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In various problems, one encounters measurability of multifunctions (called
also set-valued functions) of two variables. Obviously, each multifunction of
two variables x ∈ X and y ∈ Y may be treated as a multifunction of the single
variable (x,y)∈X×Y . The essential difference is the possibility of formulating
hypotheses concerning the multifunction in terms of its sectionwise properties.
In this case, we can speak about product (sometimes called joint) measurability
and superpositional measurability (sup-measurability for short), i.e., roughly
speaking, measurability with respect to a product σ -algebra and measurability
of Carathéodory type superposition F(x,G(x)), respectively, where F and G
are multifunctions.

The difference between sup-measurability and joint measurability is essen-
tial. In general, neither of the inclusions between the class of joint measur-
able multifunctions and the class of sup-measurable multifunctions is true. It
is easy to define a joint Lebesgue measurable real function which is not sup-
measurable [15]. On the other hand Z. Grande and J. S. Lipiński have given
an example of a sup-measurable real function which is not measurable as a
function of two variables [8].
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In the single valued version, the problem of product measurability and sup-
measurability has been studied very extensively (an overview of some papers
in this field can be found in [7]). An important contribution to this field, among
others, has made J. S. Lipiński. Far less is known, however, in the multivalued
case.

There are various sufficient conditions on sections of f ensuring that f is
product measurable (e.g. [2], [3] and [5]–[7]). The most important one (given
by H. D. Ursell [14]) is measurability of f in the first and its continuity in the
second variable. The measurability of f can be obtained from weaker assump-
tions. J. S. Lipiński [11] has shown that under an additional assumption one
can obtain product measurability of f if it is a derivative in the second variable.
In order to attain this result he introduced the (J) property of a real function of
two real variables (intensively studied by Z. Grande in the case of real func-
tions defined on more general spaces [7]). Our purpose is to consider this topic
in the case of multifunctions.

Let S and Z be nonempty sets and let Φ be a mapping which associates
to each point s ∈ S a nonempty set Φ(s) ⊂ Z. Such a mapping is called a
multifunction from S to Z and we write Φ : S Z.

If Φ : S Z is a multifunction, then for a set A ⊂ Z two inverse images of
A under Φ are defined as follows:

Φ+(A) = {s ∈ S : Φ(s)⊂ A} and Φ−(A) = {s ∈ S : Φ(s)∩A 6= /0}.

A function f : S→ Z may be considered as a multifunction assigning to
s ∈ S the singleton { f (s)}. It is clear that in this case for a set A⊂ Z we have

f+(A) = f−(A) = f−1(A).

Let us suppose that (Z,d) is a metric space. If z0 ∈ Z and M ⊂ Z, then in
standard notation, d(z0,M) = infz∈M{d(z0,z)}.

Let P(Z) be the power set of Z and let P0(Z) = P(Z)\{ /0}. We put

Cb(Z) = {A ∈ P0(Z) : A is closed and bounded},
K(Z) = {A ∈ P0(Z) : A is compact}.

Let h be the Hausdorff metric in Cb(Z) generated by the metric d, i.e. for A,B∈
Cb(Z)

h(A,B) = max(supz∈B{d(z,A)},supz∈A{d(z,B)}).

There are several ways of defining convergence in P0(Z) and in consequence
its connections with continuity. Throughout the chapter, convergence in the
space Cb(Z) will be convergence in the Hausdorff metric h.
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A sequence (Φn)n∈N of multifunctions Φn : S Z with values in Cb(Z) is
called converging to a multifunction Φ : S Z if for each s ∈ S the sequence
(Φn(s))n∈N converges to Φ(s) with respect to the Hausdorff metric h. We will
write Φ = h-limn→∞ Φn.

It is clear that

(1) If s ∈ S and Φ(s) = h-limn→∞ Φn(s), then for each z ∈ Z
d(z,Φ(s)) = limn→∞ d(z,Φn(s)).

Now let (X ,A) be a measurable space and (Z,T ) a topological space. We
will say a multifunction Φ : X  Z is A-measurable (weakly A-measurable)
if Φ+(G) ∈ A (Φ−(G) ∈ A) for each G ∈ T .

