
Chapter 1
A Modest Review of a Great Deal of Work

PAUL D. HUMKE

It is both an honor and a pleasure and, I might say, somewhat daunting to write
a paper describing the mathematical career of a mathematician who has made
such major contributions to both the scientific literature and to his chosen pro-
fession. I met Jan Lipiński in 1978 at the International Congress in Helsinki.
He came to a session at which I presented a poster and was very encouraging.
I recall vividly; it meant a great deal to the beginner that I was. Two days later
we met again at a dinner we’d arranged for several real analysts attending the
conference. Jan was there as was my wife Bonnie, Andy and Judy Bruckner,
Mik Laczkovich, Krishna Garg, Ladislav Mišík, and Dan and Mudite Water-
man. All of us have remained in close contact throughout our lives, and all
have certainly enriched my own life immeasurably both scientifically and per-
sonally.

In 1987 a group of us here in the United States applied for a series of grants
to invite several European real analysts to a Special Real Analysis Session at
the Annual Joint Meeting of the A.M.S. in San Antonio, Texas. Jan was among
those invited, as was one of Jan’s former students, Władek Wilczyński. After
the meeting Jan and I flew back to Minnesota where he stayed with me and my
family in Minnesota for a week. We talked a great deal of mathematics during
that week and got to know each other pretty well. Jan enchanted our children
with stories and “tricks;” his separating finger trick is still a favorite of our
eldest son, Eric who has demonstrated it to all of his nieces and nephews and
now to his own children.

http://dx.doi.org/10.18778/7525-971-1.01
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Jan was a first student of Zygmunt Zahorski and much of Jan’s mathematical
work reflects the style and delicacy of the Zahorski school. Although Zahorski
wrote his dissertation under the direction of Tadeusz Ważewski, he had early
worked with both Mazurkiewicz and Banach and his professional life reflects
a devotion to working on hard problems and developing deep understanding of
the intricacies of sets and functions. An insightful reflection on Zahorski’s life
and work was written by Władek Wilczyński, see [62], to whom I am indebted
for introducing me to Zahorski during the Warsaw International Congress in
1983.

Several of Jan’s earliest papers solve problems left unresolved in papers
published by Zahorski, but he quickly branched out, successfully attacking
problems in allied areas of real analysis and set theoretic topology. The forty
seven papers reflected in this review reveal a sparkling energy and creative
spirit that characterize their author. Jan has fathered eight mathematical chil-
dren, twenty nine mathematical grand children and thirty eight mathematical
great grandchildren. It is a wonderfully diverse and dedicated family of profes-
sional mathematicians who continue to push back the frontiers of real analysis.

In the sections that follow I have chosen four categories within which to dis-
cuss Jan’s scientific work and most of that work is at least touched upon in the
sequel. Any division of a body of intellectual work is artificial and, in some
sense can detract from the overall vision of the whole. Still, I found it help-
ful to make some categorization and I hope it is not distractive to the reader.
Inevitably, there is overlap between the sections, but frequently the overlap re-
flects Jan’s new ways of looking at old ideas. We’ll begin where Jan himself
began in the early 1950’s by looking at Jan’s contributions to understanding
derivatives.

1.1 Derivatives

The papers I’ve categorized as Jan’s derivative body of work1 is substantial
and his interest in derivatives is clearly career long. And a solid portion of this
work involves the hierarchy of classes of Fσ sets and of Baire 1 functions intro-
duced by Zahorski in his celebrated 1950 paper, Sur la première dérivée, [64]
. I’ll first give the briefest of descriptions of these classes; a characteristically
elegant and complete treatment can be found as Chapter 6 of Andy Bruckner’s
book, Differentiation of Real Functions, [2]. I’ll use that treatment here, para-

1 See [39], [34], [44], [32], [28], [27], [24], [23], [19], [16], [17], [14].
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phrasing and giving enough background within which to place some of Jan’s
contributions.

