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Abstract: Indirect methods of questioning are of utmost importance when dealing with sensitive 
questions. This paper refers to the new indirect method introduced by Tian et al. (2014) and examines 
the optimal allocation of the sample to control and treatment groups. If determining the optimal allo‑
cation is based on the variance formula for the method of moments (difference in means) estimator 
of the sensitive proportion, the solution is quite straightforward and was given in Tian et al. (2014). 
However, maximum likelihood (ML) estimation is known from much better properties, therefore de‑
termining the optimal allocation based on ML estimators has more practical importance. This prob‑
lem is nontrivial because in the Poisson item count technique the study sensitive variable is a latent 
one and is not directly observable. Thus ML estimation is carried out by using the expectation‑max‑
imisation (EM) algorithm and therefore an explicit analytical formula for the variance of the ML esti‑
mator of the sensitive proportion is not obtained. To determine the optimal allocation of the sample 
based on ML estimation, comprehensive Monte Carlo simulations and the EM algorithm have been 
employed. 
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1. Introduction

When dealing with sensitive attributes, indirect methods of questioning play a ma‑
jor role in statistical practice (Imai, 2011; Kuha, Jackson, 2014; Tourangeau, Yan, 
2007; Wolter, Laier, 2014). They are designed to ensure the privacy of respondents 
so that it is impossible to know their answers to sensitive questions, i.e. questions 
about tax evasions, atypical sexual behaviours, bribes, etc. This paper refers to the 
new indirect method introduced by Tian et al. (2014) who propose to randomly as‑
sign each respondent in the sample to either control or treatment groups and apply 
the following procedure. In the control group, respondents are asked one neutral 
question, e.g.: How many times did you go to the cinema last month? Their an‑
swers may take values 0, 1, 2, …. In the treatment group, respondents are asked 
two questions, one being the same as in the control group and the other a sensitive 
one, e.g.: How many times did you go to the cinema last month? Did you buy any 
smuggled alcohol last month? Respondents are asked to assign 1 if their answer 
to the sensitive question is yes and 0 if no. Then they are asked to report only the 
sum of their answers to these two questions without revealing their answers to in‑
dividual questions. 

When designing an indirect survey with control and treatment groups, an im‑
portant question arises how to allocate the sample size into proper groups. The 
optimal allocation based on the variance formula for the moment estimator of the 
sensitive proportion was analysed in Tian et al. (2014), which resulted in the con‑
clusion that a balanced sample is a reasonable choice. In this paper, we analyse the 
optimal allocation of the sample size based on ML estimation. The justification 
for another approach is the fact that the maximum likelihood estimator has much 
better properties and is more desirable from the practical point of view. The opti‑
mal allocation based on ML estimation is at the same time more difficult due to the 
fact that in the proposed technique the study sensitive variable is a latent one and 
is not directly observable. Thus ML estimation has to be carried out by using the 
appropriate numerical algorithm, conventionally the EM algorithm, and an explicit 
variance formula for the ML estimator of the sensitive proportion is not available. 
Therefore, to determine the optimal allocation of the sample based on ML estima‑
tion, comprehensive Monte Carlo simulations have been employed. To facilitate 
the discussion, the presented paper focuses on the Poisson distribution of X. 

In section 2, the mathematical background of the Poisson item count tech‑
nique introduced in Tian et. al (2014) is briefly presented. Section 3 discusses the 
problem of optimal allocation of the sample size to control and treatment groups 
based on ML estimation and provides a detailed description of the numerical ex‑
periment regarding Monte Carlo simulations and technical aspects referring to the 
implementation of EM algorithm. In section 4, results of the comprehensive simu‑
lation study are presented. The article ends with the conclusion in Section 5. 
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2. Poisson item count technique

In this section, for the purpose of further discussion and analysis, we briefly pres‑
ent basic results for the Poisson item count technique (ICT) obtained in Tian 
et. al (2014). Let n1 be the number of elements in the control group, n2 the number 
of elements in the treatment group, and let n1 + n2 = n. In the Poison ICT, we have: 
XPoisson(λ), ZBernoulli(π) where X and Z are independent. In the control group, 
we observe X1, …, Xn1, whereas in the treatment group Y1, …, Yn2, where Yj = Xn1 + j 
+ Zj for j = 1, 2, …, n2. Z is a latent variable and is not directly observable in this 
model. The moments (difference in means) estimator of the unknown sensitive 
proportion π is a common difference in means estimator:

  (1)

with variance:

 . (2)

ML estimators of model parameters π and λ are obtained via the iterative ex‑
pectation‑maximisation (EM) algorithm through classic E and M steps.

