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Introduction

Let us suppose that we have given a set X of some objects (e.g. events, infor-
mation etc.) and some action (on the elements of the set X) whose result may
be described by use of a function, multifunction or map. We repeat the action
few or even several times. What can we conclude about complexity of these
operations, if we extend this process to infinity? Will the process turn out to be
chaotic or not?

It is not difficult to notice that in this way we will obtain some discrete
dynamical system. From the mathematical point of view we need some topo-
logical structure in X and fixed notion of chaos to be able to describe this
situation.

A special role in examining discrete dynamical systems (X , f ) play the no-
tion of f -covering, e.g. Itinerary Lemma ([4], [50], [16]); we say that set A
f -covers set B and write A→

f
B iff B ⊂ f (A). So in X we can introduce a

topological structure connected with this notion: γ f = {A ⊂ X : A→
f

A}. The
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properties of the structure γ f are close to topology, but γ f may not be a topol-
ogy. Indeed, if we consider a function ζ : [−1,1]→ [−1,1] defined as follows:

ζ (x) =

{
1
2 sin 1

x for x 6= 0,
1
2 for x = 0,

then (−1
2 ,0], [0,

1
2) ∈ γζ , but {0}= (−1

2 ,0]∩ [0,
1
2) 6∈ γζ .

Fortunately, at the end of the 20th century Á. Császár introduced the new
notion: generalized topology (and generalized topological space). That is, from
the classical definition we leave only demands, that empty set is a generalized
open set and union of generalized open sets is a generalized open set, too (we
remove demands that the intersection of two generalized open sets is a gener-
alized open set and whole space belongs to generalized topology). It is easy to
notice that γζ defined above is a generalized topology (a precise definition of
generalized topological space will be given in section 11.1.1).

In addition to the theoretical results connected with generalized topologi-
cal space we have J. Lee’s observations in [28] connected with relationships
between this theory and computer science. These observations are directly re-
lated to the information flow (e.g. [40], [41], [44]). Consequently they have
become further motivation to study, among others, the relationship between
generalized topological space and graph theory (e.g. [30]).

This section will be completed by the basic symbols and definitions used in
the further sections of this chapter.

Let X 6= /0, f : X → X be a function, Φ : X ( X be a multifunction and
P̃(X) = P(X)\ { /0}. The family of all continuous functions from X to X will
be denoted by C(X). The symbol C( f ) (D( f )) stands for a set of all continuity
(discontinuity) points of f . If A ∈ P̃(X) then we will use the symbol f � A to
denote a restriction of f to a set A. We will write f (A) for an image of a set
A by a function f . In the case of multifunction, we set Φ(A) =

⋃
a∈A Φ(a).

Furthermore f 0(x) = x and f i(x) = f ( f i−1(x)) for i ∈ N. Similarly, we put
Φ0(x) = {x} and Φ i(x) = Φ(Φ i−1(x)) for i ∈N. Moreover, if Ω : X( X then
(Φ ◦Ω)(x) = Φ(Ω(x)).

From now on, the symbol Fix( f ) (Fix(Φ)) will denote the set of all fixed
points of function (multifunction) f : X → X (Φ : X ( X) i.e. the set of all
points x ∈ X such that f (x) = x (x ∈Φ(x)).

This chapter is mainly based on the results contained in the papers [31],
[30] and [25]. If we give statements from other sources, this will be marked by
giving references to the relevant article.
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11.1 Generalized topological spaces

As mentioned in the previous section the definition of generalized topology
was introduced by Á. Császár in [10]. Generalized topological spaces are stud-
ied by many mathematicians (e.g. [10]-[15], [28], [5], [48], [25]). These studies
are, for example, associated with different types of continuity in generalized
topological spaces (e.g. [9], [35], [6], [45]), connectness (e.g. [11], [20]) or
compactness of generalized topological spaces (e.g. [49], [24], [36]). In any
case one can prove theorems analogous to well known statements from classi-
cal theory of topology as well as lead new considerations. This will be visible
in the next parts of this chapter connected, among others, with nowhere dense
sets, transitivity, etc.

It is interesting to note that every generalized topology in X can be as-
sociated with a monotonic map η : P(X) → P(X) (i.e a map such that
η(A) ⊂ η(B) if A ⊂ B ⊂ X). More precisely, in [10] one can find that ev-
ery generalized topology γ in X can be generated by some monotonic map
η :P(X)→P(X) in the following way γ = {A⊂ X : A⊂ η(A)}. On the other
hand, if η : P(X)→P(X) is a monotonic map then γη = {A⊂ X : A⊂ η(A)}
is a generalized topology ([9]).

11.1.1 Basic notions and properties connected with generalized
topological space

Let X be any nonempty set. We shall say that a family γ ⊂ P(X) is a gen-
eralized topology in X (in short GT) iff /0 ∈ γ and

⋃
t∈T Gt ∈ γ whenever

{Gt : t ∈ T} ⊂ γ . The pair (X ,γ) is called a generalized topological space
and it is denoted by GTS. Moreover, if X ∈ γ we shall say that (X ,γ) is a
strong generalized topological space (briefly sGTS) and γ is a strong gener-
alized topology (in short sGT). Obviously the space ([−1,1],γζ ) described in
Introduction is GTS and it is not sGTS. However, if we consider the function
ζ � [−1

2 ,
1
2 ] then the space

(
[−1

2 ,
1
2 ],γζ �[− 1

2 ,
1
2 ]

)
is sGTS. Moreover, if K is any

family of sets containing /0, then the family γK consisting of all sets that are
unions of sets from the family K is GT.