Definition 1.1. Let /0 6= E ∈ Fσ . Then E is said to belong to class

M0 if every point of E is a bilateral accumulation point of E;
M1 if every point of E is a bilateral condensation point of E;
M2 if every one-sided neighborhood of each point of E intersects E in a set of

positive measure;
M3 if for each x ∈ E and each sequence of closed intervals, {In} converg-

ing to x but not containing x such that λ (In ∩E) = 0 for each n, we have
limn→∞ λ (In)/dist(x, In) = 0;

M4 if there exists a sequence of closed sets, {Kn} and a sequence of positive
numbers ηn such that E =

⋃
Kn and for each x ∈ Kn and each c > 0 there is

a number ε = ε(x,c) such that if h and k satisfy hk > 0, h/k < c, |h+k|< ε ,
then

λ (E ∩ (x+h,x+h+ k))
|k|

> ηn.

M5 if every point of E is a point of density of E.

These classes of sets give rise to corresponding classes of Baire 1 functions
in a most natural way.

Definition 1.2. A function f ∈Mi if every associated set of f is in class Mi for
i = 0,1, . . . ,5.

By associated sets of f we mean the sets of the form {x : f (x) < α} or
{x : f (x)> α}.

Let DB1 be the class of Darboux Baire 1 functions and Cap - the class of the
approximately continuous functions. Two foundational results concerning the
Zahorski Classes (see [2], Theorem 1.3, Corollary 2.4 and Theorem 2.5) are
the following:

Theorem 1.3.

Cap =M5 (M4 (M3 (M2 (M1 =M0 =DB1.

In the next theorem, ∆ ′ denotes the set of derivatives and b∆ ′ denotes the
set of bounded derivatives.

Theorem 1.4.
∆
′ (M3 and b∆

′ (M4.
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David Preiss in [58] and David and Maria Tartaglia in [57] also had a good
deal to say about this story and a relatively complete list of related papers can
be found by searching for papers citing Zahorski, [64].

Zahorski defined the classes described in the paragraph above and among
many other results, showed that ∆ ′ (M2 and b∆ ′ (M3. Several questions
remained, however and Jan answered one of these in [14] where he proves the
following theorem.2

Theorem 1.5. There is a set E ∈ M3 such that E is not an associated set for
any finite derivative.

The condition required for a set to belong to the class M4 is rather complicated,
but is not dissimilar to the original formulation of the M3 condition. The lat-
ter was simplified to that given above, and Zahorski asked whether a similar
simplification could be made for M4 by taking the η to be dependent only on
x and not on n. In [16] Jan showed that this is not possible via the following
theorem.

Theorem 1.6. Un condition nécessaire qu’un ensemble linéaire E soit iden-
tique á l’ensemble des pointes en lesquels une fonction dérivée, bornée en
module, prend une valeur finie donnée est que E soit un Gδ contenant tous les
points d’accumulation en mesure.

Several other Zahorski type derivative results can be found the following Sec-
tion 1.2. But now I’ll turn to derivative results of different types.

In 1957 Jan published a paper in Colloquium Mathematicum, [17] in which
he studies monotone jump functions.

Definition 1.7.

1. If f : R→ R, then D∞( f ′) = {x : f ′(x) = ∞}.
2. If f :R→R is bounded and non-decreasing, then f is called a jump function

provided

a. ∑R f (x+0)− f (x−0)< ∞, and
b. f (b−0)− f (a+0) = ∑a<x<b f (x+0)− f (x−0) whenever a < b.

He proves the following two theorems.

Theorem 1.8. If f and g are non-decreasing jump functions and φ = f − g,
then there is an Fσ null set E such that D∞( f ′)⊂ E.

Theorem 1.9. If E is any Fσ null set, then there is a non-decreasing jump
function, f such that f ′(x) = ∞ for every x ∈ E.