E step (iteration t + 1):

 . (3)

M step (iteration t + 1):

  (4)

 . (5)

When the variance formula for the method of moments estimator of the sen‑
sitive proportion is used, the problem of optimal allocation of the sample is quite 
simple and the optimal allocation  can be obtained straightforwardly by min‑
imising formula (2), which was done in Tian et al. (2014):
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 . (6)

Of course, model parameters λ, π are unknown in advance, thus some compro‑
mise over possible various values of λ, π has to be implemented. Tian et. al (2014) 
proposed a balanced sample as a reasonable choice.

Although ML estimation via the EM algorithm (3)–(5) is strongly advocat‑
ed in the work of Tian et al. (2014), no particular analysis for the optimal alloca‑
tion of the sample size based on ML estimation via the EM algorithm is conduct‑
ed in the original paper. This analysis will be provided in the next sections of the 
presented paper.

3. Problem of optimal allocation based on ML 
estimation 

In this section, the problem of optimal allocation based on ML estimation is ex‑
plained and a description of the proposed solution to this problem is presented. 
Having fixed a total sample size n = n1 + n2, one should seek the optimal allocation 
of the sample to treatment and control groups, i.e. such allocation n2 and n1 = n – n2, 
at which the highest efficiency of the estimation is achieved. 

For large sample sizes, it is common for practitioners to prefer a simple method 
of moments estimator given by formula (1), which does not need any iterative nu‑
merical algorithm, as opposite to ML estimator given by iterative formulas (3)–(5). 
For large sample sizes, variances of both estimators will be similar. Thus, deriving 
the optimal allocation based on variance formula (2) for moments estimator (1), 
which was done in Tian et al. (2014), is quite practical for large samples. This, how‑
ever, does not apply to the non‑asymptotic case. Let us keep in mind the fact that 
for moderate sample sizes probability that moments estimator (1) goes beyond in‑
terval [0, 1] is quite high, and additionally the variance of the method of moments 
estimator for the moderate sample size is visibly higher than the variance of ML 
estimator. Therefore, for practitioners, the most interesting question, which has 
not been answered till now, is how to allocate the sample size into treatment and 
control groups for ML estimators in the non‑asymptotic case, i.e. for the moderate 
sample size. Of course, another question arises next: does this optimal allocation 
for ML estimators differ from that for moments estimators? These two questions 
will be answered in the presented paper.

Due to the fact that the ML estimator in the Poisson ICT can be obtained only 
via some iterative algorithm and its variance is not known, we base our analysis 
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on a Monte Carlo simulation study. Let us notice that for the sample size n we have 
n – 1 different possible allocations, assuming non‑empty control and treatment 
groups. In particular: 1st allocation: n2 = 1, n1 = n – 1, 2nd allocation: n2 = 2, n1 = n – 2, 
3rd allocation: n2 = 3, n1 = n – 3,, etc. The last possible allocation is n2 = n – 1, n1 = 1. 
Therefore, the problem of determination of optimal allocation is equivalent to the 
problem of comparison of n – 1 different ML estimators , n2 = 1, 2, …, 
n – 1 based on n element overall sample size with different allocations. Having ob‑
tained the best estimator , i.e. the estimator with the smallest 
MSE, the optimal allocation  is determined straightforwardly.

Due to the fact that we do not know model parameters π, λ in advance, some 
compromise among different π, λ should be made. Let us denote by RMSE the root 
mean square error of the estimator of the sensitive proportion π, and let RMSEopt 
denote its minimum value taken over all estimators based on the same overall 
sample size n with different allocations to control n1 and treatment groups n2, n1 + 
n2 = n. For practitioners, it is of main interest to obtain an allocation under which, 
for all possible model parameters, the absolute maximum acceptable distance ∆ 
from RMSEopt is not exceeded. In a simulation experiment, this can be accom‑
plished by first obtaining, under given π, λ, interval  such 
that if , then |RMSE(n2, λ, π) – RMSEopt(λ, π)| < ∆. The 
final interval can be attained by taking common parts of obtained intervals over 
all considered parameters from the possible set of values π ∈ (0, 1) and λ > 0:

  (7)

The same can be done by determining the relative maximum acceptable dis‑
tance δ. Analogously, first we obtain, under given π, λ, interval  

such that if , then . 

