Chapter 5 On equivalence of topological and restrictional continuity

KATARZYNA FLAK AND JACEK HEJDUK

2010 Mathematics Subject Classification: 54A05, 28A05.

Key words and phrases: lower density operator, topological continuity, restrictional continuity.

5.1 Introduction

Let \mathbb{R} denote the set of reals and \mathbb{N} the set of positive integers. By τ_0 we shall denote the natural topology on \mathbb{R} . Let $\mathscr{B}(\tau)$, $\mathbb{K}(\tau)$, $\mathscr{B}a(\tau)$ denote the family of all Borel sets, meager sets and sets having the Baire property in a topological space (\mathbb{R}, τ) , respectively. A τ -open set $A \subset \mathbb{R}$ is τ -regular if $A = int_{\tau}cl_{\tau}A$, where int_{τ} and cl_{τ} mean the interior and closure with respect to the topology τ . If $\tau = \tau_0$ then we shall use the notation \mathscr{B} , \mathbb{K} and $\mathscr{B}a$, respectively. The symmetric difference of sets A, B is denoted by $A \bigtriangleup B$.

Let $\Phi: \tau_0 \to 2^{\mathbb{R}}$ be an operator satisfying the following conditions:

$$\begin{array}{ll} (i) & \boldsymbol{\Phi}(\boldsymbol{\emptyset}) = \boldsymbol{\emptyset}, \quad \boldsymbol{\Phi}(\mathbb{R}) = \mathbb{R}, \\ (ii) & \forall & \forall & \boldsymbol{\Phi}(A \cap B) = \boldsymbol{\Phi}(A) \cap \boldsymbol{\Phi}(B), \\ (iii) & \forall & A \subset \boldsymbol{\Phi}(A). \\ \end{array}$$

Let Φ stand for the family for all operators satisfying conditions (i) - (iii).

Remark 5.1. If $\Phi \in \Phi$ then $\Phi(A) \subset cl_{\tau_0}A$ for every $A \in \tau_0$.

It is well known that every set $A \in \mathscr{B}a$ has the unique representation

$$A = G(A) \bigtriangleup B$$

where G(A) is a regular open set and $B \in \mathbb{K}$ (cf. [4]). In particular, if $V \in \tau_0$ then $V = W \setminus P$ where W is regular open and P is a nowhere dense closed set (see [5]).

Let $\Phi \in \Phi$ and $\Phi_r \colon \mathscr{B}a \to 2^{\mathbb{R}}$ be defined by formula

$$\forall_{A \in \mathscr{B}a} \Phi_r(A) = \Phi(G(A)).$$

The following theorems are a special case of similar theorems in [1] concerning arbitrary topological Baire spaces.

Theorem 5.1. For every $\Phi \in \Phi$, the operator Φ_r is a lower density operator on $(\mathbb{R}, \mathscr{B}a, \mathbb{K})$. This means that the following conditions are satisfied:

$$1^{\circ} \Phi_{r}(\boldsymbol{\emptyset}) = \boldsymbol{\emptyset}, \ \Phi_{r}(\mathbb{R}) = \mathbb{R}, \\ 2^{\circ} \quad \forall \quad \forall \quad \Phi_{r}(A \cap B) = \Phi_{r}(A) \cap \Phi_{r}(B), \\ 3^{\circ} \quad \forall \quad \forall \quad A \land B \in \mathbb{K} \Rightarrow \Phi_{r}(A) = \Phi_{r}(B), \\ 4^{\circ} \quad \forall \quad A \land \Delta \phi_{r}(A) \in \mathbb{K}. \end{cases}$$

Theorem 5.2. For every operator $\Phi \in \Phi$, the family $\mathscr{T}_{\Phi_r} = \{A \in \mathscr{B}a : A \subset \Phi_r(A)\}$ is a topology on \mathbb{R} strictly stronger than τ_0 .

