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The investigation of σ -ideals of subsets of the real line has a long tradition.
The main motivation for the study of the collection of all microscopic sets,
which constitutes a σ -ideal, stems from the fact that whenever one has to prove
that a certain property in functional analysis or measure theory is fulfilled for
"almost all" elements, the concept of "smallness" of the set of "exceptional
points" should be described. The most classical of these concepts are related
to Lebesgue nullsets and the sets of first Baire category.

In certain applications, the ideals of measure and category turn out not to
be suitable. In these situations it is useful to consider another σ -ideal having
some good set-theoretic, algebraic and geometric properties.

What makes microscopic sets interesting is the property that the collection
of all microscopic sets constitutes a σ -ideal strictly smaller then the σ -ideal
of sets of Lebesgue measure zero and orthogonal to the σ -ideal of sets of
first Baire category. Therefore, in cases where it is well-known that a certain
property holds everywhere except for a set of Lebesgue measure zero, it is im-
portant to check if the set of exceptional points is microscopic. If the answer
is positive we get a stronger version of the property in question. In the classi-
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cal function theory on Rn the examples of such theorems are given by Fubini’s
theorem, Kuratowski - Ulam theorem, Steinhaus theorem, Piccard theorem, re-
sults of Oxtoby and Ulam concerning homeomorphisms or Sierpiński - Erdös
Duality Principle and many others. These results are of importance for various
branches of mathematics, such as functional analysis, measure theory, geo-
metric measure theory and descriptive set theory. Their stronger versions will
provide a useful subtle tool for mathematicians working on different topics.

20.1 Microscopic sets on the real line

The notion of microscopic set on the real line was introduced at the begin-
ning of 21-st century in the paper [1] by J. Appell.

Definition 20.1. A set E ⊂ R is microscopic if for each ε > 0 there exists
a sequence of intervals {In}n∈N such that E ⊂

⋃
n∈N In, and λ (In)≤ εn for each

n ∈ N.

The family of all microscopic sets will be denoted by M.
Deeper studies of microscopic sets were done by J. Appell, E. D’Aniello

and M. Väth in the paper [3] from 2001. They showed that the collection of all
microscopic sets constitutes a σ -ideal. It is not trivial to verify that a union of
microscopic sets is microscopic, so we repeat it here.

Let {Ak}k∈N be a sequence of microscopic sets. Let ε ∈ (0,1) and define
εk := ε2k

for every k∈N. Then for any k∈N there exists a sequence of intervals
{Ik,n}n∈N such that Ak ⊂

⋃
n∈N Ik,n, and λ (Ik,n)≤ εn

k , for each n ∈ N.
Define a map φ : N×N→ N by

φ(k,n) = 2k−1(2n−1). (20.1)

Obviously, it is a bijection.
Now consider the sequence of intervals {Im}m∈N, where Im := Ik,n with m =

φ(k,n).
Then

⋃
k∈NAk ⊂

⋃
m∈N Im and λ (Im) = λ (Ik,n) ≤ εn

k = (ε2k
)n = ε2kn ≤

εφ(k,n) = εm, for every m ∈ N.
Therefore

⋃
k∈NAk ∈M.

Some properties of the considered σ -ideal are straightforward.
If A ∈M and α ∈ R, then

1. A+α = {x+α : x ∈ A} ∈M,
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2. −A = {−x : x ∈ A} ∈M,
3. α ·A = {α · x : x ∈ A} ∈M,
4. if 0 6∈ A, then A−1 = {1

x : x ∈ A} ∈M.

On account of the first two statements we can say that there is no "model
set" for this ideal (see [13]). It means there is no set A ∈M such that for each
B ∈M there exists x ∈ R such that B⊂ A+ x.

Analogously as the σ -ideal of Lebesgue nullsets, M is Gδ - generated:

Theorem 20.2 ([21], Lemma 2.3). Every microscopic set is contained in some
microscopic set of type Gδ .

Proof. Let A be a microscopic set. Then for each j ∈N there exists a sequence
{In, j}n∈N of open intervals such that A⊂

⋃
n∈N In, j and λ (In, j)< ( 1

2 j )
n for each

n ∈ N. Put B =
⋂

∞
j=1
⋃

∞
n=1 In, j. Obviously, A⊂ B and B is a microscopic set of

type Gδ . ut

Simultaneously, the set constructed by A. S. Besicovitch in [10] shows that
an approximation of Borel sets by Fσ sets with accuracy to microscopic set is
impossible. Besicovitch proved that there exists a Borel set E ⊂ R such that if
E = A∪N and A is a set of type Fσ , then N is not a set of Hausdorff dimension
zero, so also not microscopic, as each microscopic set has Hausdorff dimension
zero (compare [3], p. 258-9 or [2], p. 213).