Next common parts are taken of obtained intervals over all considered parameters 
from the possible set of values π ∈ (0, 1) and λ > 0:

  (8)

For the Monte Carlo (MC) simulation experiment associated with the itera‑
tive EM algorithm conducted to determine the optimal allocation, the following 
simulation parameters were assumed: 
1) model parameters: 

λ ∈ {1.5; 2; 2.5}, π ∈ {0.05; 0.10; 0.15; 0.20; 0.25; 0.30; 0.35; 0.40},
2) sample size n = 200,
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3) number of replications in the MC experiment: 35 000–60 000,
4) maximal number of iteration in the EM algorithm: 50 000,
5) accuracy of calculations: 1e–10.

The justification for the model parameters choice is the following. As the 
problem deals with sensitive features only, π is commonly assumed to be less than 
0.5 in the literature (see Imai, 2011; Tian et al., 2014; Kowalczyk, Wieczorkowski, 
2017). To protect respondents’ privacy properly and at the same time to ensure the 
not too high estimation error, Tian et al. (2014) state that a good choice of λ is 2 
(see Tian et al., 2014). In practice, we cannot predict respondents’ answers in ad‑
vance, thus values of λ around 2 are also taken into account in simulations. There‑
fore, in summary, 24 series of simulations are performed for various sets of model 
parameters. In each series, 199 approximations, due to the given tolerance, of ML 
estimators are obtained separately. More precisely, 199 approximations of ML es‑
timators based on overall n = 200 sample size with n2 = 1, 2, …, 199 treatment 
group sizes. All estimators are computed using the presented in section 2 iterative 
formulas for the EM algorithm, introduced in Tian et al. (2014). The following 
stopping criteria are used – reaching the maximum number of iterations (50 000) 
or the lower bound in the change in the value of the model parameters in two con‑
secutive iterations (tolerance = 1e–10). In each case, between 35 000 and 60 000 
replications (Monte Carlo iterations) are used, depending on the stability of the 
computations.

4. Simulation results

The simulation results obtained for all sets of model parameters are consistent. 
They are presented below in three parts. Firstly, some basic comparison between 
the method of moments and maximum likelihood estimators is provided. In the 
second part, a more detailed discussion concerning numerical results for the ML 
estimation is presented. The third part consists of the summary of results for all 
the considered sets of model parameters. 

In all the comparisons given below, results for ML estimators are obtained 
based on the conducted series of comprehensive simulation studies. And results for 
the method of moments estimators are obtained by using formula (2).

To illustrate the evident difference between properties of moments and ML es‑
timators of the sensitive proportion π, the ranking of the estimators based on their 
RMSE(n2; λ, π) was computed and presented graphically. The ranking position 
is on the x‑axis and the size of the corresponding treatment group n2 on the y‑axis. 
The exemplary graph for λ = 2.5 and π = 0.3 is presented in Figure 1. Additional 
graphs are presented in the appendix.
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Figure 1. Relationship between size n2 and the rank of the estimator of the parameter π regarding 
its RMSE for moments (upper) and ML (lower) estimators, λ = 2.5 and π = 0.3. Figures for other sets 

of model parameters λ and π are presented in the appendix
Source: own calculations

Based on the presented graphs, at least two key conclusions should be stat‑
ed. First, the optimum value of n2 computed based on the variance formula for 
the method of moments estimator is visibly lower (the size of the treatment group 
around 100) than the optimum value of n2 computed for the ML estimator (the size 
of the treatment group visibly above 100). Secondly, there is a clear symmetry for 
the moments estimators ranking, in contrast to the ML estimators. It means that 
choosing a too small or too large size of the treatment group when using moments 
estimation is approximately equally bad in terms of the obtained RMSE. Where‑
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as in the case of ML estimators, too small treatment groups are more dangerous 
in terms of efficiency of the estimation as compared to too small control groups 
(specific ends of all graphs for ML estimators). This can be of particular interest 
for surveys with a different unit cost in control and treatment groups. 

Next, apart from the ranking itself, also exact values of the obtained RMSE 
for the two types of estimators of the sensitive proportion are presented. For defi‑
niteness, results for RMSE are illustrated graphically in Figure 2 for one exem‑
plary set of model parameters.

Figure 2. Root mean square error (RMSE) of the MM (dotted line) and ML (solid line) estimators 
of the sensitive proportion π for λ = 2, π = 0.2

Source: own calculations

Let us notice that enormously large values of the RMSE of the estimators 
of the parameter π are obtained in cases of extremally small values of n2 for the 
ML estimator and extremely small values of n2 and n – n2 for the MM estimator. 
What is further important, in the classic graph presented above, it looks like both 
of the lines in Figure 2 are smooth. The magnification of the RMSE line around 
its optimum (the lowest value) for the ML estimators obtained in the simulation 
study is presented in Figure 3.