It is evident that in the case of a single valued function f : X→ Z, the notions
ofA-measurability of f and weakA-measurablity of f coincide with the usual
notion of measurability of f , i.e., f−1(G) ∈ A for each G ∈ T .

Excellent source of information on measurability properties of multifunc-
tions with values in a metric space is the paper of Castaing and Valadier [1].
We now mention those properties which will be useful later on.

Proposition 17.1. If (X ,A) is a measurable space, (Z,d) is a metric space and
Φ : X  Z is a multifunction, then

(i) A-measurability of Φ implies weak A-measurability of Φ .
(ii) If Φ is compact valued, then A-measurability of Φ and weak A-measu-
rability of Φ are equivalent.
(iii) If the space (Z,d) is separable, then Φ is weakly A-measurable if and
only if the function gz : X→R given by gz(x) = d(z,Φ(x)) isA-measurable
for each z ∈ Z.
(iv) If Φ is compact valued, thenA-measurability and weakA-measurability
of Φ are equivalent to A-measurability of the function Φ : X → (K(Z),h).

Observe that, by (1) and Proposition 17.1 (iii), the following property is
true.

(2) If (Z,d) is separable and a sequence (Φn)n∈N converges to Φ , then Φ is
weaklyA-measurable whenever Φn is weaklyA-measurable for each n∈N.

There are several ways of defining continuity of multifunctions. Since we well
consider multifunctions with values in a metric space we mention only conti-
nuity with respect to the Hausdorff metric h.

Let (Y,ρ) be a metric space and let Φ : Y  Z be a multifunction with values
in Cb(Z). The statement that Φ is h-continuous will mean that Φ treated as a
function from Y to the space (Cb(Z),h) is continuous.
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From now on, let (Z, || · ||) be a reflexive Banach space with a metric d
generated by the norm; θ will denote the origin of Z, ||K|| = h(K,{θ}) when
K ∈ Cb(Z); co(K) will denote the convex hull of K.

If A⊂ Z and B⊂ Z and α ∈ R then, as usual,

A+B = {a+b : a ∈ A∧b ∈ B} and αA = {αa : a ∈ A}.

It is known that ([4], Lem. 2.2 (ii))

(3) If Ai,Bi ∈ Cb(Z) for i = 1,2, then
h(A1 +A2,B1 +B2)≤ h(A1,B1)+h(A2,B2).

We put
Cbc(Z) = {A ∈ Cb(Z) : A is convex}.

By reflexivity of (Z, || · ||), the space Cbc(Z) with the addition defined above is
a commutative semigroup which satisfies the cancellation law (see [13]). The
assumption that (Z, || · ||) is reflexive is used to show that

(4) A+B ∈ Cbc(Z) whenever A,B ∈ Cbc(Z) ([13], Th. 2).
(5) If A,B,C ∈ Cbc(Z), then h(A,B) = h(A+C,B+C) ([13], Lem. 3).

The completeness of (Z,d) implies (Cb(Z),h) is complete. Therefore Price’s
inequality h(co(A),co(B))≤ h(A,B) ([12], (2.9), p.4) implies that

(6) If (Z,d) is complete, then a Cauchy sequence in Cbc(Z) must converge
to an element of Cbc(Z).

From now on, unless otherwise stated, we assume that all considered multi-
functions have values in Cbc(Z).

Let T ⊂ R be an L-measurable set and let Φ : T  Z be an L-measurable
multifunction. Suppose that Φ is bounded, i.e. there is a totally bounded set
K ⊂ Z such that Φ(t)⊂ K for each t ∈ T .

We define an integral of Φ as follows (cf. [9], p. 218, in the case Z = Rk).
If Φ takes only a finite number of values B1,B2, ...,Bn, then we put∫

E
Φ(t)dt =

n

∑
i=1

λ (Di) ·Bi,

where E ⊂ T is a bounded L-measurable set and Di = {t ∈ E : Φ(t) = Bi} for
i = 1,2, ...,n. By (4),

(7)
∫

E Φ(t)dt ∈ Cbc(Z).