A microscopic set can be also described in another way.

Theorem 20.3 ([15]). The following conditions are equivalent:

1) A is microscopic,
2) for every η > 0 there exists a sequence {Jn}n∈N of intervals such that

A⊂ limsup
n

Jn and
∞

∑
k=n

λ (Jk)≤ η
n for n ∈ N,

3) for every δ > 0 there exists a sequence {Jn}n∈N of intervals such that

A⊂ limsup
n

Jn and λ (Jn)≤ δ
n for n ∈ N.

Proof. 1)⇒ 2) Suppose that E is microscopic set and η ∈ (0,1). Put

θ =
η

1+η
(20.2)

and εk = θ 2k
for k ∈ N.
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Let k be a fixed positive integer. As E is microscopic, there exists a sequence
{Ik

n}n∈N of intervals such that

E ⊂
∞⋃

n=1

Ik
n and λ (Ik

n)< (εk)
n. (20.3)

Let φ be a function defined in (20.1) and let m ∈ N. There exists a unique pair
(k,n) ∈ N×N such that φ(k,n) = m. Put

Jm = Ik
n .

Then E ⊂ limsupm Jm. Let p ∈ N and Ap = {(k,n) ∈ N×N : φ(k,n) ≥ p}.
Using (20.3) and (20.2) we obtain

∞

∑
m=p

λ (Jm)= ∑
(k,n)∈Ap

λ (Ik
n)< ∑

(k,n)∈Ap

(εk)
n = ∑

(k,n)∈Ap

θ 2k·n < ∑
(k,n)∈Ap

θ 2k−1·(2n−1)=

∑
(k,n)∈Ap

θ φ(k,n) =
∞

∑
m=p

θ m =
θ p

1−θ
≤
(

θ

1−θ

)p

= η p.

The other implications are obvious. ut

20.2 Comparison with other σ -ideals

We want to consider families of small subsets of the real line having in mind
various concepts of "smallness".

We are going to use the following notation: let C denote the family of all
countable sets, S - strong measure zero sets, UMS - universal measure zero
sets,H0 - sets of Hausdorff dimension zero.

We recall here only definitions of sets belonging to S and UMS .
A set E ⊂ R is of strong measure zero if for each sequence of positive reals

{εn}n∈N there exists a sequence of intervals {In}n∈N such that

E ⊂
⋃

n∈N
In and λ (In)< εn f or n ∈ N.

A set E ⊂ R has universal measure zero if for each Borel measure µ there
is a Borel set of µ - measure zero covering E.

Of course each of these families is a σ -ideal. It was observed that the fol-
lowing inclusions hold

C( S (M(H0 (N .
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The first one is proper under CH because every Luzin set (an uncountable
subset of a real line having countable intersection with every set of the first cat-
egory, whose existence is proved under CH) is a strong measure zero set ([9],
Lemma 8.2.1.) Indeed, assume that A is a Luzin set. Let {rn}n∈N be a sequence
of all rational numbers and let {εn}n∈N be an arbitrary sequence of positive
real numbers. Then the set

∞⋃
n=1

(rn−
ε2n

3
,rn +

ε2n

3
)

is open and dense, so its complement is a set of the first category. Consequently,
the set

B = A\
∞⋃

n=1

(rn−
ε2n

3
,rn +

ε2n

3
)

is countable. Let {xn}n∈N be a sequence of all elements of B. Then

A⊂
∞⋃

n=1

(rn−
ε2n

3
,rn +

ε2n

3
)∪

∞⋃
n=1

(xn−
ε2n−1

3
,xn +

ε2n−1

3
),

so A is a strong measure zero set.
An example of a microscopic set which is not a strong measure zero set is

given in [15].
The example of a non-microscopic set of Hausdorff dimension zero can be

found in [2] and [3].
The classical one-third Cantor set is a Lebesgue nullset but it has a positive

Hausdorff dimension. Nevertheless, it is possible to construct a Cantor-type set
which is microscopic ([23], Lemma 2), as follows.