Proof. Since the pair ($\mathscr{B}a, \mathbb{K}$) has the hull property, what means that every family of pairwise disjont sets having the Baire property but not meager is at most countable, and Φ_r is a lower density operator on $(\mathbb{R}, \mathscr{B}a, \mathbb{K})$, we infer that the family $\mathscr{T}_{\Phi_r} = \{A \in \mathscr{B}a; A \subset \Phi_r(A)\}$ is a topology on \mathbb{R} , called an abstract density topology on $(\mathbb{R}, \mathscr{B}a, \mathbb{K})$ (see [4], p. 208 and p. 213). If $V \in \tau_0$ then by Remark 5.1, $V = W \setminus P$ where W is a regular open set and $P \in \mathbb{K}$. Hence G(A) = W and $\Phi_r(V) = \Phi(W) \supset W \supset V$. Therefore $V \in \mathscr{T}_{\Phi_r}$. Evidently, the set of irrational numbers is a member of $\mathscr{T}_{\Phi_r} \setminus \tau_0$, so the proof is complete. \Box

The next theorem lists properties of the topological space $(\mathbb{R}, \mathscr{T}_{\Phi_r})$. For the proofs and some related comments see Theorem 4 in [1].

Theorem 5.3. Let $\Phi \in \Phi$. Then the topological space $(\mathbb{R}, \mathscr{T}_{\Phi_r})$ has the following properties:

a) $A \in \mathbb{K}$ *iff* A *is* \mathscr{T}_{Φ_r} *-nowhere dense and closed, b*) $\mathbb{K}(\mathscr{T}_{\Phi_r}) = \mathbb{K}$ *,*

- c) $\mathscr{B}a(\mathscr{T}_{\Phi_r}) = \mathscr{B}(\mathscr{T}_{\Phi_r}) = \mathscr{B}a$,
- d) $(\mathbb{R}, \mathscr{T}_{\Phi_r})$ is the Baire space,
- *e*) $A \subset X$ is compact iff A is finite,
- f) $(\mathbb{R}, \mathscr{T}_{\Phi_r})$ is neither separable, nor first countable or second countable,
- g) $(\mathbb{R}, \mathscr{T}_{\Phi_r})$ is not a Lindelöf space,
- h) if $A \subset \mathbb{R}$ then $\operatorname{Int}_{\Phi_r}(A) = A \cap \Phi_r(B)$, where $B \in \mathscr{B}a$ is a kernel of A.

Some examples of operators belonging to Φ have already been considered in the literature.

Example 5.1. Let $\Phi = \Phi_d$, where Φ_d denotes the density operator on the family of Lebesgue measurable sets in \mathbb{R} . Then $\Phi \in \Phi$; the topology $\mathcal{T}_{\Phi_r} = \{A \in \mathcal{B}a : A \subset \Phi_r(A)\}$ was intensively investigated in [11] and some generalization of this approach is presented in [10].

Example 5.2. Let $\Phi = \Phi_{\Psi}$, where Φ_{Ψ} denote the Ψ -density operator on the family of Lebesgue measurable sets in \mathbb{R} (see [11]). Then $\Phi \in \Phi$; the topology $\mathscr{T}_{\Phi_r} = \{A \in \mathscr{B}a \colon A \subset \Phi_{\Psi}(A)\}$ was investigated in [8].

Example 5.3. Let $\Phi(A) = A$ for every $A \in \tau_0$. Then $\Phi \in \Phi$ and $\mathscr{T}_{\Phi_r} = \{B \subset \mathbb{R} : B = C \setminus D, C \in \tau_0, D \in \mathbb{K}\}$, (see in [1] and [3]).

Example 5.4. Let $\Phi = \Phi_{\mathscr{I}}$, where $\Phi_{\mathscr{I}}$ denote the \mathscr{I} -density operator on the family $\mathscr{B}a$ in \mathbb{R} (see [5]). Then $\Phi \in \Phi$ and for every set $A \in \mathscr{B}a$, $\Phi_r(A) = \Phi(G(A)) = \Phi(A)$. This implies that $\mathscr{T}_{\Phi_r} = \mathscr{T}_{\mathscr{I}}$, where $\mathscr{T}_{\mathscr{I}}$ is the \mathscr{I} -density topology (see [6]).

5.2 The main results

In the following part we shall focus on two kinds of continuity: topological and restrictional. Let $\Phi \in \Phi$.