It is easy to see that
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(8) If A,B ∈ L are non-overlapping and E = A∪B, then∫
E

Φ(t)dt =
∫

A
Φ(t)dt +

∫
B

Φ(t)dt.

Let Ψ : T  Z be an L-measurable and bounded multifunction. Using (3) one
obtains

(9) h
(∫

E
Φ(t)dt,

∫
E

Ψ(t)dt
)
≤
∫

E
h(Φ(t),Ψ(t))dt

whenever Φ and Ψ take a finite number of values.
For a general case of an L-measurable and bounded multifunction the defi-

nition of its integral is based on the following lemma ([10], Lem. 1).

Lemma 17.2. Let a totally bounded convex set K ⊂ Z and a number δ > 0 be
given. Then there exists a finite family Fδ ⊂ Cbc(Z) such that if D ∈ Cbc(K),
then there exists a smallest set B ∈ Fδ such that D⊂ B⊂ B(D,δ ).

Now, take K in the lemma to be the totally bounded convex set containing
all the values of Φ . Suppose t ∈ T . Let Fδ be the family corresponding to
δ > 0, and let Φδ (t) be the smallest member of Fδ containing Φ(t).

Then h(Φ(t),Φδ (t)) < δ and Φδ : T  Z takes only a finite number
of values. Moreover, if (δn)n∈N is a sequence of positive real numbers and
limn→∞ δn = 0, then, by (7) and (9),(∫

E
Φδn(t)dt

)
n∈N

is a Cauchy sequence in Cbc(Z). Thus, by (6), the limit h− limδ→0
∫

E Φδ (t)dt
exists in Cbc(Z) and we take this limit to be the integral of Φ on E, i.e.∫

E
Φ(t)dt := h− lim

δ→0

∫
E

Φδ (t)dt ∈ Cbc(Z).

Note that by a passage to a limit in (8) and (9) we see that

(10) The properties (8) and (9) are true for each L-measurable and bounded
multifunction. In particular,
||
∫

E Φ(x)dx|| ≤
∫

E ||Φ(x)||dx.

From now on we make the assumption that I ⊂ R is an interval.

Lemma 17.3. Let I = [a,b]. If an L-measurable multifunction Φ : I  Z is
bounded and 0 < δ < b−a, then the multifunction Φδ : I Z given by
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Φδ (x) =

{∫ x+δ

x Φ(t)dt if a≤ x < b−δ ,∫ b
b−δ

Φ(t)dt if b−δ ≤ x≤ b,

is h-continuous.

Proof. Let x0 ∈ I be fixed. Let us suppose that x0 < b−δ and x0 < x < b−δ .
Then

h(Φδ (x0),Φδ (x)) = h
(∫ x0+δ

x0

Φ(t)dt,
∫ x+δ

x
Φ(t)dt

)
=

= h
(∫ x

x0

Φ(t)dt +
∫ x0+δ

x
Φ(t)dt,

∫ x0+δ

x
Φ(t)dt +

∫ x+δ

x0+δ

Φ(t)dt
)
=

= h
(∫ x

x0

Φ(t)dt,
∫ x+δ

x0+δ

Φ(t)dt
)
, by (5).

Thus, by (10),

h(Φδ (x0),Φδ (x)) = h
(∫ x

x0

Φ(t)dt,
∫ x+δ

x0+δ

Φ(t)dt
)
≤

≤
∣∣∣∣∣∣∣∣∫ x

x0

Φ(t)dt
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∫ x+δ

x0+δ

Φ(t)dt
∣∣∣∣∣∣∣∣→ 0 as x→ x0.

If x0−δ < x < x0, then

h(Φδ (x0),Φδ (x)) = h
(∫ x0+δ

x0

Φ(t)dt,
∫ x+δ

x
Φ(t)dt

)
=

= h
(∫ x+δ

x0

Φ(t)dt +
∫ x0+δ

x+δ

Φ(t)dt,
∫ x0

x
Φ(t)dt +

∫ x+δ

x0

Φ(t)dt
)
=

= h
(∫ x0+δ

x+δ

Φ(t)dt,
∫ x0

x
Φ(t)dt

)
→ 0 as x→ x0.