We shall define by induction the sequence of open intervals {Jn,i}, i ∈
{1, ...,2n−1}, n ∈ N in a following way. Put J1,1 = (1

4 ,
3
4). Denote by K1,1, K1,2

successive components of the set I\J1,1. Obviously λ (K1,i)=
1

221 for i∈{1,2}.
Let J2,1,J2,2 be two open intervals concentric with K1,1,K1,2 respectively, such
that λ (J2,1) = λ (J2,2) = λ (K1,1)−2 1

322 . Let K2,1,K2,2,K2,3,K2,4 denote succes-

sive components of the set I \ (J1,1∪ J2,1∪ J2,2). Notice that λ (K2,i) =
1

322 for
i ∈ {1,2,3,4}.

Let k ≥ 2. Assume that we have constructed the open, nonempty intervals
Jl,1, ...,Jl,2l−1 concentric with Kl−1,1, ...,Kl−1,2l−1 respectively, such that

λ (Jl,i) = λ (Kl−1,1)−2
1

(l +1)2l
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for l ∈ {1, ...,k} and i ∈ {1, ..,2l−1}. Let Kk,1, ...,Kk,2k be successive com-

ponents of the set I \
⋃k

l=1
⋃2l−1

i=1 Jl,i. Notice that λ (Kk,i) =
1

(k+1)2k for i ∈
{1, ...,2k}.
Now let Jk+1,1, ...,Jk+1,2k be open intervals concentric with Kk,1, ...,Kk,2k re-
spectively, such that

λ (Jk+1,i) = λ (Kk,1)−2
1

(k+2)2k+1

for i ∈ {1, ..,2k}. Let Kk+1,1, ...,Kk+1,2k+1 be successive components of the set

I \
⋃k+1

l=1
⋃2l−1

i=1 Jl,i. Obviously λ (Kk+1,i) =
1

(k+2)2k+1 for i ∈ {1, ...,2k+1}.
Let us put

M =
∞⋂

k=1

2k⋃
i=1

Kk,i.

Now let ε > 0. There exists n0 ∈N such that 1
n0
< ε . Obviously M⊂

⋃2n0
i=1 Kn0,i.

Moreover
λ (Kn0,i) =

1
(n0 +1)2n0 <

1
n0i < ε

i

for i ∈ {1, ...,2n0}. Hence M is a Cantor-type set which is microscopic.
As a perfect set M cannot be a strong measure zero set ([9], Corollary 8.1.5)

so M ∈M\S.

A classical result of Marczewski states that every strong measure zero set
has universal measure zero ([26], Theorem 5.1), but the σ -ideals UMS and
M are incomparable. Indeed, by theorem of Marczewski ([26], Theorem 9.1) a
set of reals X belongs to UMS if and only if every set homeomorphic to X has
Lebesgue measure zero, so since a microscopic Cantor-type set is homeomor-
phic to a Cantor set with positive Lebesgue measure, it is not universal measure
zero set. On the other hand there exists on the real line a universal measure zero
set with Hausdorff dimension one ([32]), it means not microscopic.

The next theorem ensures the existence of a microscopic set which is large
in a sense of category, i.e. it is residual.

Theorem 20.4 ([21], Lemma 2.2). There exists a decomposition of R

R= A∪B

such that A is of the first category and B is a microscopic set.
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Proof. Let {rn}n∈N be a sequence of all rational numbers. Let In, j = (rn −
1

2n· j+1 ,rn +
1

2n· j+1 ), n ∈ N, j ∈ N.
Put

G j =
∞⋃

n=1

In, j

for j ∈ N,

B =
∞⋂

j=1

G j

and A =R\B. For each ε > 0 there exists j ∈N such that 1/2 j < ε . Obviously,
B ⊂ G j =

⋃
∞
n=1 In, j and λ (In, j) = ( 1

2 j )
n < εn for n ∈ N. Hence B is a micro-

scopic set. Simultaneously, G j is open dense subset of R for each j ∈ N, so B
is a residual set and, consequently, A is a set of the first category. ut

Consider an equivalent definition of a set of strong measure zero: a set
E ⊂ R belongs to S if for each sequence of positive reals {εn}n∈N there ex-
ists a sequence of intervals {In}n∈N such that

E ⊂ limsup
n

In and
∞

∑
k=n

λ (Ik)< εn for n ∈ N.