Definition 5.1. A function $f : \mathbb{R} \to \mathbb{R}$ is \mathscr{T}_{Φ_r} -topologically continuous at $x_0 \in \mathbb{R}$ if

$$\bigvee_{\varepsilon > 0} \exists_{A \in \mathscr{T}_{\Phi_r}} (x_0 \in A \land A \subset \{x \colon |f(x) - f(x_0)| < \varepsilon\}).$$

Obviously, a function $f: X \to \mathbb{R}$ is \mathscr{T}_{Φ_r} -topologically continuous at every point $x \in X$ if and only if it is continuous as a transformation from the topological space $(X, \mathscr{T}_{\Phi_r})$ to (\mathbb{R}, τ_0) .

Definition 5.2. We shall say that a function $f \colon \mathbb{R} \to \mathbb{R}$ is \mathscr{T}_{Φ_r} -restrictionally continuous at $x_0 \in \mathbb{R}$ if there exists a set $E \in \mathscr{B}a$ such that $x_0 \in \Phi_r(E)$ and $f|_E$ is τ_0 -continuous at x_0 .

Property 5.1. (cf. [1]) Let $\Phi \in \Phi$. If $f : \mathbb{R} \to \mathbb{R}$ is \mathscr{T}_{Φ_r} -restrictionally continuous at $x_0 \in \mathbb{R}$ then f is \mathscr{T}_{Φ_r} -topologically continuous at x_0 .

Proof. Assume that f is \mathscr{T}_{Φ_r} -restrictionally continuous at $x_0 \in \mathbb{R}$. Then there exists a set $E \in \mathscr{B}a$ such that $x_0 \in \Phi_r(E)$ and $f|_E$ is τ_0 - continuous at x_0 . Thus, for every $\varepsilon > 0$ there exist $V \in \tau_0$ such that $x_0 \in V$ and $E \cap V \subset \{x \in \mathbb{R} : |f(x) - f(x_0)| < \varepsilon\}$. Then $x_0 \in A = E \cap \Phi_r(E) \cap V \in \mathscr{T}_{\Phi_r}$ and $A \subset \{x \in \mathbb{R} : |f(x) - f(x_0)| < \varepsilon\}$. This means that f is \mathscr{T}_{Φ_r} -topologically continuous at x_0 .

The converse is not true. Namely, if $\Phi = \Phi_{\mathscr{I}}$ then $\mathscr{T}_{\Phi_r} = \mathscr{T}_{\mathscr{I}}$, and it was proved in [6] that $\mathscr{T}_{\mathscr{I}}$ -topological continuity and $\mathscr{T}_{\mathscr{I}}$ -restrictional continuity are not equivalent. It is also worth mentioning that the topologies in papers [12] and [9] are such that topological and restrictional continuity are not equivalent. However, if $\Phi = \Phi_d$ or $\Phi = \Phi_{\Psi}$, the paper [8] contains the proof of equivalence of both kinds of continuity.

By Corollary 3 in [1] we obtain the following theorem giving equivalence of topological and restrictional continuity on residual sets.

Theorem 5.4. Let $\Phi \in \Phi$ and $f : \mathbb{R} \to \mathbb{R}$. If $C_1(f)$ and $C_2(f)$ are the sets of \mathcal{T}_{Φ_r} -topological continuity and \mathcal{T}_{Φ_r} - restrictional continuity respectively, then $C_1(f)$ is residual if and only if $C_2(f)$ is residual with respect to topology τ_0 .

Now, we characterize the equivalence of topological and restrictional continuity in terms of the \mathscr{T}_{Φ_r} -topology for every $\Phi \in \Phi$.

Theorem 5.5. Let $f : \mathbb{R} \to \mathbb{R}$, $\Phi \in \Phi$ and $x_0 \in \mathbb{R}$. The following conditions are *equivalent:*