Now let us suppose that x0 ≥ b−δ . Since Φδ is constant for b−δ ≤ x≤ b, it
is enough to consider only the case x0 = b−δ and x0−δ < x < x0. Then

h(Φδ (x0),Φδ (x)) = h
(∫ b

x0

Φ(t)dt,
∫ x+δ

x
Φ(t)dt

)
=

= h
(∫ x+δ

x0

Φ(t)dt +
∫ b

x+δ

Φ(t)dt,
∫ x0

x
Φ(t)dt +

∫ x+δ

x0

Φ(t)dt
)
=

= h
(∫ x0+δ

x+δ

Φ(t)dt,
∫ x0

x
Φ(t)dt

)
→ 0 as x→ x0,

which proves Lemma 17.3. ut
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Let Φ : I Z be an L-measurable bounded multifunction and x0 ∈ I.

Definition 17.4. The statement that Φ is a derivative at x0 ∈ I means, that

Φ(x0) = h− lim
x→x0

1
x− x0

∫ x

x0

Φ(t)dt.

Φ is a derivative if it is a derivative at each point x ∈ I.

Similarly to the case of real functions one can show:

Proposition 17.5. Let x0 ∈ I. If a multifunction Φ : I  Z is h-continuous at
x0, then Φ is a derivative at x0.

Now we present a different approach of defining integrability for multi-
functions. It is based on the definition of Riemann integral. Moving from
Hukuhara’s idea (cf. [9] in the case Z = Rk) we define R-integrability of mul-
tifunctions in a more general case.

Let Φ : I Z be a bounded multifunction. Let ∆ = {a0,a1, ...an} be a par-
tition of I and let ν(∆) = max{ai+1−ai} be the diameter of the partition. Let
P denote the family of all pairs (∆ ,τ), where τ = (t0, t1, ...tn−1) is a sequence
of points such that ti ∈ [ai,ai+1] for i = 0, ...,n−1. We put

CΦ(∆ ,τ) =
n−1

∑
i=0

(ai+1−ai)Φ(ti)

for (∆ ,τ) ∈ P . Note that (4) implies CΦ(∆ ,τ) ∈ Cbc(Z).
We say that a multifunction Φ : I Z is R-integrable (on I) if there exists

B ∈ Cbc(Z) such that

∀ε>0 ∃η>0 ∀(∆ ,τ)∈P [ν(∆)< η ⇒ h(CΦ(∆ ,τ),B)< ε],

and we define (R)
∫

I Φ(t)dt to be the set B. Note that, by (3),

h(CΦ(∆ ,τ),CΨ (∆ ,τ))≤
n−1

∑
i=0

(ai+1−ai)h(Φ(ti),Ψ(ti))

whenever Ψ : I Z is a bounded multifunction.
Thus

h
(∫

I
Φ(t)dt,

∫
I
Ψ(t)dt

)
≤
∫

I
h(Φ(t),Ψ(t))dt ≤ (b−a)ε,

provided that h(Φ(ti),Ψ(ti))≤ ε for each t ∈ I.
Therefore, similarly to the case of real functions,

(11) If Φ : I Z is h-continuous, then Φ is R-integrable.
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Proposition 17.6. If a multifunction Φ : I  Z is bounded and almost every-
where h-continuous, then Φ is R-integrable.

Proof. Let K ∈ Cbc(Z) be such that Φ(t)⊂K for t ∈ I. Let DΦ denote the set of
discontinuity points of Φ . By assumption, λ (DΦ) = 0. Fix ε > 0. Let (In)n∈N
be a sequence of open intervals such that DΦ ⊂

⋃
n∈N In and Σn∈Nλ (In) < ε .

Without loss of generality we can assume that In∩ Im = /0 for n 6= m. Let In =

(αn,βn) for n∈N and Aε = [a,b]\
⋃

n∈N In. Then λ (Aε)> b−a−ε . We define
a multifunction Φε : I Z by

Φε(t) =

{
Φ(t) if t ∈ Aε ,

βn−t
βn−αn

Φ(αn)+
t−αn

βn−αn
Φ(βn) if t ∈ (αn,βn)∩ I,n ∈ N.