Results of iterative algorithms are only approximations of the optimal solu‑
tions. Depending on the algorithm, the obtained solution could be only a local, 
not global extremum. Therefore, based on the graph from Figure 3, we cannot 
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give the exact solution. However, given the values on the y‑axis, differences be‑
tween the values of the obtained approximation and the actual solution are ex‑
tremely small and do not have practical importance. All values in the neighbour‑
hood of the solution pointed by the EM algorithm differ in the fourth decimal 
place. From the practical point of view then, it is approximately equally good if we 
choose the size of the treatment group equal to the computed solution or close to it. 
It is also possible to use some smoothing of the results given by the Monte Carlo 
simulations and the EM algorithm. Using different kinds of interpolation meth‑
ods, one may get various results. For example, using the quadratic interpolation, 
which seems to be adequate taking into consideration the presumed monotonic‑
ity of the function (function convex up), we can choose the approximation of the 
solution as the middle node of the interpolation and equidistant two other points. 
An example of such a 32 width interval interpolation performed on the data from 
Figure 3 is presented in Figure 4. In this particular example, the solution given 
by the MC simulations and the EM algorithm was 112, but after interpolation, 
the result changed to 110.

Figure 3. The fragment of the root mean square error of ML estimators for λ = 2 and π = 0.2
Source: own calculations

Monte Carlo simulations results for all the considered sets of model param‑
eters are given in Table 1. For more detailed comparisons, values of optimal siz‑
es computed based on the variance formula for moment estimators as well as the 
results of the quadratic interpolation (based on points in optimum given by MC 
simulations, 16 lower and 16 greater) are also presented. It is clear that the opti‑
mal allocation for ML estimators (before and after interpolation) gives, in general, 
larger sizes of treatment group sizes than the optimal allocation for the moment 
estimators.
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Figure 4. Exemplary quadratic interpolation (dotted line) on the fragment of the root mean square 
error of ML estimators (solid line) for λ = 2 and π = 0.2 based on the results corresponding to the 

treatment group sizes: 96, 112 and 128 (black dots)
Source: own calculations

Table 1. The optimal allocation of the treatment group size n2 for ML estimators based on MC 
simulation results and interpolation (quadratic, 32 width interval) juxtaposed with the optimal 

allocation for moment estimators

λ = 1.5
π 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ML simulation 110 109 114 111 114 112 116 119
quadratic interpolation 105 108 111 114 115 116 119 119
moment estimation 101 101 102 103 103 103 104 104

λ = 2.0
π 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ML simulation 108 108 106 112 111 113 113 122
quadratic interpolation 107 108 108 110 112 114 114 118
moment estimation 101 101 102 102 102 102 103 103

λ = 2.5
π 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ML simulation 110 107 105 114 117 119 112 117
quadratic interpolation 105 105 117 115 115 113 115 116
moment estimation 100 101 101 102 102 102 102 102

Source: own calculations

The optimal allocation intervals obtained according to formulas (7) and (8) are 
calculated for both considered classes of estimators. Results are given in Table 2. 
It needs to be emphasised that intervals obtained based on the variance formula 
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for the method of moments estimators have in general smaller values than those 
obtained for maximum likelihood estimators. For the smallest value of absolute 
tolerance ∆ = 0.001, calculated intervals for different types of estimators are dis‑
joint events. Additionally, for small values of tolerance, the balanced sample with 
n2 = 100 is not even within the obtained range for ML estimators. The resulting 
conclusion for practitioners is that it is better to allocate a slightly larger part of the 
sample to the treatment group, and not to use the perfectly balanced sample, as far 
as maximum likelihood estimation is taken into account. 