From now on, we will consider a generalized topological space (X ,γ). We
will use the symbol γ̃ to denote the family γ \{ /0} and γ(x) to denote {U ∈ γ :
x ∈U}.
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In many considerations related to the information flow theory, graph theory
etc., particularly important are situations when considered spaces are finite.
For this reason, in the papers on which this chapter is based often such kind of
spaces are considered. Unlike, in this chapter we will consider mainly infinite
spaces (with a few exception).

The basic definitions in generalized topological spaces are usually formu-
lated in the same way as in topological spaces. For example, an interior of a set
A ⊂ X with respect to γ (in short intγ(A)) is a union of all γ-open sets B (i.e.
B ∈ γ) such that B⊂ A and a closure of a set A⊂ X with respect to γ (in short
clγ(A)) is an intersection of all γ-closed sets B (i.e. X \B ∈ γ) such that A⊂ B.
It is also worth noting that clγ(A) is a γ-closed set, intγ(A) = X \ clγ(X \A),
clγ(A) = X \ intγ(X \ A). Moreover we have, that x ∈ clγ(A) if and only if
U ∩A 6= /0 for any U ∈ γ(x) ([13]). Separation axioms for generalized topo-
logical space are defined analogously to the case of a topological space (e.g.
[12], [14], [48]). Here and subsequently, Ti-GTS denotes a generalized topo-
logical space which is Ti space (for i = 1,2). Moreover, we say that A ⊂ X is
γ-dense if clγ(A) = X or equivalently A∩U 6= /0 for any U ∈ γ̃ . From now on,
the prefix connected with the symbol of a suitable generalized topology will
be omitted when no confusion can arise.

However, despite identical definitions the properties of some mathemati-
cal objects in the case of standard topology may be quite different than the
properties of respective objects in generalized topology. The examples of such
situation are the notions of nowhere dense sets, which will be described in de-
tail in the next section. Of course, there are more differences between topo-
logical spaces and generalized topological spaces. Now, we will present a
few of them. Although the set X is always closed, an empty set is closed
if and only if γ is sGT. Moreover, X is open if and only if γ is sGT. The
union of a finite number of closed sets does not have to be closed. Indeed,
let γℵ0 = {A⊂Q : card(A) = ℵ0}∪{ /0}. Obviously, (R,γℵ0) is GTS and sets
A∗ = R\{n ∈ Z : n >−2} and B∗ = R\{n ∈ Z : n < 2} are closed. However,
A∗ ∪B∗ = R \ {−1,0,1} is not closed because {−1,0,1} 6∈ γℵ0 . Moreover, it
is easy to see that intγℵ0

(R) =Q and clγℵ0
( /0) = R\Q.

From Property 1.3, Property 1.7 ([9]) and Lemma 1.1 ([10]) we obtain

Property 11.1. If (X ,γ) is GTS then

(I.1) if A⊂ B⊂ X then intγ(A)⊂ intγ(B),
(I.2) intγ(A)⊂ A for any A⊂ X ,
(I.3) intγ(intγ(A)) = intγ(A) for any A⊂ X ,

(C.1) if A⊂ B⊂ X then clγ(A)⊂ clγ(B),
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(C.2) A⊂ clγ(A) for any A⊂ X ,
(C.3) clγ(clγ(A)) = clγ(A) for any A⊂ X .

Clearly, clγ(A)∪clγ(B)⊂ clγ(A∪B) and intγ(A∩B)⊂ intγ(A)∩ intγ(B). How-
ever, there exists GTS such that the above two inclusions are proper. Indeed,
if we consider the space (R,γℵ0) and sets A∗, B∗ defined above, we obtain
clγℵ0

(A∗)∪ clγℵ0
(B∗) = A∗ ∪B∗ = R \ {−1,0,1}. Simultaneously, clγℵ0

(A∗ ∪
B∗) = R. Moreover, intγℵ0

(R \ A∗)∩ intγℵ0
(R \ B∗) = (R \ A∗)∩ (R \ B∗) =

{−1,0,1} and intγℵ0
((R\A∗)∩ (R\B∗)) = /0.

11.1.2 Nowhere densities and Baire spaces

In case of topological space (X ,τ), we can define a nowhere dense set in the
following way: a set A⊂X is nowhere dense if intτ(clτ(A))= /0. This condition
is equivalent to the following one: for any nonempty set U ∈ τ there exists a
nonempty set V ∈ τ such that V ⊂U and V ∩A = /0. However, in the case of
generalized topological spaces these conditions lead to different concepts.

Let (X ,γ) be GTS and A ⊂ X . We shall say that A is a nowhere dense
set if intγ(clγ(A)) = /0 (e.g. [6], [31]). It is easy to see that a subset of a
nowhere dense set is nowhere dense. However, a union of two nowhere dense
sets does not have to be nowhere dense. Indeed, put X = [0,2] and K =

{ /0}∪{[0,b) : b ∈ (0,2]}∪{(a,2] : a ∈ [0,2)}. Obviously intγK(clγK({0})) = /0
and intγK(clγK({2})) = /0, so {0} and {2} are nowhere dense sets. Moreover,
it is easy to see that intγK(clγK({0,2})) = [0,2]. It implies that {0,2} is not a
nowhere dense set. What is more, for [0,1) ∈ γK there is no set V ∈ γ̃K such
that V ⊂ [0,1) and V ∩{0} 6= /0. Therefore {0} is a nowhere dense set that does
not satisfy the condition:

for any U ∈ γ̃K there exists V ∈ γ̃K such that V ⊂U and V ∩{0}= /0.

For this reason, in the case of generalized topological space (X ,γ) we introduce
a new type of set. We shall say that A ⊂ X is a strongly nowhere dense set if
for any U ∈ γ̃ there exists V ∈ γ̃ such that V ⊂U and V ∩A = /0.

The following statement shows a significant difference in the properties of
nowhere dense sets and strongly nowhere dense sets in generalized topological
spaces.