2 Here and in other places I restate the actual result using the terminology of this paper.
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In particular, these results show that a necessary and sufficient condition for a
set E ⊂ D∞( f ′) for some jump function f is that E is a subset of an Fσ null
set. This provided a complete answer to a question posed by E. Marczewski in
1955 in [56].

But there is a bit more to this story for in 1971, R. Sikorski learned of a
theorem by A. J. Lohwater, [52] where Lohwater uses the theory of cluster
sets and analytic functions to prove the following theorem for real functions.

Theorem 1.10 (Lohwater). If f : R→ R is singular, then there exists an Fσ

null set, E for which D∞( f ′)⊂ E.

Here, singular means f is of bounded variation and f ′(x) = 0 almost every-
where.

Jan wanted a purely real analysis proof of this theorem in the spirit of The-
orem 1.8 and an example in the spirit of Theorem 1.9 above. In 1972, in [34]
he succeeds, proving both the Lohwater Theorem 1.10 and also the following,
using only classical real analysis techniques.

Theorem 1.11. If E is a subset of an Fσ null set, then there is a singular func-
tion f : R→ R with E ⊂ D∞( f ′).

This last result is then coupled with Theorem 1.10 to prove the following.

Theorem 1.12. A necessary and sufficient condition for a set E ⊂ D∞( f ′) for
some singular function f is that E is a subset of an Fσ null set.

In the following, D( f ) denotes the set of points of discontinuity of a func-
tion f and Z( f ) = {x : f ′(x) = 0}. In this work, Jan is tackling several problems
posed by Solomon Marcus in [55] and [54]. In 1940, in [61], Tolstov had shown
that if E is any null set, then there is a continuous, non-decreasing, differen-
tiable function f with E ⊂ D∞( f ). Krishna Garg and Solomon Marcus wrote
several papers investigating the relationships between the sets D( f ), D∞( f ),
Z( f ′) and others. In [28], Jan answers two of the Marcus questions in proving
the following quite conclusive theorem.

Theorem 1.13. Let f be a non-increasing everywhere differentiable function.
For sets A and B to be the sets D( f ) and D∞( f ) respectively, it is necessary
and sufficient that A is denumerable, B is a Gδ null set, and A⊂ B.

In [54] Marcus defines f : [a,b]→ R to be a Pompeiu function if f has a
bounded derivative, Z( f ′) is dense in [a,b] and f is constant on no interval. He
then investigates various properties of Pompeiu functions and poses a number
of questions concerning their behavior. Independently, Andy Bruckner and Jan
solved many of these questions. Two results of Jan, [32] are the following.
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Theorem 1.14. For Pompeiu functions f the sets Z( f ′) are characterized as
dense boundary M4 sets.

Theorem 1.15. There exist Pompeiu functions for which Z( f ′) is of measure
zero.

I’ll finish this section with a related result Jan proved in 1963. In Theorem
1.13 that the set A must denumerable follows from the fact that the discon-
tinuity set of any differentiable function is denumerable. Z. Zahorski, in [63]
asked what could be said if “derivative” was replaced by “approximate deriva-
tive” and “continuity” by “approximate continuity.” In 1963 Jan answers this
in his paper [27].

Theorem 1.16. Suppose that a function f : R→ R is approximately differen-
tiable everywhere. Then the set of points where f is approximately discontinu-
ous is a first category null set.

In the next section I’ll focus on the many examples and counterexamples
found in Jan’s work. Some, I’ve already discussed in the context of derivatives,
but I’ve reserved many of the best.

1.2 Examples and Counterexamples

One of my favorite mathematical quotes is attributed to Poincaré in a letter he
wrote in 1913; it is paraphrased here:

Heretofore when a new function was invented, it was for some practical end; today
they are invented expressly to put at fault the reasonings of our fathers, and one will
never get from them anything more than that.