- (a) f is \mathcal{T}_{Φ_r} -topologically continuous at x_0 if and only if f is \mathcal{T}_{Φ_r} -restrictionally continuous at x_0 ;
- (b) for every decreasing sequence $\{E_n\}_{n\in\mathbb{N}}\subset \mathcal{B}a$ such that $x_0\in\bigcap_{n=1}^{\infty}\Phi_r(E_n)$ there exists a sequence $\{r_n\}_{n\in\mathbb{N}}\subset\mathbb{R}_+$ with $r_n\searrow 0$ such that $x_0\in\Phi_r(\bigcup_{n=1}^{\infty}E_n\cap(\mathbb{R}\setminus(x_0-r_n,x_0+r_n)));$
- (c) for every decreasing sequence $\{E_n\}_{n\in\mathbb{N}} \subset \tau_0$ such that $x_0 \in \bigcap_{n=1}^{\infty} \Phi_r(E_n)$ there exists a sequence $\{r_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ with $r_n \searrow 0$ such that $x_0 \in \Phi_r(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus (x_0 - r_n, x_0 + r_n))));$

(d) for every decreasing sequence $\{E_n\}_{n\in\mathbb{N}}$ of τ_0 -regular open sets such that $x_0 \in \bigcap_{n=1}^{\infty} \Phi_r(E_n)$ there exists a sequence $\{r_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ with $r_n \searrow 0$ such that $x_0 \in \Phi_r(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus (x_0 - r_n, x_0 + r_n)))).$

Proof. By Theorem 4 in [2] (see also Theorem 3.1 in [7]) conditions (a) and (b) are equivalent. Obviously, $(b) \Rightarrow (c) \Rightarrow (d)$. We shall prove $(d) \Rightarrow (b)$.

Let $\{E_n\}_{n\in\mathbb{N}}\subset \mathscr{B}a$ be a decreasing sequence such that $x_0\in\bigcap_{n=1}^{\infty}\Phi_r(E_n)$. Then $\{G(E_n)\}_{n\in\mathbb{N}}$ is a decreasing sequence of regular open sets such that $\Phi_r(E_n) = \Phi_r(G(E_n))$ for all $n\in\mathbb{N}$, and $x_0\in\bigcap_{n=1}^{\infty}\Phi_r(G(E_n))$. Then there exists a sequence $\{r_n\}_{n\in\mathbb{N}}\subset\mathbb{R}_+$ with $r_n\searrow 0$ such that $x_0\in\Phi_r(\bigcup_{n=1}^{\infty}(G(E_n)\cap(\mathbb{R}\setminus(x_0-r_n,x_0+r_n)))))=\Phi_r(\bigcup_{n=1}^{\infty}(E_n\cap(\mathbb{R}\setminus(x_0-r_n,x_0+r_n))))$.

Property 5.2. If $\Phi(A) = A$ for every $A \in \tau_0$, then $\Phi \in \Phi$ and for every function $f : \mathbb{R} \to \mathbb{R}$, \mathscr{T}_{Φ_r} -topological continuity and \mathscr{T}_{Φ_r} -restrictional continuity are equivalent.

Proof. Evidently $\Phi \in \Phi$. It is sufficient to prove condition (a) of Theorem 5. Let $\{E_n\}_{n\in\mathbb{N}}$ be a decreasing sequence of τ_0 -regular open sets such that $x_0 \in \bigcap_{n=1}^{\infty} \Phi_r(E_n)$ for every $n \in \mathbb{N}$. Since $\Phi_r(E_n) = \Phi(G(E_n)) = \Phi(E_n) = E_n$ for every $n \in \mathbb{N}$, we have that $x_0 \in \bigcap_{n=1}^{\infty} E_n$. Let $\{c_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ be a sequence with $c_n \searrow 0$ and $(x_0 - c_n, x_0 + c_n) \subset E_n$ for every $n \in \mathbb{N}$. Putting $r_n = c_{n+1}$ for every $n \in \mathbb{N}$ we have that $(x_0 - c_1, x_0 + c_1) \setminus \{x_0\} \subset \bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus (x_0 - r_n, x_0 + r_n))))$. Hence $x_0 \in G(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus (x_0 - r_n, x_0 + r_n))) = \Phi_r(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus (x_0 - r_n, x_0 + r_n))))$.