Theorem 11.2. (a) There exists GTS (X ,γ) and nowhere dense sets A,B ⊂ X
such that A∪B is not a nowhere dense set.
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(b) For every two strongly nowhere dense sets A and B in an arbitrary GTS
(X ,γ) the union A∪B is a strongly nowhere dense set.

Analogously to the topological case, we shall say that A ⊂ X is a meager
(s-meager) set if there exists a sequence {An}n∈N of nowhere dense (strongly
nowhere dense) sets such that A =

⋃
n∈NAn. A set A is called second category

(s-second category) set if it is not a meager (s-meager) set. A set A is said to
be residual (s-residual) if X \A is meager (s-meager).

The above considerations lead to the different notions connected with the
notion of Baire space in standard topological spaces.
We shall say that GTS (X ,γ) is

• a weak Baire space (in short wBS) if each set U ∈ γ̃ is an s-second category
set,

• a Baire space (in short BS) if each U ∈ γ̃ is a second category set,
• a strong Baire space (in short sBS) if V1∩ ·· · ∩Vn is a second category set

for any V1,V2, . . .Vn ∈ γ such that V1∩·· ·∩Vn 6= /0.

Obviously, if we consider a topological space (X ,τ) instead of a generalized
topological space (X ,γ) then the above notions are equivalent. In the case of
generalized topological spaces they are not. It is easy to see that if GTS is a
strong Baire space then it is a Baire space and a weak Baire space. Further,
each Baire space is a weak Baire space. The converse implications are not
true. The detailed considerations of these relationships (presented in Figure
11.1) are contained in [25]

sBS

|| ##
BS //

\

<<

wBS

/

cc

/oo

Fig. 11.1 The relationships between the different types of Baire GTS.

It should be noted that for some GTS these three notions may be equivalent.
More specifically, it can be proved

Theorem 11.3. If GTS (X ,γ) satisfies the condition

(KLP) intγ(V1 ∩V2 ∩ ·· · ∩Vm) 6= /0 for any m ∈ N and V1,V2, . . . ,Vm ∈ γ such
that V1∩V2∩·· ·∩Vm 6= /0,

then the notions of a strong Baire space, a Baire space and a weak Baire space
are equivalent.
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In [25] one can find the example of GTS satisfying the condition (KLP)
which is not a topological space. Moreover, it is worth pointing out that GTS
(X ,γ), where X = [0,3] and γ = { /0, [0,2),(1,3], [0,3]} is a strong Baire gener-
alized topological space and it is not a topological space. What is more, if we
consider sGTS (X ,γK), where X = {0,1}×R and K = { /0}∪{{0}×V : V ∈
Tnat}∪{{1}×V : V ∈ Tnat}∪{{0}× ((−∞,−α)∪(α,+∞))∪{1}× [1,+∞) :
α ≥ 0}∪ {{0}× ((−∞,−α)∪ (α,+∞))∪{1}× (−∞,1] : α ≥ 0} we obtain
that V ∩U is a second category set for any U,V ∈ γK such that V ∩U 6= /0. At
the same time {1}× (0,2)∩ ({0}× ((−∞,−1)∪ (1,+∞))∪{1}× (−∞,1])∩
({0}× ((−∞,−1)∪ (1,+∞))∪ {1}× [1,+∞)) is a meager set (detailed de-
scription of this example can be found in [25]). Therefore, it is reasonable to
consider any finite intersection of open sets in the definition of a strong Baire
space.

An interesting addition to our consideration would be introducing the fol-
lowing definition. We shall say that GTS (X ,γ) is an s-strong Baire space
if V1 ∩ ·· · ∩Vn is an s-second category set for any V1,V2, . . .Vn such that
V1∩ ·· · ∩Vn 6= /0. Clearly if GTS is a strong Baire space then it is an s-strong
Baire space and the converse implication is not true. Moreover, an s-strong
Baire GTS is a weak Baire space. This kind of space has not been studied in
detail in the literature previously. However, one can prove that if GTS satisfies
the conditions (KLP) then the notion of an s-strong Baire space is equivalent
to the notion of a strong Baire space, and in consequence, to the notion of a
Baire space and a weak Baire space.

This section will be ended with the following property, which can be proved
by methods described in the proof of Theorem 1.3 in [37].

Theorem 11.4. Let (X ,γ) be a Baire GTS. The intersection of any sequence of
dense open sets is residual and each residual set is dense.

More information about Baire spaces can be found in [31] and [25]. A
deeper analysis of this topic is beyond the scope of this study, so we will omit
it.

11.2 Generalized entropy

We indicated in Introduction, that we need a notion of chaos of a (discrete) dy-
namical system. Currently, there are many definitions of this notion and they
essentially differ from each other (e.g. [29], [22], [51], [4], [18], [34]). How-
ever, it is commonly accepted that the entropy is some kind of measure of
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chaos. For this reason, there still appear new considerations related to those
connected with entropy in relation to various problems (e.g. [23], [27]). For
the need of our considerations we can assume that a function (multifunction,
map) is chaotic if corresponding dynamical system has a positive entropy.

In the case of discrete dynamical systems there are two elementary (equiv-
alent for the compact metric spaces) concepts of entropy: "covery" concept
introduced by Adler, Konheim and McAndrew in [1] and Bowen-Dinaburg
concept1 based on notions of "separated set" or "span set" ([7], [19]). The ba-
sis of the first concept are coveries of a space and properties of a compact
topological space. The fact that the intersection of finite number of open sets
is an open set, plays an important role in this situation. That is why we can not
adopt this definition to the case of GTS. The second concept is connected with
compact metric spaces and, for obvious reasons, it is not proper in our case
either. Although in [25] the idea of generalized metric space (briefly GMS)
is presented, the problem of generalizing the notion of compactness of such
spaces is still open.