Looking at this definition of a strong measure zero set and the definition of
a microscopic set from Theorem 20.3 we can notice a similarity to the Borel
idea ([27], Lemma 14.1) of describing a Lebesgue measure zero set E by exis-
tence of a sequence of intervals {In}n∈N such that

E ⊂ limsup
n

In and
∞

∑
n=1

λ (In)< ∞.

Following E. Borel and M. Frechet ([11], [17]) W. Just and C. Laflamme
in [20] and [25] classified measure zero sets according to their open covers
and considered some σ -ideals of measure zero sets. One of them is σ -ideal of
strong measure zero sets, so it is contained in M. We are going to justify that
others are imcomparable with M.

Let H denote a collection of sets E ⊂ R with a property that there exists a
sequence of positive reals {εn}n∈N converging to zero such that for all nonin-
creasing sequences {δn}n∈N if δn ≥ εn infinitely often, then there exists a se-
quence of intervals {In}n∈N such that

E ⊂ limsup
n

In and
∞

∑
k=n

λ (Ik)≤ δn for n ∈ N.
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Then H is a σ -ideal and any uncountable closed set of measure zero be-
longs to H ([25]), so it contains both classical Cantor set and Cantor - type
microscopic set.

The next classL is a collection of sets E ⊂Rwith a property that there exists
a sequence of positive reals {εn}n∈N such that for all sequences of intervals
{In}n∈N if E ⊂ limsupn In, then the condition ∑

∞
k=n λ (Ik)≥ εn holds for all but

finitely many n ∈ N.
Since each residual set of measure zero belongs to the L-class ([25]), then

by Theorem 20.4 there is a microscopic set in L and if we consider a union of
a microscopic comeager set with a nonmicroscopic set of measure zero (for ex-
ample a classical one-third Cantor set) we get an example of a nonmicroscopic
set from L.

The next collection U consists of measure zero sets not in L, so E ⊂ R be-
longs to U if for each sequence of positive reals {εn}n∈N there exists a sequence
of intervals {In}n∈N such that

E ⊂ limsup
n

In and
∞

∑
k=n

λ (Ik)< εn for infinitely many n ∈ N.

Then U is a σ -ideal ([25]) and of course S ⊂ U . Therefore there are micro-
scopic sets in U and comeager microscopic sets do not belong to U . Since H
is consistently contained in U ([25]), there are also nonmicroscopic sets in U .
Hence U is imcomparable with M.

Given a proper σ - ideal I of subsets of the real line, containing all single-
tons and Gδ - generated, one can consider the family of all sets which can be
covered by Fσ - sets from I (see for example [8]). If we denote this family by
I∗ then I∗ ⊂ I and I∗ is a σ -ideal. In particular M∗ is a σ - ideal. The next
theorem states the results of the comparison of this family with others.

Theorem 20.5.
1) C⊂M∗ and M∗ \C 6= /0,
2) M∗ ⊂M and M\M∗ 6= /0,
3) N ∗ \M 6= /0 and M\N ∗ 6= /0,
4) M∗ ⊂N ∗ and N ∗ \M∗ 6= /0,
5) N \

(
M∪N ∗

)
6= /0.

Proof. All the above inclusions follow directly from definitions. We only have
to show that the listed differences are really nonempty.

1) Any microscopic Cantor-type set belongs to M∗ \C.
2) Any residual microscopic set belongs to M\M∗.
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3) The classical one-third Cantor set belongs to N ∗ \M and any residual
microscopic set belongs to M\N ∗.

4) The family N ∗ \M∗ is nonempty since it contains N ∗ \M.
5) The union of the classical one-third Cantor set and any residual null set

belongs to N \
(
M∪N ∗

)
. ut

Since N ∗ (M∩N ,
M∗ (M∩N ,

whereM denote a σ -ideal of sets of the first category.
Note that the σ -ideal of σ - porous sets satisfies the analogous inclusion, so

it is natural to compare it with M∗.
Let us recall the relevant definitions ([31]). For A⊂ R, x ∈ R and ε > 0 let

γ(A,x,ε) := sup{r > 0 : ∃z∈R(z− r,z+ r)⊂ (x− ε,x+ ε)\A},

where we put sup /0 := 0.
The porosity of A at x is defined by

p(A,x) := limsup
ε→0+

2γ(A,x,ε)
ε

.

A is called porous if p(A,a) > 0 for each a ∈ A. It is called σ -porous if it
belongs to P – the σ -ideal generated by the porous sets.

As was already mentioned P(M∩N and M∗ (M∩N . However

Theorem 20.6. P and M∗ are incomparable.