Note that Φε(t) ∈ Cbc(Z). Moreover, Φε is h-continuous and, by (11), also R-
integrable. Let B ∈ Cbc(Z) be such that

∫
I Φε(t)dt = B. Let (∆ ,τ) ∈ P and

η > 0 be such that ν(∆)< η and h(CΦε
(∆ ,τ),B)< ε .

Then

h(CΦ(∆ ,τ),B)≤ h(CΦ(∆ ,τ),CΦε
(∆ ,τ))+h(CΦε

(∆ ,τ),B) =

= h(Σ n−1
i=0 (ai+1−ai)Φ(ti),Σ n−1

i=0 (ai+1−ai)Φε(ti))+h(CΦε
(∆ ,τ),B),

and then, by (3),

h(CΦ(∆ ,τ),B)≤ Σ
n−1
i=0 (ai+1−ai)h(Φ(ti)),Φε(ti)))+h(CΦε

(∆ ,τ),B).

For that reason
h(CΦ(∆ ,τ),B)≤ 2ε ||K||+ ε,

since Φ(ti) = Φε(ti) for ti ∈ [ai−1,ai]∩Aε and h(Φ(ti),Φε(ti)) ≤ 2 ||K|| for
ti ∈ [ai−1,ai]\Aε . This finishes the proof of Proposition 17.6. ut

Followig Hukuhara [9], one can prove that

(12) If a bounded L-measurable multifunction Φ : I  Z is R-integrable,
then (R)

∫
I Φ(t)dt =

∫
I Φ(t)dt.

Now we pass to the multifunctions of two variables.
If S = X×Y , F : X×Y  Z is a multifunction and (x0,y0)∈ X×Y , then the

multifunction Fx0 : Y  Z defined by Fx0(y) = F(x0,y) is called the x0-section
of F , and the multifunction Fy0 : X  Z defined by Fy0(x) = F(x,y0) is called
the y0-section of F .

It is well known that if (X ,A) is a measurable space, (Y,ρ) is a separa-
ble metric space and (Z,d) is a metric space, then a function f : X ×Y → Z,
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A-measurable in the first and continuous in the second variable is measurable
with respect to the product ofA and the Borel σ -algebra of Y . Thus by Propo-
sition 1 (iv) we have the following result (cf. [15], Th. 2)

Proposition 17.7. If (X ,A) is a measurable space, (Y,ρ) is a separable metric
space and (Z,d) is a metric space, and if F : X ×Y  Z is a compact valued
multifunction such that each section Fx is h-continuous and each section Fy is
A-measurable, then F is A⊗Bor(Y )-measurable.

The product measurability of multifunctions can be obtained from weaker as-
sumptions. We introduce a concept of multifunctions with the (J) property,
which may be considered as a multivalued counterpart of the (J) property
given by J. S. Lipiński and we show that a multifunction with the (J) prop-
erty which is a derivative in the second variable is product measurable and
sup-measurable.

Let (X ,A,µ) be a measure space with µ σ -finite. Still let (Z|| · ||) be a
reflexive Banach space with the metric d generated by the norm, and still we
will consider multifunctions F : X× I Z with values in Cbc(Z).

Let A⊗Bor be the σ -algebra generated by the family of sets A×B, where
A ∈ A and B ∈ Bor.

Definition 17.8. A bounded multifunction F : X × I Z has the (J) property
if, for each y ∈ I, Fy is weakly A-measurable, for each x ∈ X , Fx is weakly
L-measurable and for each interval P⊂ I, the multifunction ΦP : X  Z given
by

(13) ΦP(x) =
∫

P
F(x,y)dy

is weakly A-measurable.

A multifunction with the (J) property need not be product measurable.

Example 17.9. Suppose CH. Let E ⊂ R2 be Sierpiński’s set such that E 6∈ L2

and each x-section of E, i.e. Ex = {y ∈R : (x,y) ∈ E}, and each y-section of E,
i.e. Ey = {x ∈ R : (x,y) ∈ E}, have at most two elements. Let F : R2 R be
given by

F(x,y) =
{
[0,1], if (x,y) 6∈ E,
{0}, if (x,y) ∈ E.