Taking into account the above-mentioned aims we need to introduce new
kind of entropy. The similar considerations, in the case of one dimension dy-
namical systems, one can find in [2].

We will present a definition of generalized entropy in the case of the map ξ :
P(X)→P(X). However, if we have a multifunction ψ (or a function f ) then
we can consider a suitable map ξψ(A) = ψ(A) (generated by ψ) or ξ f (A) =
f (A) (generated by f ). In these cases the generalized entropy of a function (or
a multifunction) will be the generalized entropy of a suitable map.

Let (X ,γ) be GTS, K ⊂ P̃(X) be a nonempty family and πK be the set of
all finite sequence of sets from K such that if n ∈ N and (A1, . . . ,An) ∈ πK
then clγ(Ai)∩ clγ(A j) = /0 whenever i 6= j (i, j ∈ {1, . . . ,n}). To each map ξ :
P(X)→P(X) and each sequence A= (A1, . . . ,An) from πK, a matrix MA,ξ =

[mi, j]i, j≤n such that mi, j = 1 if A j ⊂ ξ (Ai) and mi, j = 0 if A j \ ξ (Ai) 6= /0 will
be assigned. Let Mk

A,ξ and tr(Mk
A,ξ ) stand for k-times product of the matrix

MA,ξ and the trace of the matrix Mk
A,ξ for k ∈ N, respectively.

A (K,ξ ,k)-entropy of the sequence A ∈ πK (k ∈ N) is the number

Ek
K,ξ (A) =

{
0 if tr(Mk

A,ξ ) = 0,

log(tr(Mk
A,ξ ))

1
k if tr(Mk

A,ξ )> 0.

1 Bowen-Dinaburg concept of entropy will be presented in section 11.3.
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Usually the base of logarithms is chosen either as 2 or as e. In fact, it does not
matter which base we choose, as long as we use the same base greater then 1
all the time.

To illustrate this definition, consider the function f : [0,1] → [0,1] from
Figure 11.2 and γ f = {A ⊂ [0,1] : A →

f
A}. Obviously γ f is GT, A1 6∈ γ f

1

1

0 A1 A2 A3 A4 A5

A1

A2

A3

A4

A5

Fig. 11.2 The graph of same function f : [0,1]→ [0,1].

and Ai ∈ γ f for i ∈ {2, . . . ,5}. Moreover, for any i ∈ {1, . . . ,5} the set Ai is
closed, because f ([0,1] \ Ai) ⊃ [0,1] \ Ai. Putting K0 = {A1,A2,A3,A4,A5}
we have that A∗ = (A1,A2,A3,A4,A5) ∈ πK0 , A∗∗ = (A1,A2,A5) ∈ πK0 and
A∗∗∗ = (A3,A4) ∈ πK0 . Then

MA∗, f =


0 1 1 0 0
0 1 1 1 0
0 0 1 1 0
1 1 1 1 1
0 0 1 1 1

 ,MA∗∗, f =

0 1 0
0 1 0
0 0 1

 ,MA∗∗∗, f =

[
1 1
1 1

]
.

Thus, for example considering the natural logarithm and k = 1 we have
E1
K0, f (A∗) = loge 4≈ 1.386294361 and E1

K0, f (A∗∗) = E1
K0, f (A∗∗∗) = loge 2≈

0.69314718. Moreover, if k= 10, then E10
K0, f (A∗)≈ 1.153051977, E10

K0, f (A∗∗)≈
0.069314718 and E10

K0, f (A∗∗∗) ≈ 0.69314718. Furthermore, it is easy to see
that Ek

K0, f (A∗∗) =
1
k loge 2 and Ek

K0, f (A∗∗∗) = loge 2 for any k ∈ N.
The (K,ξ )-entropy of the sequence A ∈ πK is the number

EK,ξ (A) = limsup
k→∞

Ek
K,ξ (A).
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Clearly, EK0, f (A∗∗) = 0 and EK0, f (A∗∗∗)> 0.
Finally, the K-entropy of the map ξ is the number

EK(ξ ) = sup
A∈πK

EK,ξ (A).

From above considerations one can conclude that EK0( f ) > 0 and so one
can say that f is a chaotic function.

In the case of new concepts in the theory of discrete dynamical systems, it is
important to check the "invariance with respect to certain homeomorphisms".
In the case of GTS (X ,γ) we consider γ-homeomorphisms. We shall call a
bijection f : X→ X a γ-homeomorphism if both f and the inverse function f−1

are γ-continuous. As in the case of the topological space a function f : X → X
is γ-continuous iff A ∈ γ implies f−1(A) ∈ γ (see [10]). The first statement
presented below is related to a nonempty family K ⊂ P̃(X) invariant via γ-
homeomorphism, i.e ϕ(A) ∈ K for any A ∈ K and any γ-homeomorphism ϕ :
X → X .

Theorem 11.5. Let (X ,γ) be GTS and a nonempty familyK⊂ P̃(X) be invari-
ant via γ-homeomorphism. If A= (A1,A2, . . . ,An) ∈ πK, then

Aϕ = (ϕ(A1),ϕ(A2), . . . ,ϕ(An)) ∈ πK

for any γ-homeomorphism ϕ : X → X.

In the theory of discrete dynamical systems, invariance of certain proper-
ties of conjugate functions plays a special role. For this reason the next two
theorems are devoted to such kind of problems with respect to our previous
considerations. But first, we will give the definition of conjugate functions.

We will say that functions (multifunctions) f ,g : X → X ( f ,g : X ( X) are
conjugate iff there exists a γ-homeomorphism ϕ : X → X such that ϕ ◦ f =

g ◦ ϕ . In this case, we will also say that functions (multifunctions) f ,g are
conjugate via γ-homeomorphism ϕ .