Proof. Note that
P\M∗ 6= /0,

since P\N ∗ 6= /0 (see [16]).
To show M∗ \P 6= /0 we use the idea from Lemma 0.2 ([19]). We prove

that there exists a sequence of sets {Cn}n∈N, Cn ⊂ (0,1) for n ∈ N, with the
following properties:

1. Cn is closed microscopic nowhere dense set for n ∈ N;
2. Cn∩Cm = /0 for n,m ∈ N, n 6= m;

3.
∞⋃

n=1
Cn is dense in [0,1].

Put A1 = (0,1). By Theorem 2.10 in [21] there exists a closed nowhere
dense microscopic set C1 ⊂ A1. Now we proceed by induction. Let n ∈ N,
n ≥ 2. Suppose that we have defined the pairwise disjoint sets C1,C2, ...,Cn−1

closed, nowhere dense and microscopic such that for each p ∈ {1, ...,n−1}
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Cp ⊂
(

l
2k ,

l +1
2k

)
\

p−1⋃
i=1

Ci

where k ∈ N∪{0} , l ∈
{

0,1, ...,2k−1
}

and the pair k, l fulfills equality p =

2k + l.
There exists the unique pair k, l of integers such that k ∈ N ∪ {0}, l ∈{

0,1, ...,2k−1
}

and n = 2k + l. Put

An =

(
l

2k ,
l +1

2k

)
\

n−1⋃
i=1

Ci.

Obviously, An is an uncountable set of type Gδ , hence, by Theorem 2.10
in [21], there exists a closed, nowhere dense, microscopic set Cn ⊂ An, so

Cn∩
n−1⋃
i=1

Ci = /0.

It is easy to see that the sequence {Cn}n∈NN fulfills the conditions (1)-(3)
and

⋃
∞
i=1Cn ∈M∗ \P. ut

20.3 Bor4M

We consider a σ -field of Borel sets modulo a σ -ideal M:

Bor4M := {B4M : B ∈ Bor and M ∈M}.

Clearly Bor4M ⊂ Bor4N = L . We shall prove that Bor4M 6= L. For this
purpose we need an auxiliary lemma.

Lemma 20.7. The following conditions are equivalent:

1). E ∈ Bor4M

2). there exist two Borel sets A1, A2 such that A1 ⊂ E ⊂ A2 and A2 \A1 ∈M.

Proof. 1)⇒2). Let E ∈ Bor4M. Then there exist B ∈ Bor and M ∈M such
that E =B4M. Hence B\M⊂E ⊂B∪M. There exists a microscopic Borel set
N (of type Gδ ) such that M ⊂ N. Then B\N ⊂ E ⊂ B∪N, (B∪N)\ (B\N) =

N ∈M and B\N as well as B∪N are Borel sets.
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2)⇒1). Suppose that there exist two Borel sets A1, A2 such that A1 ⊂ E ⊂
A2 and A2 \A1 ∈M. Then E = A1 ∪D, where D ⊂ A2 \A1, so D ∈M and
consequently E ∈ Bor4M. ut

Theorem 20.8. There exists a measurable set E such that E 6∈ Bor4M.

Proof. Let C be a classical Cantor set and let B denote the Bernstein set. Put
C1 = C ∩B and C2 = C \B. Then C = C1 ∪C2, so C1 /∈M or C2 /∈M ( as
C /∈M). Suppose that C1 /∈M (the case C2 /∈M is analogous). Let A1, A2 be two
arbitrary Borel sets such that A1 ⊂ C1 ⊂ A2. Suppose that A1 is uncountable.
Then from Alexandroff-Hausdorff theorem it contains some Cantor-type set
(uncountable and closed). It gives a contradiction with the fact that both B
and R \ B meet every uncountable closed subset of the real line. Hence A1

is countable, so C1 \ A1 /∈ M. Clearly, C1 \ A1 ⊂ A2 \ A1, and A2 \ A1 /∈ M.
Put E = C1 Using the previous lemma we get a measurable set E such that
E /∈ Bor4M. ut

Using the notion of a Bernstein set, which is a useful tool to investigate
a σ -field of Borel sets modulo a σ -ideal ([7]), we can prove even more.

Let A⊂ R and let A contain a perfect set.

Definition 20.9. A set B ⊂ A is called a Bernstein set relatively to A if both B
and A\B meet each perfect subset of A.