Table 2. The optimal allocation of the treatment group size n2 with respect to the given absolute ∆ 
and percentage δ tolerance over possible sets of model parameters

Tolerance
∆

Moment estimation ML estimation ML estimation after 
interpolation

0.001 [94, 109] [110, 115] [108, 115]
0.0025 [88, 115] [103, 123] [102, 121]
0.005 [81, 121] [93, 131] [102, 122]
0.01 [72, 129] [83, 142] [102, 122]

Tolerance
δ

Moment estimation ML estimation ML estimation
after interpolation

1% [90, 114] [107, 119] [106, 118]
2.5% [82, 122] [98, 128] [102, 122]

5% [73, 130] [87, 138] [102, 122]
10% [62, 142] [72, 150] [102, 122]

Source: own calculations

5. Conclusions

For a moderate sample size, the optimal allocation of the sample in the Poison item 
count technique based on the minimisation of the variance formula for the method 
of moments estimator differs quite visibly from the optimal allocation obtained for 
the ML estimator. The balanced sample proposed in Tian et al. (2014) is not the 
best choice in terms of maximum likelihood estimation. As far as the ML estima‑
tor is concerned, it is better to allocate a slightly larger part of the sample to the 
treatment group. In the future research, it is reasonable to develop an asymptotic 
theoretical optimal allocation for ML estimators and analyse the rate of conver‑
gence to the asymptotic result. 

http://www.czasopisma.uni.lodz.pl/foe/


46 Michał Bernardelli, Barbara Kowalczyk

FOE 3(335) 2018 www.czasopisma.uni.lodz.pl/foe/

References

Imai K. (2011), Multivariate regression analysis for the item count technique, “Journal of the Amer‑
ican Statistical Association”, vol. 106, no. 494, pp. 407–416. 

Kowalczyk B., Wieczorkowski R. (2017), Comparing proportions of sensitive items in two popula‑
tions when using Poisson and negative binomial item count techniques, “Quantitative Meth‑
ods in Economics”, vol. 18, no. 1, pp. 68–77.

Kuha J., Jackson J. (2014), The item count method for sensitive survey questions: modeling crimi‑
nal behavior, “Journal of the Royal Statistical Society: Series C”, vol. 63, no. 2, pp. 321–341.

Tian G‑L., Tang M‑L., Wu Q., Liu Y. (2014), Poisson and negative binomial item count techniques 
for surveys with sensitive question, “Statistical Methods in Medical Research”, Pre‑published 
online on December 16, 2014, http://dx.doi.org/10.1177/0962280214563345.

Tourangeau R., Yan T. (2007), Sensitive questions in surveys, “Psychological Bulletin”, vol. 133, 
no. 5, pp. 859–883.

Wolter F., Laier B. (2014), The Effectiveness of the Item Count Technique in Eliciting Valid Answers 
to Sensitive Questions. An Evaluation in the Context of Self‑Reported Delinquency, “Survey 
Research Methods”, vol. 8, no. 3, pp. 153–168.

Appendix

Relationship between size n2 and rank of the estimator regarding its RMSE for the 
MM (left) and ML (right) estimators for different sets of model parameters.

http://www.czasopisma.uni.lodz.pl/foe/
http://dx.doi.org/10.1177/0962280214563345


Optimal Allocation of the Sample in the Poisson Item Count Technique  47

www.czasopisma.uni.lodz.pl/foe/ FOE 3(335) 2018

Optymalna alokacja próby w badaniu cechy drażliwej

Streszczenie: Pośrednie metody ankietowania stanowią podstawowe narzędzie stosowane w przy‑
padku pytań drażliwych. Artykuł nawiązuje do nowej, pośredniej metody zaproponowanej w pracy 
Tiana i wsp. (2014) i dotyczy optymalnej alokacji próby między grupę badaną i kontrolną. W przypad‑
ku gdy alokacji dokonuje się w oparciu o estymatory metodą momentów, rozwiązanie optymalne 
nie nastręcza trudności i zostało podane w pracy Tiana i wsp. (2014). Jednak to estymacja metodą 
największej wiarogodności ma lepsze własności, w związku z czym wyznaczenie alokacji optymalnej 
na jej podstawie jest zadaniem, którego rozwiązanie wydaje się mieć większe znaczenie praktyczne. 
Zadanie to nie jest trywialne, gdyż w przypadku omawianej metody pośredniej drażliwa zmienna 
badana ma charakter ukryty i jest zmienną nieobserwowalną. Wzór explicite na wariancję estyma‑
tora największej wiarogodności nieznanej frakcji cechy drażliwej nie jest dostępny, a sam estymator 
wyznaczyć można, używając odpowiednich algorytmów numerycznych. Do określenia optymalnej 
alokacji próby w oparciu o estymatory NW wykorzystane zostały symulacje Monte Carlo oraz itera‑
cyjny algorytm EM. 

Słowa kluczowe: alokacja optymalna, zmienna ukryta, algorytm EM, cecha drażliwa, pytania po‑
średnie, eksperyment z listą
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