Theorem 11.6. Let (X ,γ) be GTS, a nonempty family K ⊂ P̃(X) be invariant
via γ-homeomorphism and f ,g : X → X be functions (or f ,g : X ( X be mul-
tifunctions) conjugate via γ-homeomorphism ϕ : X→ X. If A= (A1, . . . ,An)∈
πK, then MA, f =MAϕ ,g (where Aϕ = (ϕ(A1), . . . ,ϕ(An))).

Now, let us assume that (X ,γ) is GTS, f ,g : X → X are conjugate via γ-
homeomorphism ϕ : X → X and a nonempty family K⊂ P̃(X) is invariant via
γ-homeomorphism. According to Theorem 11.5 and Theorem 11.6, we obtain
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tr(Mk
A, f ) = tr(Mk

Aϕ ,g) for any k ∈ N. Therefore EK( f ) = supA∈πK
EK, f (A)≤

supA∈πK
EK,g(A)=EK(g). By a similar argumentation we obtain that EK(g)≤

EK( f ). In this way an important theorem justifying consideration of general-
ized entropy was proved.

Theorem 11.7. Let (X ,γ) be GTS. If f ,g : X→X are conjugate and a nonempty
family K ⊂ P̃(X) is invariant via γ-homeomorphism then

EK( f ) = EK(g).

The above theorem is still true if we replace functions f ,g : X → X by multi-
functions f ,g : X ( X .

An important role in many considerations regarding practical use of math-
ematical theorems is played by finite spaces. Then the concept of entropy
presented here makes possible some calculations. The following example is
widely described in [30]. Here we will only indicate some elements related to
these considerations.

Let X = {a0,a1, . . . ,a10} and ν : X ( X be defined in the following way:
ν(ai) = {ai,ai+1} for i ∈ {0, . . . ,4}, ν(a5) = {a5,a0}, ν(ai) = {ai+1} for
i ∈ {6, . . . ,9} and ν(a10) = a6. Of course, Fix(ν) = {a0, . . . ,a5}. Putting
γ = {B⊂ X : B⊂ ν(B)} we obtain that γ is GT in X and γ = {B⊂ X : X \B⊂
Fix( f )∨{a6,a7,a8,a9,a10} ⊂ X \B}. SetK= {{a0},{a1},{a2},{a3}}. It fol-
lows easily that Ek

K,ν(A) ≤ 1
k log4 for any A ∈ πK and k ∈ N. This gives

EK(ν) = 0. If we consider a permutation Π : X → X such that Π(Fix(ν)) =
Fix(ν) and ζ = Π ◦ ν ◦Π−1 then we check at once that ν and ζ are conju-
gate. Since K is invariant via γ-homeomorphism, we can deduce, according to
Theorem 11.7, that EK(ζ ) = 0.

The next theorem is connected with so called n-turbulent function (or n-
horseshoe [2]) and it gives a convinient tool for lower estimation of a general-
ized entropy.

Theorem 11.8. Let (X ,γ) be GTS, K ⊂ P̃(X) be a nonempty family,
ξ :P(X)→P(X) and n∈N. If there exists a sequence A=(A1,A2, . . . ,An)∈πK
such that

n⋃
i=1

Ai ⊂
n⋂

i=1

ξ (Ai),

then EK(ξ )≥ logn.
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11.3 Usual entropy and generalized entropy

There is a natural question about the relationship between generalized entropy
(introduced in the previous part of this chapter) and standard entropy for usual
functions. The "covery" definition of entropy is connected with continuous
functions, because its essence is the demand that inverse image of an open set
is an open set ([1]). As mentioned in section 11.2 in compact metric spaces the
above definition is equivalent to Bowen-Dinaburg’s definition of entropy ([7],
[19]). So, we limit our considerations to compact metric spaces. Moreover, in
recent times the results related to the entropy of discontinuous functions can
be found in many papers. Therefore we will only give a definition of entropy
formulated in the basic version in [7] and [19] (equivalent to the "covery" one)
and transferred to a wider class of functions in [16].

Let (X ,ρ) be a compact metric space, f : X→ X , n ∈N and ε > 0. We shall
say that a set M ⊂ X is (n,ε)-separated if for any different points x,y ∈ M
there exists i ∈ {0,1, . . . ,n−1} such that ρ( f i(x), f i(y)) > ε . Moreover, a set
E ⊂ X will be called (n,ε)-span if for every x ∈ X there is y ∈ E such that
ρ( f i(x), f i(y)) ≤ ε for any i ∈ {0,1, . . . ,n}. Set sn(ε) = max{card(M) : M ⊂
X is (n,ε)−separated set}, rn(ε) = min{card(E) : E ⊂ X is (n,ε)−span set},
s(ε) = limsupn→∞

1
n logsn(ε) and r(ε) = limsupn→∞

1
n logrn(ε). The topolog-

ical entropy of f is the number

h( f ) = lim
ε→0+

limsup
n→∞

1
n

logsn(ε).

It is possibile that h( f ) = +∞. Moreover, let us remark ([16], Lemma 3.2)
that if ε1 < ε2, then s(ε1) ≥ s(ε2). Furthermore, in [16] one can find the fol-
lowing fact

Remark 11.9. For any compact metric space (X ,ρ) and any f : X → X we
have that

lim
ε→0+

s(ε) = lim
ε→0+

r(ε) = h( f ).

Obviously, if (X ,ρ) is a compact metric space and f (x) = x for x ∈ X , then
h( f ) =EK( f ) = 0 for any nonempty familyK⊂ P̃(X). The following theorem
shows that the generalized entropy is the lower estimation of standard one. We
will present only a sketch of the proof of this theorem (the complete proof of
this theorem one can find in [30]).