Legend has it that this was written in a frustrated response to Dirichlét’s
publication of the function we now label with his name. But examples, per-
haps particularly pathological ones, help hone and sharpen our understanding.
These have played an important role in Jan’s research career and I decided to
highlight this portion of his work with a section of its own.3

In [16] Jan constructed a single set revealing that answers to two separate
questions by Choquet and Zahorski were negative. I described the Zahorski
conjecture in Section 1.1; Andy Bruckner, [2] describes the situation surround-
ing Choquet’s question as follows:

3 See, for example [43], [39], [47], [13], [38], [34], [35], [45], [27], [26], [16], [14].
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Choquet defined a notion of accumulation of measure of a set E at a point xo. This
condition is one satisfied by each level set of a bounded derivative. Choquet’s condi-
tion is also sufficient for a set of type Gδ to be a level set of some bounded derivative,
provided certain auxiliary conditions are met. . . .

Choquet asked whether these “auxiliary conditions” were actually neces-
sary or whether a general result was true. Jan’s example showed additional
conditions were indeed required.

Jan returned to the Zahorski classes in 1990 when studying real valued func-
tions of two real variables, [43]. Among other results are two constructions.
Here, if f : R2→ R, then the sections of f are denoted by fx(y) and f y(x).

Theorem 1.17.

1. There is a bounded non-measurable function f :R2→R such that fx, f y ∈
M3 for every x,y ∈ R.

2. There is a bounded non-Borel measurable function f : R2→ R such that
fx, f y ∈M4 for every x,y ∈ R.

In 1963, [27] Jan answered yet another question of Zahorski, this time asked
in 1948, in [63]. Here he first proves the following theorem.

Theorem 1.18. Suppose f :R→R is approximately differentiable everywhere,
either finite or infinite. Then the set at which f is approximately discontinuous
is of the first Baire category and of measure zero.

Subsequently he shows that there is an approximately differentiable function
which is approximately discontinuous at a set of cardinality 2ℵ0 . Andy Bruck-
ner and Casper Goffman jointly authored a very nice survey focusing on ap-
proximate differentiation; this appeared in the Real Analysis Exchange in
1981, see [1].

Jan’s career long interest in questions of continuity and connectedness are
well represented in this section of examples and counterexamples. In 1972, in
[35] he proves the existence of a pathological function of two real variables
that has quite tame sections.

Theorem 1.19. There is a (Lebesgue) non-measurable function f : [0,1]2→R
whose sections, fx(y) and f y(x) are both Baire Class 1 and Darboux.

In reviewing Jan’s paper, [38] for the Mathematical Reviews Andy Bruckner
writes

This provides an elegant answer to a question raised by the reviewer and J. Ceder.

The elegant answer Andy was referring to began with the following theo-
rem.
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Theorem 1.20. Let g be a Darboux function which is not constant on any
subinterval, I of its domain such that the set A = {α ∈ R : g−1(α) is perfect}
is dense in g(I). Then there exists a homeomorphism h from I onto I such that
for every countable, dense set D⊂R there is a function d which takes an every
real value in every subinterval of I such that D is the range of (g◦h)+d and
(g◦h)+d is constant almost everywhere.

Then, by taking g to be continuous, one obtains an example of a continuous
function f = g ◦ h with the property that to each countable set D ⊂ R cor-
responds a measurable Darboux function d so that f + d has range D. This
provided the elegant answer Andy referred to.

1.3 Point Sets

Of course there is a great overlap between this section and the others, but with
the integrated nature of research, such overlap is inevitable. So rather than
attempt to avoid it in some artificial way, I chose section topics that highlight
particular strengths in Jan’s overall research program. And I hope you’ll agree
that the view of his work from the perspective of general functions and point
sets is a particularly useful view. There are fifteen papers4 from which I’ve
extracted results for this section.

Early, in 1961 there were two papers in [25], [41] which portended future
investigations of distinguishing sets via function behavior. Here, he first defines
two properties of pairs of sets in R.

