacitly assumed in the deri‑
vation of known stopping rules. In reality, however, it is often much lower. Taking 
this effect into account, one might construct tighter bounds for Q(R) and obtain 
a stopping rule which gives lower required replication numbers.

This effect remains in force when more than two elements are drawn to the 
sample, as shown in the last example.
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Figure 1. Location of the Ω region for various sample observations of the study variable
Source: own elaboration

Example 3. Consider the population of size N = 3 and the general sampling 
design P = [b, a, a, a, a, a, a, b]’ , where b = (1 – 6a)/2, that is parameterised by the 
constant ( )0,1/ 6a∈ . The special feature of this design is that the correlation co‑
efficient between all sample membership indicators takes the same value (say ρ). 
Probabilities of drawing all the possible samples obtained for varying values 
of a and resulting ρ‑values are shown in Table 2. Let us assume that all the three 
population elements are drawn to a sample resulting in the sample observation 
of the study variable: y = [1, 2, 3]. Let us also assume that 0.15ε =  and R = 50. 
The empirical distribution of 5000 realisations of the count vector m, along with 
boundaries of the Ω region for a = 0.01, 0.05, 0.125, 0.166, are shown in Figure 3. 
It is clearly visible that the negative correlation among sample membership indi‑
cators – and even lack thereof – improves the accuracy criterion as compared with 
the worst case of perfect positive correlation.
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Figure 2. Distribution of the simulation count vector m for various sampling designs and n(s) = 2
Source: own elaboration

Table 2. Sample drawing probabilities and correlation coefficients between 
sample membership indicators for various values of the parameter a

a 0.01 0.05 0.125 0.166
p000 0.47 0.35 0.125 0.002
p001 0.01 0.05 0.125 0.166
p010 0.01 0.05 0.125 0.166
p011 0.01 0.05 0.125 0.166
p100 0.01 0.05 0.125 0.166
p101 0.01 0.05 0.125 0.166
p110 0.01 0.05 0.125 0.166
p111 0.47 0.35 0.125 0.002
ρ 0.92 0.6 0.00 –0.328

Source: own elaboration
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Figure 3. Distribution of the simulation count vector m for various sampling designs and n(s) = 3
Source: own elaboration

4. The proposed stopping rule

The accuracy criterion depends on correlations among sample membership indi‑
cators. However, it is not reasonable to expect these correlations to be known when 
inclusion probabilities (defined as moments of their distributions) remain unknown. 
To account for correlations, the simulation may be divided into two phases. In the 
first phase, R1 sample replications s ˘1, …, sR1

˘  are generated. Occurrences of indi‑
vidual units and pairs of units are counted resulting in the following counts:

  
{ }1

˘1 1... ii R
s

∈
=  

 ∑m I . (29)
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{ }1

11 1

1 1...

1

' '
N

i ii R

N NN

m m
s s

m m
∈

 
 = =           

∑


  



M I I˘ ˘ . (30)

Then the estimates of first and second order inclusion probabilities are ob‑
tained as:

 1
1

1

ˆ
R

π =
m

, (31)

 1
1

1

ˆ
R

Π =
M

 (32)

This enables estimation of the covariance matrix C which characterises a joint 
distribution of sample membership indicators as:

 1 1 1'ˆ ˆ ˆ ˆπ π= Π −C  (33)

while 1π̂  is obviously an estimate of its expectation vector π. In the second phase 
of simulation, R2 sample replications 1 1 21,...,R R Rs s+ +˘ ˘  are generated. Hence, in the 
whole simulation, a total of R = R1 + R2 sample replications s ˘1, …, sR˘  are generat‑
ed, which leads to the calculation of the final count vector m and the empirical HT 
estimator according to expressions (17)–(21). Capabilities of contemporary com‑
puters make it possible to set R1, R2 and R quite large (in the order of millions) 
without much effort so that the distribution of m tends to multivariate normal: 

( )2,N R Rπ C  as shown by Krzyśko (2000: 31). After the first phase of the simula‑
tion, it may be approximated by ( )2, ˆˆN R Rπ C . Realisations of this distribution may 
be easily and quickly generated in large quantities, for example, by using algo‑
rithms described by Zieliński and Wieczorkowski (1997). This enables the estima‑
tion of the probability Q(R) associated with any value of R by counting what per‑
centage of these pseudo‑random realisations falls outside the Ω region (with the 
unknown ‘true’ statistic ( )t̂ s  approximated by ( )t̂ s  based on R1 replications). Such 
estimation is easily repeated for various candidate values of R because generated 
replications of multivariate normal distribution may be reused. The re‑calculation 
boils down to a few matrix operations (addition, multiplication, division of corre‑
sponding elements) which are easily serialised and optimised. The well‑known 
golden‑section or Newton‑Raphson algorithms may hence be applied to find the 
minimum sufficient number R before the second phase of simulation is initiated.
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5. Conclusions

According to the approach sketched in the last section, one relatively simple, but 
very time‑consuming simulation, is replaced with a more complex but potential‑
ly faster procedure. Instead of calculating a conservative number of replications 
and then generating them all, a more subtle approach is proposed. After initially 
generating some R1 sample replications, the auxiliary nested but fast simulation 
is executed to establish the required total number R of replications accounting 
for correlations among sample membership indicators. Then the second, possibly 
quite a small batch of R – R1 replications, is generated, and the empirical HT es‑
timator may finally be evaluated. The nested fast simulation step may eventually 
be repeated more times when more and more replications are available to make 
the initial assessment of R more reliable. It may also be done after all replications 
are generated to verify that their number is indeed sufficient. Further studies are 
needed to confirm whether the proposed procedure indeed produces substantial 
speeding‑up of the whole simulation process.
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Reguła stopu dla estymacji prawdopodobieństw inkluzji na drodze symulacyjnej

Streszczenie: Estymacja parametrów populacji skończonych i ustalonych, prowadzona w ramach 
podejścia randomizacyjnego, zazwyczaj wymaga znajomości prawdopodobieństw inkluzji charak‑
teryzujących schemat losowania próby. Są one bezpośrednio wykorzystywane w celu wyznaczenia 
wag przypisanych poszczególnym wylosowanym jednostkom i uwzględniane podczas obliczania 
estymatorów. Jednak dla pewnych użytecznych schematów losowania pozostają nieznane. W takim 
wypadku możliwe jest ich wyznaczenie na drodze symulacyjnej, poprzez wielokrotne losowanie prób 
z wykorzystaniem tego samego schematu losowania i zliczanie wystąpień poszczególnych jednostek 
populacji. Zastępując nieznane prawdopodobieństwa inkluzji oszacowaniami uzyskanymi w wyniku 
takiego eksperymentu, otrzymuje się oszacowania wartości globalnej badanej cechy populacji. Szcze‑
gólnym wyzwaniem podczas takiego postępowania jest wyznaczenie liczby replikacji próby, zapew‑
niającej wymaganą precyzję estymacji. W niniejszym artykule proponowana jest nowa procedura, 
która może przyczynić się do zmniejszenia złożoności obliczeniowej eksperymentu symulacyjnego.

Słowa kluczowe: estymator Horvitza‑Thompsona, prawdopodobieństwa inkluzji, symulacja, precyzja

JEL: C83, C63
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