Theorem 11.10. If (X ,ρ) is a compact metric space and f : X → X then
EK( f )≤ h( f ), for any nonempty family K ⊂ P̃(X).
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Proof. If EK( f ) = 0 then the above inequality is obvious, so let us assume that
EK( f ) = p > 0 and suppose contrary to our claim that h( f ) ∈ [0, p). There
exists a sequence A0 = (A1,A2, . . . ,Ak) ∈ πK such that

EK, f (A0)>
h( f )+ p

2
> 0.

Moreover, there exists a strictly increasing sequence {mn}n∈N of positive inte-
gers such that

log(tr(Mmn
A0, f

))
1

mn >
h( f )+ p

2
.

Fix n ∈ N. With the notation Mmn
A0, f

= [x(mn)
i, j ]i, j≤k we have that if

x(mn)
t,t > 0, then there exist x(mn)

t,t various sequences (At ,As1 , . . . ,Asmn−1 ,At) such
that s1, . . . ,smn−1 ∈ {1,2, . . . ,k}, At →

f
As1 , Asi →f Asi+1 for i ∈ {1, . . . ,mn− 2}

and Asmn−1 →f At . Let us denote the set of these sequences by Y
(mn)
t (set

Y
(mn)
t = {Y t

1 , . . . ,Y
t
x(mn)

t,t
}). There exists an injective function ξt : Y(mn)

t → At

such that if Y t
i = (At ,Ai

s1
, . . . ,Ai

smn−1
,At) ∈Y

(mn)
t , then

ξt(Y t
i ) ∈ At , f (ξt(Y t

i )) ∈ Ai
s1
, . . . , f mn−1(ξt(Y t

i )) ∈ Ai
smn−1

, f mn(ξt(Y t
i )) ∈ At .

Putting Z = {t ∈ {1, . . . ,k} : x(mn)
t,t > 0} and Qmn =

⋃
t∈Z ξt(Y

(mn)
t ) we obtain

that
card(Qmn) = tr(Mmn

A0, f
).

Moreover, there exist ε∗ > 0 such that Qmn is (mn,ε)-separated set for any
ε ∈ (0,ε∗). Therefore smn(ε)≥ tr(Mmn

A0, f
) for any ε ∈ (0,ε∗). Thus

h( f )≥ limsup
n→∞

(
1

mn
logsmn(ε))≥ limsup

n→∞

(
1

mn
log tr(Mmn

A0, f
))> h( f ),

which is impossible. ut

11.4 Generalized Vietoris topology and generalized entropy

As it was already indicated if we have fixed function then it is possible to
consider some multifunction, map, etc. Opportunities in this area are much
wider (e.g. [8]). For this reason, recently there appeared many papers in which
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authors compared the properties of dynamic of functions and suitable mul-
tifunctions and maps (e.g. [46], [21], [32]). In this section we refer to these
ideas.

Let (X ,γ) be GTS. We will denote by CL(X) the family of all nonempty,
closed subsets of X . Consider the family Vγ ⊂P(CL(X)) consisting of sets α ∈
P(CL(X)) such that α = /0 or for any A∈α there exist sets U1, . . . ,Un ∈ γ such
that A∩Ui 6= /0, for any i ∈ {1, . . . ,n} and {B ∈ CL(X) : B ⊂

⋃n
i=1Ui and B∩

Ui 6= /0 for any i ∈ {1, . . . ,n}} ⊂ α . We check at once that the family Vγ is a
generalized topology in the space CL(X). This generalized topology can be
called generalized Vietoris topology, because the above definition agrees with
the classical definition of Vietoris topology in usual topological spaces.

Let A ∈ P(X). If there exists a set B ∈ CL(X) such that B ⊂ A, then put
d(A) = {B∈CL(X) : B⊂ A}. Otherwise put d(A) = /0. Moreover, set ĈL(X) =

{d(A) : A ∈ CL(X)}.
Let A X be a γ-closed set. Obviously, CL(X)\d(A) = {P ∈ CL(X) : P∩

(X \A) 6= /0} 6= /0 and X \A ∈ γ . Moreover, we have that W ∩X 6= /0 and W ∩
(X \A) 6= /0 for any W ∈ CL(X)\d(A). We check at once that

{C ∈ CL(X) : C⊂ X ∪ (X \A)∧C∩X 6= /0∧C∩ (X \A) 6= /0}= CL(X)\d(A).

Therefore, we obtain that CL(X) \ d(A) ∈ Vγ , so d(A) is Vγ -closed. Result of
the above considerations can be saved in the form of theorem

Theorem 11.11. Let (X ,γ) be sGTS. If a set A is γ-closed, then d(A) is Vγ -
closed.

In the papers [46], [21], [47] a special kind of multifunction from CL(X)

into itself connected with a function f : X → X was considered. The au-
thors considered topological spaces or compact metric spaces X and the mul-
tifunction ψd

f : CL(X)( CL(X) defined by the formula ψd
f (A) = d( f (A)) for

A ∈ CL(X) in connection with various problems of chaos. We can also inves-
tigate this multifunction for T1-sGTS (X ,γ) and f : X → X or f : X ( X . For
example we have

Theorem 11.12. Let (X ,γ) be T1-sGTS. For any multifunction f : X ( X
(function f : X → X) we have

ECL(X)( f ) = EĈL(X)
(ψd

f ). (11.1)

The proof of this theorem was divided into three parts. In the first one, it
was shown that a sequence A = (A1,A2, . . .An) belongs to πCL(X) if and only
if Ad = (d(A1),d(A2), . . .d(An)) belongs to πĈL(X)

. Next, it was proved that
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MA, f = MAd,ψd
f
. Finally, using the properties shown in the first and second

parts, it was shown that ECL(X)( f )≤ EĈL(X)
(ψd

f ) and EĈL(X)
(ψd

f )≤ ECL(X)( f ).
For more details we refer the reader to [30].