Definition 1.21. If F1 and F2 are Fσδ sets, then the pair (F1,F2) is said to have
property

• P provided there are two disjoint Fσ sets E1 and E2 such that F1 ⊂ E1 and
F2 ⊂ E2.

• Q provided there is a sequence of continuous functions { fn : R→ R}∞
n=1

such that F1 = {x : fn(x)→+∞} and F2 = {x : fn(x)→−∞}.

The paper is devoted to showing that conditions P is equivalent to Q.
In 1973 Krishna Garg in [12] published a substantial paper investigating

level sets of Darboux functions. In some regards this was an extension of ear-
lier work by Sierpiński, [59]. Jan had already developed the intuition and tech-
nical expertise to tackle the open questions Krishna published in [12]. We need
a modicum of notation to understand the dynamics here.
4 See [49], [39], [47], [46], [37], [36], [34], [40], [44], [29], [26], [25], [41], [19], [14].
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Definition 1.22.

1. We define a set E ∈ G+
δ

if there is an A ∈ Gδ and a countable set B such
that E = A∪B.

2. If f : R→ R is a function and S is a collection of sets, then

YS( f ) = {y : f−1(y) ∈ S}.

For example, let P denote the perfect sets and C denote the continuous func-
tions. Then E ∈ {YP( f ) : f ∈C} simply means there is a continuous function
f such that E = {y : f−1(y) is perfect}. In [59], Sierpiński proved:

Theorem 1.23 (W. Sierpiński, [59]). If f ∈C, then each E ∈ YP( f ) is an Fσδ

set; that is, {YP( f ) : f ∈C} ⊂ Fσδ .

As one among many such theorems, Garg then proved the following theorem.

Theorem 1.24 (K. Garg, [12]). If D denotes the class of Darboux functions,
then {YP( f ) : f ∈ D} ⊂ G+

δ
.

Each of Krishna’s theorems was, like the earlier Sierpiński result, not a char-
acterization, but rather a set inequality. It was the purpose of [37] to show that
each of those inequalities was actually an equality and thus a characterization
of the class in question. For example, in [37], Corollary 4, Jan shows:

Theorem 1.25. {YP( f ) : f ∈ D}= {YP( f ) : f ∈C}= G+
δ

.

In 1977, Jan couples similar techniques and ideas with his long held interests
in continuity and connectedness to confirm a conjecture of Jack Ceder. The
main result of [47] is the following.

Theorem 1.26. If C ⊂ D ⊂ R are Gδ sets, then there is a Baire 2 function, f
for which C is the set of continuity points of f and D is the set of Darboux
points of f .

An additional paper I’ll include in this portion on functions and point sets
is [29]. This paper contains a nice example, and so perhaps could have been
included in Section 1.2. However, the theorem he proved in that paper together
with the example leaves a bit of room for further work, so I’ve kept them side-
by-side to emphasize the fact that there is something left to do. To begin, let
fn : [0,1)→ [0,1) be defined by fn(x) = nx− [nx] where [y] means the integer
part of y. For a measurable set E ⊂ [0,1), let En = f−1

n (E). Jan proves the
following two theorems.

Theorem 1.27. If {En} is a sequence of measurable sets such that
λ (En) > δ > 0 for infinitely many n ∈ N, then for every increasing sequence
of integers, {in}, λ (limsupE in

n ) = 1.
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Theorem 1.28. For every fixed increasing sequence of integers, {in} and each
ε > 0 there is a sequence of measurable sets, {En} such that

1. ∑λ (En) = +∞

2. λ (
⋃

E in
n )< ε , and

3. λ (limsupE in
n ) = 0.

There are three additional papers I’ll make some remarks about here and the
first of these, [46] concerns transfinite limits either of functions.

Here Jan considers families of mappings, F = { f : E → Y} where E is a
fixed set and Y is a metric space.

Definition 1.29. Such a family is closed with respect to transfinite conver-
gence if whenever { fα : α < ω1} ⊂ F converges pointwise to a function f ,
then f ∈ F .