Theorem 5.6. Let $f : \mathbb{R} \to \mathbb{R}$, $\Phi \in \Phi$ and $x_0 \in \mathbb{R}$. If for every decreasing sequence $\{E_n\}_{n \in \mathbb{N}}$ of τ_0 -regular open sets such that $x_0 \in \bigcap_{n=1}^{\infty} \Phi(E_n)$ there exists a sequence $\{r_n\}_{n \in \mathbb{N}} \subset \mathbb{R}_+$ with $r_n \searrow 0$ such that $x_0 \in \Phi(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n])))$ then \mathcal{T}_{Φ_r} -topological continuity and \mathcal{T}_{Φ_r} -restrictional continuity of the function f at x_0 are equivalent.

Proof. It is sufficient to prove condition (b) of Theorem 5. Let $\{E_n\}_{n\in\mathbb{N}} \subset \mathscr{B}a$ be a decreasing sequence such that $x_0 \in \bigcap_{n=1}^{\infty} \Phi_r(E_n)$. Then $\{G(E_n)\}_{n\in\mathbb{N}}$ is a decreasing sequence of regular open sets such that $x_0 \in \bigcap_{n=1}^{\infty} \Phi(G(E_n))$. Hence there exists a sequence $\{r_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ with $r_n \searrow 0$ such that

 $x_0 \in \boldsymbol{\Phi}(\bigcup_{n=1}^{\infty} (G(E_n) \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n]))).$

For every $n \in \mathbb{N}$ we get

$$G(E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n])) = G(E_n) \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n])$$

$$\subset G(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n]))).$$

Hence

$$\Phi\left(\bigcup_{n=1}^{\infty}\left(G(E_n)\cap\left(\mathbb{R}\setminus[x_0-r_n,x_0+r_n]\right)\right)\right)\subset$$

$$\Phi\left(G\left(\bigcup_{n=1}^{\infty}\left(E_{n}\cap\left(\mathbb{R}\setminus\left[x_{0}-r_{n},x_{0}+r_{n}\right]\right)\right)\right)\right)$$

and

$$\begin{aligned} x_0 &\in \Phi(G(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n])))) \\ &= \Phi_r(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n]))) \\ &= \Phi_r(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus (x_0 - r_n, x_0 + r_n)))). \end{aligned}$$

The converse of Theorem 5.6 is not true. Let $\Phi(A) = A$ for every $A \in \tau_0$ and let $x_0 \in \mathbb{R}$. Putting $E_n = (x_0 - \varepsilon_n, x_0 + \varepsilon_n)$, where $\{\varepsilon_n\}_{n \in \mathbb{N}} \subset \mathbb{R}_+$ is a sequence tending to 0, we have $x_0 \in \bigcap_{n=1}^{\infty} \Phi(E_n)$. At the same time for every sequence $\{r_n\}_{n \in \mathbb{N}} \subset \mathbb{R}_+$ with $r_n \searrow 0$ we get that

$$x_0 \notin \Phi(\bigcup_{n=1}^{\infty} ((E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n])))).$$

On the other hand, by Property 2, \mathcal{T}_{Φ_r} -restrictional continuity and \mathcal{T}_{Φ_r} -topological continuity are equivalent. The following theorem establishes the equivalence in Theorem 5.6 under additional assumption.

Theorem 5.7. Let $\Phi \in \Phi$ be an operator such that $\Phi(A) = \Phi(B)$ for every $A, B \in \tau_0$ whenever $A \bigtriangleup B$ is countable. Then for an arbitrary function $f \colon \mathbb{R} \to \mathbb{R}$ and $x_0 \in \mathbb{R}$, \mathscr{T}_{Φ_r} -topological continuity and \mathscr{T}_{Φ_r} -restrictional continuity of f at x_0 are equivalent if and only if for every decreasing sequence $\{E_n\}_{n\in\mathbb{N}}$ of τ_0 -regular open sets such that $x_0 \in \bigcap_{n=1}^{\infty} \Phi(E_n)$ there exists a sequence $\{r_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ with $r_n \searrow 0$ such that $x_0 \in \Phi(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n])).$

Proof. Sufficiency is a consequence of the previous theorem.