Fixed points and periodic points of functions play an important role in the
theory of combinatorial dynamics. It is particularly important to find a rela-
tionship between entropy of a function and the number of its fixed or periodic
points. Now, we present the relationship between the fixed points of certain
multifunctions and the generalized entropy of these multifunctions. We start
with the definition.

Let (X ,γ) be GTS and K ⊂ P̃(X) be a nonempty family. We say that mul-
tifunction ψ : X ( X has the property IK if for every sequence (A1,A2, . . . ,

An,A1) ∈ πK such that Ai →
ψ

Ai+1 for i = 1,2, . . . ,n− 1 and An →
ψ

A1 there

exists a sequence (x1,x2, . . . ,xn) such that xi ∈ Ai and xi+1 ∈ ψ(xi) for i =
1,2, . . . ,n− 1 and x1 ∈ ψ(xn). It is worth noting that if we consider a func-
tion f : R→ R instead of multifunction ψ and a family K of all Tnat-closed
intervals then the above definition agrees with the one given in ([3], [51]).

In the context of these considerations the following theorem seems to be
interesting.

Theorem 11.13. Let (X ,γ) be GTS and ψ : X ( X be a multifunction having
the property ICL(X). Then

ECL(X)(ψ)≤ limsup
n→∞

max
(

0,
1
n

log(card(Fix(ψn)))

)
.

As mentioned at the beginning of section 11.2, to each function f : X → X ,
the map ξ f generated by f may be assigned. Some properties of a function
ξ f � CL(X) for a compact metric space X (so called "functions induced by f ")
one can find, for example, in papers [46], [21], [32], [47]. Moreover, if we con-
sider CL(X) equipped with Vietoris topology then ξ f � CL(X) is a continuous
function whenever f is a continuous function. From Theorem 11.10 and results
contained in papers [42], [26], [32] it may be concluded

Theorem 11.14. If (X ,ρ) is a compact metric space and f : X → X is a con-
tinuous function, then for an arbitrary nonempty family K ⊂ P̃(X) we have

EK( f )≤ h( f )≤ h(ξ f � CL(X)). (11.2)
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Taking into account the examples presented in the papers [42], [32], [30], it
is easily seen that the inequality in (11.2) may be strict. On the other hand we
have the following theorem

Theorem 11.15. Let X = [0,1]m and Ar(X) be the set of all arcs in X. The set
{ f ∈ C(X) : EAr(X)( f ) = h( f ) = h(ξ f � CL(X))} is dense in the space C(X)

with the metric of uniform convergence.

Therefore, for any continuous function f : [0,1]m→ [0,1]m there exists a con-
tinuous function which is "arbitrarily close" to f and for which all entropies
considered in Theorem 11.14 have the same value.

Notice that the above theorem is still true if we replaceAr(X) with a family
of all nonempty closed or connected or Borel subsets of X . Moreover, we can
consider non-singleton, convex and compact subset of Rm in place of X or
some manifold instead of Rm. Of course, in last situation we must replace the
set X with a set being a homeomorphic image of a suitable convex set. These
considerations are a continuation of research initiated in the papers [44] and
[39].

11.5 Transitive multifunctions

We start this section with some definitions. Let (X ,γ) be GTS and Φ : X (
X . Similarly to the case of usual functions, we shall say that a multifunction
Φ is transitive if for any pair of nonempty open sets U,V ⊂ X there exists
k ∈ N such that V ∩Φk(U) 6= /0. Moreover, we shall say that a set (sequence)
ΘΦ(x0)= {x0,x1,x2, . . .} is an orbit of x0 under Φ if xi ∈Φ(xi−1) for any i∈N.
It is worth noting that, unlike in the case of a function, there may exist a lot of
different orbits of x0 under multifunction Φ . From now on, Θ a

Φ
(x0) stands for

the family of all orbits ΘΦ(x0) of x0 under multifunction Φ . Clearly, we have
the following property.

Property 11.16. Let (X ,γ) be GTS. If ΘΦ(x0) = {x0,x1,x2, . . .} is an orbit of
x0 under Φ : X ( X then xi ∈Φ i(x0) for i ∈ N.

In the paper [31] one can find the example showing that the converse statement
is not true. However one can prove the following fact:

Theorem 11.17. Let (X ,γ) be GTS, Φ : X( X and x0 ∈ X. If α ∈Φm(x0) for
some positive integer m, then there exists an orbit ΘΦ(x0) = {x0,x1,x2, . . .} of
x0 under Φ such that xm = α .
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Many mathematicians have investigated relationship between transitivity
and existence of a dense orbit of a function (e.g. [43], [17], [38], [33]). For
instance, in [43] one can find the example of a transitive function f which
does not have a dense orbit. On the other hand there exists a function f with
dense orbit which is not a transitive function ([17]). Therefore these two no-
tions are independent in general. However in some cases there are equivalent
([17], [38]).

It is clear that there is no connection between transitivity and existence of
a dense orbit for multifunctions in general, too. To see this it suffices to con-
sider multifunctions Φ(x) = { f (x)}, where f is one of the functions mentioned
above. However, we have the following theorem

Theorem 11.18. Let (X ,γ) be GTS and Φ : X( X. A multifunction Φ is tran-
sitive if and only if for any U,V ∈ γ̃ there exist x0 ∈U and the orbit ΘΦ(x0)

such that ΘΦ(x0)∩V 6= /0.

The next theorem presents some condition equivalent to transitivity for a
lower semicontinuous multifunction Φ : X → X i.e multifunction Φ : X → X
such that for any x ∈ X and any U ∈ γ such that Φ(x)∩U 6= /0 there exists
V ∈ γ(x) such that Φ(t)∩U 6= /0 for any t ∈V .