Under the assumption of CH, Jan then shows several classical families of map-
pings to be closed in this sense. These include the bounded functions, increas-
ing functions, differentiable functions and several others.

The second, [26] is a contribution to the general topic of the algebra of
continuous functions, C[a,b] = { f : [a,b]→ [a,b]}. Given f ∈ C[a,b], define
S( f ) = {g ∈C[a,b] : f ◦g = g◦ f}. Jan proves the following.

Theorem 1.30. For every f ∈C[a,b], S( f ) is infinite. Moreover, if f is strictly
increasing, then the cardinality of S( f ) is 2ℵo .

Theorem 1.31. There is a function f : [a,b]→ [a,b] with two simple disconti-
nuities for which S( f ) = /0.

Finally, in [40] Jan and Tibor Šalát define a general Banach Indicatrix func-
tion and study its measurability. More specifically, let X and Y be arbitrary sets
and f : X → Y .

Definition 1.32. The Banach Indicatrix of f is τ f : Y → N∪{∞} defined as

τ f (y) =

{
card( f−1(y)), if f−1(y) is finite,

∞, otherwise.

Among the theorems proved are the following.

Theorem 1.33. If f : R→ R is monotone, then τ f is in Baire class 2.

Theorem 1.34. If f : R→ R is a Baire function, then τ f is Lebesgue measur-
able.
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1.4 Generalized Continuity

Jan has written more than ten papers5 concerning various notions of general-
ized continuity. Too, this topic proved a rich source for his active collaboration
with other real analysts, and his interest in notions of generalized continuity
can be seen as threading a good portion of his research career, beginning with
[33] in 1968 and extending through [48] in 1993. As with other sections of
this paper, the setting is not always the real line R, but sometimes a general
topological space; I’ll try to keep the more general notions somewhat separate
from those specifically related to those of the real line, R, but, of course, this
is not always completely possible.

In [33], Jan began an investigation of the relationship between functions that
are continuous and functions that preserve connectedness. This relationship is
important for a variety of reasons not the least of which is that derivatives of
functions f :R→R preserve connectedness, but need not be continuous. Here
are the definitions and theorems Jan proves in 1971.

Definition 1.35. Suppose that X is a topological space and f : X → R. Then,

1. f is said to have property (G) if there exists a dense set Y ⊂ R, such that
the set f−1(y) is closed for each y ∈ Y .

2. f is said to have property (D) if it maps connected sets onto connected
sets.

Theorem 1.36. If X is locally connected, then f is continuous if and only if f
possesses both properties (G) and (D).

Theorem 1.37. If, for every open subspace A ⊂ X, every f : A→ R and pos-
sessing the properties (G) and (D) is continuous, then X is locally connected.

A great deal has been done in this area since 1971 and I will mention several
more of Jan’s contributions in the next few paragraphs, but before listing those
I would like to insert some purely real analysis references. Mike Evans and I
published a general audience paper on the subject in the Monthly in 2009, [6]
and a more technical paper with a reasonable bibliography in [7]. A wonderful
introduction to the subject can be found in Andy Bruckner’s classic, [2] while
a paper illustrating the significance of the study is Jan Malý’s paper, [53]. The
list of real analysts who have written on this topic is both broad and long, yet
much still needs to be discovered.

5 See [4], [5], [8], [9], [11], [18], [20], [33], [48], [51].
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Three of the last five papers Jan published in the area of generalized continu-
ity were coauthored with Janina Ewert, [9], [8], [11], one was coauthored with
Tibor Šalát, [51] and the final paper he wrote by himself, [48]. In these papers,
written over a period spanning two decades, Jan and his coauthors study the
relationship between points of continuity, points of quasicontinuity and points
of cliquishness. Definitions follow.

For quasicontinuity, let X and Y be general topological spaces and let x∈ X .