We will use the following:

Proposition 20.10 ([7]). If a σ -ideal I has a Borel base and A⊂ X is an ana-
lytic set such that A /∈ I then there is no set B in Bor4I which is a Bernstein
set relatively to A.

Applying the last result with A - the classical one-third Cantor set yields:

Corollary 20.11. There exists a Bernstein set B relatively to a perfect nowhere
dense Lebesgue null set, such that B /∈ Bor4M.

According to the above corollary, we have:

Theorem 20.12.
(N ∩ND)\ (Bor4M) 6= /0,

where ND denotes the family of all nowhere dense sets.

To check the countable chain condition for the σ - field Bor4M and M

we verify a stronger condition, the "property (D)", which is defined in a more
general case. Let X be a perfect Polish space, (X ,+) - a metric abelian group,
I - an invariant ideal.
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Definition 20.13 ([5]). I has the property (D) if there exists a set B ∈ Bor \I
and a perfect set P⊂ X such that {B+ x : x ∈ P} forms a disjoint family.

Proposition 20.14. M has the property (D).

Proof. If I and J are ideals such that I ⊂ J and J has the property (D)

then I has (D). It was shown in [5] that for every s ∈ (0,1) the σ -ideal Js

of s-dimensional Hausdorff measure zero sets has the property (D). So, since
M⊂H0 ⊂ Js, we are done. ut

Corollary 20.15. (Bor4M,M) does not satisfy ccc.

20.4 Studies on the possibility of replacing Lebesgue nullsets by
microscopic sets in the classical theorems of measure theory
and theory of real functions.

In 2008 A. Karasińska and E. Wagner-Bojakowska in [22] studied how "big"
can be a set on which a nowhere monotone continuous function can be injec-
tive. They proved that a "typical" (in a sense of Baire category) continuous
function on [0,1] is nowhere monotone and injective outside a microscopic
set. This result is a strenghtening of the result described in [12] (see Ex. 10:
6.6, p. 471). In the paper [22] one can find an example of a continuous nowhere
monotone function with a bounded variation on [0,1] (so not a "typical" con-
tinuous function), which is injective outside a microscopic set.

In [21] A. Karasińska, W. Poreda and E. Wagner-Bojakowska proved that
the theorem analogous to Sierpiński-Erdös Duality Theorem for the family of
microscopic sets and sets of the first category on the real line is valid.

In 1934, W. Sierpiński proved in [29] (assuming CH) that there exists a
bijection f : R→ R such that f (E) is a nullset if and only if E is of the first
category. Sierpiński asked whether a stronger theorem is also valid: does there
exist a bijection f : R→ R that maps each of two classes M and N onto
the other. The positive answer to this question was given in 1943 by P. Erdös
in [14]. Erdös proved (assuming CH) that there exists a bijection f : R→ R
such that f = f−1 and f (E) is a nullset if and only if E is a set of the first
category. From these properties it follows that f (E) is a set of the first category
if and only if E has Lebesgue measure zero. From Erdös result there follows a
theorem known as Duality Principle (see [27], Theorem 19.4).
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Observe that if we change the notion of set of Lebesgue measure zero by
the notion of a microscopic set, the theorem analogous to Duality Principle
will also be true.

For this purpose it sufficient to prove that the family M has the following
properties:

(a) M is a σ -ideal
(b) the union of M is equal to R
(c) M has a subfamily G such that card(G) ≤ ℵ1 and for each A ∈M there

exists B ∈ G such that A⊂ B
(d) the complement of each set A ∈M contains a set of cardinality ℵ1 which

also belongs to M.

The condition (a) was already justified, (b) is obvious, (c) follows from The-
orem 20.2 (assuming CH). We concentrate on (d). For any A ∈M we have
λ (A) = 0, so R\A contains some uncountable closed subset. Using Theorem
2.10 from [21] we obtain that R\A contains some microscopic set with cardi-
nality ℵ1.

Using Theorem 19.5 in [27] we obtain

Theorem 20.16 ([21], Theorem 2.12). (CH). There exists a one-to-one map-
ping f of the real line onto itself such that f = f−1 and f (E) is a microscopic
set if and only if E is a set of the first category.

Consequently, for microscopic sets the theorem analogous to Duality Prin-
ciple holds:

Theorem 20.17 (CH). Let P be any proposition involving solely the notions of
microscopic set, first category set and notions of pure set theory. Let P∗ be the
proposition obtained from P by interchanging the terms "microscopic set" and
"set of the first category" whenever they appear. Then each of the proposition
P and P∗ implies the other.