Then F is not L2-measurable, but F has the (J) property.

Proposition 17.10. If (Z,d) is separable and F : X×I Z is a bounded multi-
function such that each section Fx is R-integrable and each section Fy is weakly
A-measurable, then F has the (J) property.
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Proof. Let P = [c,d] ⊂ I be fixed. We only need to show that the multi-
function ΦP, given by (13), is weakly A-measurable. Let yi = c+ i d−c

n for
i = 0,1,2, ...,n and n ∈ N. If x ∈ X , then, by R-integrability of Fx, we have

(R)
∫

P
F(x,y)dy = h− lim

n→∞

n

∑
i=1

1
n

Fx(yi) = h− lim
n→∞

1
n

n

∑
i=1

Fyi(x),

and then, applying (12), we have

ΦP(x) = h− lim
n→∞

1
n

n

∑
i=1

Fyi(x).

Let n ∈ N be fixed and let as define the multifunction Φn : X  Z by

Φn(x) =
n

∑
i=1

Fyi(x).

Then Φn(x) ∈ Cbc(Z) for x ∈ X (see (4)). Since the multifunction Fyi is weakly
A-measurable for i = 0,1, ...,n, the multifunction Φn is weaklyA-measurable,
by Theorem III.40 in [1]. Thus ΦP is weakly A-measurable, by (2). ut

Theorem 17.11. Suppose that (Z,d) is separable. If a bounded multifunction
F : X× I Z has the (J) property and for each x ∈ X, Fx is a derivative, i.e.,

Fx(y) = h− lim∆y→0
1

∆y

∫ y+∆y

y
Fx(t)dt for y ∈ I,

then F is measurable with respect to the µ×λ -completion of A⊗Bor.

Proof. Let n∈N be fixed and let ∆ = {y0,n,y1,n, ...,yn,n} be a partition of I into
n equal intervals. Let us put

Fn(x,y) =

{
1

yi,n−yi−1,n

∫ yi,n
yi−1,n

F(x,y)dy if x ∈ X and y ∈ (yi−1,n,yi,n),

{θ} if x ∈ X and y = yi,n, i = 0,1, ...,n.

Next, let Φi,n : X  Z, for i = 1,2, ...,n, be a multifunction given by

Φi,n(x) =
∫ yi,n

yi−1,n

F(x,y)dy.

By the (J) property of F , we see that

(14) Φi,n is weakly A-measurable for each i = 1,2, ...,n.

Define Φn : X×
⋃n

i=1(yi−1,n,yi,n) Z by
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Φn(x,y) = Φi,n(x) for y ∈ (yi−1,n,yi,n).

If V is an open subset of Z, then, by (14), we have

Φ
−
n (V ) =

n⋃
i=1

Φ
−
i,n(V )× (yi−1,n,yi,n) ∈ A⊗Bor.

Therefore Fn is weakly A⊗Bor-measurable and by (2) we only need to show
that

(15) h-limn→∞ Fn(x,y) = F(x,y) for every x ∈ X and for almost every y ∈ I.

Fix (x0,y0) ∈ X × I such that y0 6= yi,n for n ∈ N and i = 1,2, ...,n, and choose
a sequence (yin,n) such that yin−1 < y0 < yin . Since Fx0 is a derivative at y0, it
follows that

F(x0,y0) = h− lim
∆y→0

1
∆y

∫ y0+∆y

y0

F(x0,y)dy.

Assume that

An =
1

y0− yin−1,n

∫ y0

yin−1,n

F(x0,y)dy and Bn =
1

yin,n− y0

∫ yin ,n

y0

F(x0,y)dy.

Then

(16) limn→∞ h(An,F0) = 0 and limn→∞ h(Bn,F0) = 0,
where F0 = F(x0,y0).

Let us put zn = h(Fn(x0,y0),F0). Note that

zn = h
(

1
yin,n− yin−1,n

∫ yin ,n

yin−1,n

F(x0,y)dy,
1

yin,n− yin−1,n

∫ yin ,n

yin−1,n

F0 dy
)
=

=
1

yin,n− yin−1,n
h
(∫ yin,n

yin−1,n

F(x0,y)dy,
∫ yin ,n

yin−1,n

F0 dy
)
.