Definition 1.38. A function f : X → Y is said to be quasicontinuous at x if for
every pair of neighborhoods, U of x and V of f (x) there is a nonempty open
set W ⊂U such that f (W )⊂V .

For cliquish, let X be a topological spaces, Y be a metric space with metric,
ρ and let x ∈ X .

Definition 1.39. A function f : X → Y is said to be cliquish at x if for every
ε > 0 and neighborhood U of x there is a nonempty open set W ⊂U such that
whenever w1,w2 ∈W , then ρ( f (w1), f (w2))< ε .

Definition 1.40. The sets of points of continuity, quasicontinuity and cliquish-
ness are denoted C( f ), E( f ), and A( f ) respectively.

It is clear from the definitions that C( f ) ⊂ E( f ) ⊂ A( f ). Two results from
the Lipiński-Šalát paper, [51] relate the nature of the individual sets E( f ) and
A( f ).

Theorem 1.41. Let X be a topological space and Y be a metric space. Then,
for an arbitrary function f : X → Y A( f ) is a closed subset of X.

If both X and Y are metric spaces, they have a full characterization, namely:

Theorem 1.42. If X and Y are metric spaces, then there exists a function f :
X → Y with A( f ) = A if and only if A is closed.

Further, if X =Rn is a Euclidean space and Y =R, then a similar character-
ization is proved for E( f ), namely:

Theorem 1.43. If X =Rn and Y =R, then a set E ⊂ X is the set of quasiconti-
nuity points for a function f : X →Y if and only if int(E)\E is a set of the first
Baire category.

In [11], Ewert and Lipiński build on these results using the fact that
A( f )\C( f ) is of the first Baire category to prove the following theorem.
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Theorem 1.44. Suppose X = Rn and Y = R (or alternately that X and Y are
real normed linear spaces and Y is a Baire space). Then whenever C,E, and A
are sets with

1. C ⊂ E ⊂ A = A, and
2. A\C is of the first Baire category,

then there is a function f : X→Y such that C =C( f ), E =E( f ), and A=A( f ).

The next two papers in this program, also by Ewert and Lipiński, [9], [8] are
more technical, but continue the investigation of the relationship between the
sets C( f ), E( f ) and A( f ). Too, they tend to assume more specific conditions
on the underlying spaces X and Y . But they are interesting and reveal insight
into several classical theorems. I’ll give you a taste.

Theorem 1.45. Let X be a topological space which is the union of two disjoint
dense subsets, and let Y be a metric space with at least one accumulation
point. Then for each decreasing sequence {Wn : n = 1,2, . . .} of open subsets
of X and each E satisfying the inclusions

C =
∞⋂

n=1

Wn ⊂ E ⊂
∞⋂

n=1

Wn = A

there is a function f : X → Y such that C =C( f ), E = E( f ), and A = A( f ).

The applications presented are using Y =Rwith the usual topology and X =R
with the density topology. In this instance “quasicontinuity” is referred to as
“density-quasicontinuity” etc. They first note the following theorem.

Theorem 1.46. A function f :R→R is measurable if and only if f is density-
cliquish.

Using Theorem 1.45 and the fact that “approximate continuity” is equivalent
to “density-continuity” they give a simple proof of Denjoy’s Theorem.

Denjoy’s Theorem A function is Lebesgue measurable if and only if it is ap-
proximately continuous almost everywhere.
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[46] J. S. Lipiński, On transfinite sequences of mappings, Časopis Pěst. Mat. 101(2)
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[62] W. Wilczyński, Zygmunt Zahorski [1914–1998]—an obituary, Real Anal. Exchange

23(2) (1997/98), 359–361.
[63] Z. Zahorski, Sur la classe de Baire des dérivées approximatives d’une fonction quel-

conque, Ann. Soc. Polon. Math. 21 (1949) 1948, 306–323.
[64] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54.

PAUL HUMKE

Department of Mathematics, St. Olaf College
Northfield, Minnesota 45701
E-mail: humke@stolaf.edu