However, the extended principle, where the notions of measurability and
Baire property would be interchanged, is not true.

Among many similarities between σ -ideals N andM so called Steinhaus
property is worth to be mentioned.

Let A and B be two subsets of the real line. By A+B we denote the algebraic
sum of A and B, i.e. A+B := {x+y : x∈A,y∈B}. In 1920 H. Steinhaus proved
in [30] that for arbitrary measurable sets A,B of positive measure, so outside
σ -ideal N , int(A+B) 6= /0.
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A category analogue of the theorem of Steinhaus was proved by S. Piccard
(see [28]). If A,B ⊂ R are two sets of the second category having the Baire
property, then int(A+B) 6= /0.

Observe that for microscopic sets the analogous property is not true: con-
trary to the σ -idealN of Lebesgue measure zero sets and to the σ -idealM of
sets of the first category M has not a Steinhaus property.

Theorem 20.18. There exists a Borel set A⊂R such that A is not microscopic
and int(A+A) = /0.

Proof. Let C be a Cantor set and let H be the set of all end-points of component
intervals of [0,1]\C. Put A =C \H and for each k ∈ N let

Nk =
3k⋃

i=0

{
2i
3k

}
.

Then for each k ∈ N we have

(A×A)∩
⋃

α∈Nk

{(x,y) : y =−x+α}= /0.

Hence for each k ∈ N
(A+A)∩Nk = /0,

so
(A+A)∩

⋃
k∈N

Nk = /0.

The set
⋃

k∈NNk is dense in [0,2], so int(A+A) = /0. ut

It is well known that the theorem converse to Steinhaus or Piccard results
is not true. There exists a nowhere dense set A ⊂ R of measure zero such that
int(A+ A) 6= /0. This condition holds for example for Cantor set C because
C+C = [0,2]. Observe, that the analogous property also holds for the σ -ideal
M.

Theorem 20.19. There exists a microscopic set A⊂R such that int(A+A) 6= /0.

Proof. Let A be a microscopic set residual in R (see Theorem 20.4). From
theorem of S. Piccard it follows that A+A contains some interval. ut
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20.5 Extension of the notion of a microscopic set in the Euclidean
spaces of higher dimensions.

In the n-dimensional Euclidean space the notion of microscopic set can be
introduced using various differentiation bases (as rectangles with sides paral-
lel to coordinate axes, or cubes for example). Hence we can obtain different
notions of microscopic sets. The properties of the sets, their invariance with
respect to translation, rotation and other algebraic and set-theoretic operations
are investigated in [24].

Definition 20.20. We shall say that A ⊂ R2 is a microscopic set if for each
ε > 0 there exists a sequence {In}n∈N of rectangles with sides which are paral-
lel to coordinate axes such that A⊂

⋃
n∈N In and λ2(In)< εn for each n ∈ N.

Definition 20.21. We shall say that A ⊂ R2 is a strongly microscopic set if
for each ε > 0 there exists a sequence {In}n∈N of squares with sides which
are parallel to coordinate axes such that A⊂

⋃
n∈N In and λ2(In)< εn for each

n ∈ N.

Denote by M2 the family of all microscopic sets inR2 and by M2s the family
of all strongly microscopic sets in R2. Obviously, each strongly microscopic
set is microscopic, so M2s ⊂M2.

In the sequel a rectangle with sides which are parallel to coordinate axes
will be called an interval.

Analogously as on the real line one can prove the following theorems.

Theorem 20.22 ([24], Theorem 3). The families M2 and M2s are the σ -ideals.

Theorem 20.23 ([24], Theorem 4). The following conditions are equivalent:

(i) A is a microscopic set on the plane.
(ii) For each positive number η there exists a sequence {Jn}n∈N of intervals

such that
A⊂ limsupn Jn and ∑

∞
k=n λ2(Jk)< ηn for each n ∈ N.

(iii) For each positive number δ there exists a sequence {In}n∈N of intervals
such that

A⊂ limsupn In and λ2(In)< δ n for each n ∈ N.

The analogous theorem holds for strongly microscopic sets (the intervals
are changed with the squares).

Theorem 20.24 ([24], Theorem 5). The plane can be represented as the union
of two disjoint sets A and B such that A is a set of the first category and B is
a strongly microscopic set.
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Corollary 20.25 ([24], Corollary 6). There exists a strongly microscopic set
B⊂ R2 which is residual.