By (10), we have∫ yin ,n

yin−1,n

F(x0,y)dy =
∫ y0

yin−1,n

F(x0,y)dy+
∫ yin ,n

y0

F(x0,y)dy

and ∫ yin ,n

yin−1,n

F0 dy =
∫ y0

yin−1,n

F0 dy+
∫ yin ,n

y0

F0 dy.

Next, (3) shows that
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h
(∫ y0

yin−1,n

F(x0,y)dy+
∫ yin ,n

y0

F(x0,y)dy,
∫ y0

yin−1,n

F0 dy+
∫ yin ,n

y0

F0 dy
)
≤

≤ h
(∫ y0

yin−1,n

F(x0,y)dy,
∫ y0

yin−1,n

F0 dy
)
+h
(∫ yin ,n

y0

F(x0,y)dy,
∫ yin ,n

y0

F0 dy
)
.

Moreover

1
yin,n− yin−1,n

<
1

y0− yin−1,n
and

1
yin,n− yin−1,n

<
1

yin,n− y0
.

Therefore,

zn <
1

y0− yin−1,n
h
(∫ y0

yin−1,n

F(x0,y)dy,
∫ y0

yin−1,n

F0 dy
)
+

+
1

yin,n− y0
h
(∫ yin ,n

y0

F(x0,y)dy,
∫ yin ,n

y0

F0 dy
)
,

and finally
h(Fn(x0,y0),F0)< h(An,F0)+h(Bn,F0).

Thus, by (16), (15) is true, which finishes the proof of Theorem 17.11. ut

Note that product measurability of a multifunction F : X× I Z with com-
pact values such that each section Fx is h-continuous and each section Fy is L-
measurable follows from Theorem 17.11 as a consequence of (11) and Propo-
sition 17.10.

The remainder of this chapter will be devoted to sup-measurability.
Let (X ,A) be a measurable space and let (Y,T (Y )) and (Z,T (Z)) be

topological spaces. If F : X ×Y  Z is such that the superposition of the
Carathéodory type

H(x) = F(x,G(x)) =
⋃

y∈G(x)

F(x,y)

is A-measurable (resp. weakly A-measurable) for every closed valued A-
measurable multifunction G : X Y , then F is calledA-sup-measurable (resp.
weakly A-sup-measurable).

The following theorem is known (see [17], Theorem 1).

Theorem 17.12. Let (X ,A,µ) be a measure space with µ σ -finite. Let Y be a
Polish space and let (Z,T (Z)) be a topological space. If F : X ×Y  Z is an
Aµ ⊗Bor(Y )-measurable multifunction, then it is Aµ -sup-measurable (where
Aµ denotes a µ completion of A).



17. Measurability of multifunctions with the (J) property 277

From the above theorem it follows that each A⊗Bor(Y )-measurable mul-
tifunction is Aµ -sup-measurable, whenever the measure µ is σ -finite and Y is
a Polish space. The following example shows that for more general σ -algebra
in X×Y than the product Aµ ⊗Bor(Y ), this property may not be true.

Example 17.13. Let X = Y = R and let E 6∈ L. If F : R2 R is given by

F(x,y) =


[0,2] if x 6= y
[0,1] if x = y∧ x ∈ E,
{0} if x = y∧ x 6∈ E,

then F is L2-measurable. But H(x) = F(x,{x}) is not L-measurable, i.e., F is
not L-sup-measurable.

As a straightforward consequence of Theorem 17.12 and Proposition 17.7
we have the following corollary (cf. [16]).

Corollary 17.14. If (X ,A,µ) is a measure space with µ σ -finite, Y is a Polish
space, (Z,d) is a separable metric space and F : X ×Y  Z is a compact
valued multifunction such that each section Fx is h-continuous and each section
Fy is A-measurable, then F is Aµ -sup-measurable.