Theorem 11.19. Let GTS (X ,γ) be a Baire space with a countable base.
A lower semicontinuous multifunction Φ : X ( X is transitive if and only if
the set {x ∈ X : clγ(

⋃
Θ a

Φ
(x)) = X} is residual.

One can ask if we can consider, in the above theorem, a set of all points
x ∈ X such that there exists a dense orbit of x under Φ instead of the set
{x ∈ X : clγ(

⋃
Θ a

Φ
(x)) = X}. The following example shows (see [31]) that

answer to this question is negative.
If we consider (R,Tnat) and an arbitrary sequence {qi}i∈N of all rational

numbers, then it is easy to see that the multifunction Φ : R( R such that
Φ(x) = Q if x ∈ R \Q and Φ(x) = {q1,q2, . . . ,qi} if x = qi is transitive and
lower semicontinuous. On the other hand there is no dense orbit of x under Φ

for any x ∈ R.

11.6 Strongly transitive multifunctions

Let (X ,γ) be a Baire GTS and Φ : X ( X (Φ : X → X). A multifunc-
tion (function) Φ is strongly transitive if for any U,V ∈ γ̃ we have that
{x ∈U : ΘΦ(x)∩V 6= /0 for some ΘΦ(x) ∈Θ a

Φ
(x)} is a second category set.
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Obviously, each strongly transitive multifunction (function) is transitive. On
the other hand, there exists a transitive multifunction (function) which is not
strongly transitive. Indeed, if we consider (R,Tnat) then the multifunction

Ω(x) =

{
{π} for x ∈ R\Q,
Q for x ∈Q

is transitive because V ∩Ω(U)⊃V ∩Q 6= /0 for any U,V ∈ T̃nat . Moreover, the
set of all x ∈ (0,1) such that ΘΩ (x)∩ (1,2) 6= /0 for some orbit ΘΩ (x) ∈Θ a

Ω
(x)

is countable, so we have that Ω is not strongly transitive.
The same is true if we consider the function f : [0,2]→ [0,2] presented in

Example in the paper [43] instead of the multifunction Ω .
Now we will focus on a particular type of multifunction, which has been

also studied, for example by Crannell, Frantz and LeMasurier ([8]). Let us
start with definition of the Cartesian product of generalized topological spaces
introduced by Császár in [15]. Let T be a nonempty set and Xt 6= /0 for any
t ∈ T . Furthermore, let (Xt ,γt) be GTS for any t ∈ T and X = ∏t∈T Xt be the
Cartesian product of the sets Xt . Moreover, let B be a set of all sets of the form
∏t∈T Mt , where Mt ∈ γt for each t ∈ T and Mt 6=

⋃
γt only for a finite number

of t from T . We call γB the product of generalized topologies γt . Obviously,
γB is a generalized topology in X .

For any GTS (X ,γ) and any function f : X → X we define a multifunction
f̄ : X ( X in the following way

f̄ (x) = {y ∈ X : (x,y) ∈ clγ×γ(Γ ( f ))},

where Γ ( f ) is a graph of f and γ × γ is the product of generalized topolo-
gies. Our definition agrees with the one given in [8], in the case of topological
spaces.

To illustrate this concept, consider the space (R,Tnat) and two functions
f1, f2 : R→ R defined in the following way: f1(x) = f2(x) = sin 1

x for x 6= 0,
f1(0) = 0 and f2(0) = 1. Then f̄1(x) = f̄2(x) =

{
sin 1

x

}
for x 6= 0 and f̄1(0) =

f̄2(0) = [−1,1].
The following two statements describe some connection between orbits and

properties of a function f and orbits of a suitable function f̄ .

Proposition 11.20. Let (X ,γ) be GTS, f : X→ X and x0 ∈ X. The set Θ f (x0) =

{x0, f (x0), f 2(x0), . . .} is an orbit of x0 under multifunction f̄ .

Proposition 11.21. Let (X ,γ) be T2-GTS and f : X → X.

(a) If x0 ∈ C( f ) then f̄ (x0) = { f (x0)}.
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(b) If Θ f (x0) ⊂ C( f ) for some x0 ∈ X then Θ f (x0) is the unique orbit of x0

under multifunction f̄ .

Using the above statements, we can show the following theorem related to
cm-function f : X → X i.e function f : X → X such that D( f ) is a countable
set and f−m(x) = {z ∈ X : f m(z) = x} is a meager set for any x ∈ D( f ) and
m ∈ N∪{0}.

Theorem 11.22. Let GTS (X ,γ) be a strong Baire space with a countable base
such that for any U ∈ γ̃ and any finite set A ⊂U there exists a set V ∈ γ̃ such
that V ⊂U \A. Let f : X → X be a cm-function. The following conditions are
equivalent:

(A) f is strongly transitive,
(B) there exists x0 ∈ X such that Θ f (x0) is a dense set and Θ f (x0)⊂ C( f ),
(C) f̄ is strongly transitive,
(D) there exists x0 ∈ X such that there exists an orbit Θ f̄ (x0) which is a dense

set and Θ f̄ (x0)⊂ C( f ).

In the proof of this theorem an important role also plays the following property:
if (X ,γ) is GTS and f : X → X is a cm-function then the set {x ∈ X : Θ f (x)∩
D( f ) 6= /0} is a meager set.
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[16] M. Čiklová, Dynamical systems generated by functions with Gδ graphs, Real Anal.

Exchange 30 (2004/2005), 617–638.
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[50] P. Szuca, Szarkovskiĭ’s theorem holds for some discontinuous functions, Fund. Math.
179 (2003), 27–41.

[51] S. Wiggins, Chaotic Transport in Dynamical Systems, Springer-Verlag, Interdisc. Ap-
plied Math. vol. 2, New York 1991.



172 Anna Loranty, Ryszard J. Pawlak

ANNA LORANTY

Faculty of Mathematics and Computer Science, Łódź University
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