Theorem 20.26 ([24], Theorem 14). If A ∈M2s and (α,β ) ∈ R2, then

(a) A+(α,β ) = {(x+α,y+β ) : (x,y) ∈ A} ∈M2s,
(b) −A = {(−x,−y) : (x,y) ∈ A} ∈M2s,
(c) (α,β ) ·A = {(α · x,β · y) : (x,y) ∈ A} ∈M2s,
(d) if A∩{(x,y) : x · y = 0}= /0, then A−1 = {(1

x ,
1
y ) : (x,y) ∈ A} ∈M2s.

Clearly the analogous theorem holds for the family M2.
Let us denote by N2 the family of all sets of Lebesgue measure zero on the

plane and by C2 - the family of all countable subsets of the plane.
Obviously, each countable set is strongly microscopic and if A is micro-

scopic, then A is of Lebesgue measure zero, so we have

C2 ⊂M2s ⊂M2 ⊂N2.

Observe that all these inclusions are proper. It is easy to see that the set

A = {(x,x) : x ∈ [0,1]} (20.4)

is a set of plane measure zero which is not microscopic on the plane, and the
set

B = [0,1]×{0} (20.5)

is a microscopic set on the plane which is not strongly microscopic. Clearly,
each residual strongly microscopic set is uncountable, so

C2 (M2s (M2 (N2.

Comparing the sets A and B defined above we see that the family M2 is
not invariant under rotation with respect to the origin. For the family M2s the
situation is quite different.

Theorem 20.27 ([24], Theorem 9). The set A ∈M2s if and only if for each
ε > 0 there exists a sequence {Bn}n∈N of circles on the plane such that A ⊂⋃

n∈NBn and λ2(Bn)< εn for each n ∈ N.

Consequently, the family M2s is invariant under rotation and if A ∈M2s,
then the projection of A onto any line is a microscopic set.

If E ⊂ X ×Y and x ∈ X , the set Ex = {y ∈ Y : (x,y) ∈ E} is called the x-
section of E.
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Fubini Theorem underlines a close connection between the measure of any
plane measurable set and the linear measure of its sections perpendicular to
an axis. In [27], Theorem 14.2 one can find an elementary proof of the fact
that if E is a plane set of measure zero, then Ex is a linear nullset for all x
outside a set of linear measure zero.

Fubini Theorem has a category analogue. Kuratowski and Ulam in 1932
proved (compare [27], Theorem 15.1) that if E is a plane set of the first cate-
gory, then Ex is a linear set of first category for all x except those belonging to
a certain set of the first category.

Note that for strongly microscopic sets the result analogous to Fubini the-
orem also holds. It is not difficult to observe it because there is a close con-
nection between the area of the square and the length of its side.The result
analogous to Fubini theorem for microscopic sets on the plane is also valid.

Theorem 20.28 ([24], Theorem 17). Let E ⊂ R2 be a microscopic set on the
plane. Then Ex is a microscopic set on the real line for each x∈R outside some
microscopic set on the real line, i.e. the set

{x ∈ R : Ex is not a microscopic set on the real line}

is microscopic on R.

Using Theorem 20.28 we proved

Theorem 20.29 ([24], Theorem 18). A product set A×B is microscopic on the
plane if and only if at least one of the sets A or B is microscopic on the real
line.

20.6 Additional remarks

In 2003 G. Horbaczewska and E. Wagner-Bojakowska introduced a defini-
tion of convergence of a sequence of functions with respect to the σ -ideal of
microscopic sets. The idea comes from the Riesz theorem which states that
a sequence of measurable functions { fn}n∈N is convergent in measure to the
function f if and only if for every increasing sequence {nm}m∈N there exists
a subsequence {nmp}p∈N such that the sequence { fnmp

}p∈N is convergent to
f almost everywhere (i.e. outside the set of measure zero). Therefore conver-
gence in measure (in a finite measure space) can be defined using only the
notion of a nullset (compare Chapter 6). This enables us to define convergence
of the sequence of functions for different σ -ideals. In [18] two kinds of such
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a convergence, for the σ -ideal of microscopic sets and for the σ -ideal of sets
of first Baire category were compared with the convergence in measure and
with the convergence introduced by G. Beer using the Hausdorff metric. It was
shown that even for continuous functions we have different types of conver-
gence.
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