Proposition 17.15. Let (X ,A) be a measurable space and let (Z,d) be sepa-
rable. If Fn : X ×Y  Z is A-sup-measurable for each n ∈ N and the multi-
function F = h-limn→∞ Fn, then F is weakly A-sup-measurable.

Proof. Let z ∈ Z. By (1), limn→∞ d(z,Fn(x,y)) = d(z,F(x,y)) for each (x,y) ∈
X ×Y . Let G : X  Y be an A-measurable multifunction with closed values.
Let x ∈ X and Hn(x) = Fn(x,G(x)) for each n ∈ N, and let H(x) = F(x,G(x)).
It is clear that limn→∞ d(z,Hn(x)) = d(z,H(x)). Fix n ∈ N. Note that Fn be-
ing A-sup-measurable implies Fn is weakly A-sup-measurable. Hence Hn

is weakly A-measurable. Therefore, by Proposition 1 (iii), the real function
x→ d(z,Hn(x)) is A-measurable. Thus the real function x→ d(z,H(x)) is A-
measurable and, again by Proposition 1 (iii), H is weakly A-measurable. ut

Now we will consider the sup-measurability of multifunctions with the (J)
property. Note that a multifunction with the (J) property may not be sup-
measurable.

Example 17.16. Let F : [0,1]2 R be the multifunction given by

F(x,y) =


[1,2] if x ∈ A and y≤ x,

[1,2] if x ∈ R\A and y < x,

{0} in other cases.
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where A⊂ [0,1] and A 6∈ L. Then each section Fx is h-continuous with the ex-
ception of one point. Furthermore each section Fy is L-measurable. Therefore,
by Proposition 17.10, F has the (J) property. But F is not L-sup-measurable,
since the multifunction H(x) = F(x,{x}) is not L-measurable.

Theorem 17.17. Let (Z, || · ||) be a separable Banach space and I = [a,b]. If a
multifunction F : X × I Z with compact convex values has the (J) property
and each section Fx is a derivative, then F is Aµ -sup-measurable.

Proof. Let (x,y) ∈ X× I. Since Fx is a derivative at y,

(17) F(x,y) = h− lim
∆y→0

1
∆y

∫ y+∆y

y
F(x, t)dt.

For every n ∈ N we define Fn : X× I Z by

Fn(x,y) =

{
n
∫ y+ 1

n
y F(x, t)dt , if a≤ y < b− 1

n ,

n
∫ b

b− 1
n

F(x, t)dt , if b− 1
n ≤ y≤ b.

Then h– limn→∞ Fn(x,y) = F(x,y) for (x,y) ∈ X ×Y , by (17). For fixed n ∈
N, each section (Fn)x is h-continuous, by Lemma 17.3. Since F has the (J)
property, (Fn)

y is A-measurable for every y ∈ I and, by Corollary 1, Fn is Aµ -
sup-measurable. Thus, by Proposition 17.15, F is weaklyAµ -sup-measurable,
and hence also Aµ -sup-measurable, since F is compact valued. ut

Observe that, by Proposition 17.10 and Theorem 17.17, we have the follow-
ing corollary.

Corollary 17.18. If (Z, || · ||) is a separable Banach space and F : X × I Z
is a multifunction with compact convex values such that each section Fx is an
R-integrable derivative and each section Fy is A-measurable, then F is Aµ -
sup-measurable.
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[11] J. S. Lipiński, On measurability of functions of two variables, Bull. Acad. Polon.
Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 131–135.

[12] G. B. Price, The Theory of integration, Trans. Amer. Math. Soc. 47 (1940), 1–50.
[13] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math.

Soc. 3 (1952), 165–169.
[14] H. D. Ursell, Some methods of proving measurability, Fund. Math. 32 (1939),

311–330.
[15] I. V. Shragin, Conditions for measurability of superpositions, Dokl. Acad. Nauk

SSSR 197 (1971), 295–298 (in Russian).
[16] W. Zygmunt, Remarks on superpositionally measurable multifunctions, Mat. Za-

metki 48, no 3 (1990), 70–72 (in Russian).
[17] , On superpositionally measurable semi-Carathéodory multifunctions,

Comment. Math. Univ. Carolinae 33 (1992), 73–77.
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