Necessity. Let us suppose that there exists a decreasing sequence $\{E_n\}_{n\in\mathbb{N}}$ of regular open sets such that $x_0 \in \bigcap_{n=1}^{\infty} \Phi(E_n)$ and for every sequence $\{r_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ with $r_n \searrow 0$, we have

$$x_0 \notin \Phi(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n]))).$$

Let

$$f(x) = \begin{cases} 2 & \text{for } x \notin E_1 \text{ and } x \neq x_0, \\ 1/n & \text{for } x \in E_n \setminus E_{n+1} \text{ and } x \neq x_0, \\ 0 & \text{for } x \in \bigcap_{n=1}^{\infty} E_n \text{ or } x = x_0. \end{cases}$$

Then

$$\underset{n \in \mathbb{N}}{\forall} E_n \subset \{ x \in \mathbb{R} \colon |f(x) - f(x_0)| \le 1/n \}$$

and $x_0 \in \Phi(E_n) = \Phi_r(E_n)$. Thus f is \mathscr{T}_{Φ_r} -topologically continuous at x_0 . Let us suppose that f is \mathscr{T}_{Φ_r} -restrictionally continuous at x_0 . Then there exists a set $E \in \mathscr{B}a$ such that $x_0 \in \Phi_r(E)$ and $f|_E$ is τ_0 -continuous at x_0 . Hence for every $n \in \mathbb{N}$ there exists $r_n > 0$ such that

 $E \cap (x_0 - r_n, x_0 + r_n) \subset \{x \in \mathbb{R} \colon |f(x) - f(x_0)| \le 1/n\}.$ We can assume that $r_n \searrow 0$. Then for every $n \in \mathbb{N}$,

5. On equivalence of topological and restrictional continuity

$$E \cap (\mathbb{R} \setminus [x_0 - r_{n+1}, x_0 + r_{n+1}]) \cap (x_0 - r_n, x_0 + r_n) \\ \subset E_{n+1} \cap (\mathbb{R} \setminus [x_0 - r_{n+1}, x_0 + r_{n+1}]).$$

Hence

$$G(E) \cap (\mathbb{R} \setminus [x_0 - r_{n+1}, x_0 + r_{n+1}]) \cap (x_0 - r_n, x_0 + r_n) \\ \subset G(E_{n+1}) \cap ((\mathbb{R} \setminus [x_0 - r_{n+1}, x_0 + r_{n+1}])).$$

This implies that

$$G(E) \cap \bigcup_{n=1}^{\infty} ((\mathbb{R} \setminus [x_0 - r_{n+1}, x_0 + r_{n+1}]) \cap (x_0 - r_n, x_0 + r_n))$$

$$\subset \bigcup_{n=1}^{\infty} (E_{n+1} \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n]))$$

$$\subset \bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n])).$$

Then

$$\Phi(G(E)) \cap \Phi(\bigcup_{n=1}^{\infty} ((\mathbb{R} \setminus [x_0 - r_{n+1}, x_0 + r_{n+1}]) \cap (x_0 - r_n, x_0 + r_n))))$$

$$\subset \Phi(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n]))).$$

Since

$$\Phi\left(\bigcup_{n=1}^{\infty} ((\mathbb{R} \setminus [x_0 - r_{n+1}, x_0 + r_{n+1}]) \cap (x_0 - r_n, x_0 + r_n))\right) = \\
\Phi\left((x_0 - r_1, x_0 + r_1) \setminus (\bigcup_{n=1}^{\infty} \{r_n\} \cup \{x_0\})\right) = \Phi(x_0 - r_1, x_0 + r_1) \\
\supset (x_0 - r_1, x_0 + r_1)$$

and $x_0 \in \Phi_r(E) = \Phi(G(E))$. The contradiction that $x_0 \in \Phi(\bigcup_{n=1}^{\infty} (E_n \cap (\mathbb{R} \setminus [x_0 - r_n, x_0 + r_n])))$

ends the proof.

References

- J. Hejduk, On topologies in the family of sets having the Baire property, Georgian Math. J. 22(2) (2015), 243-250.
- [2] J. Jędrzejewski, On limit numbers of real functions, Fund. Math. 83 (1974), 269-281.
- [3] R. Johnson, E. Łazarow, W. Wilczyński, *Topologies related to sets having the Baire property*, Demonstratio Math. 22(1) (1989), 179-191.
- [4] J. Lukeš, J. Malý, L. Zajiček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1189, Springer–Verlag, Berlin, 1986.
- [5] J. C. Oxtoby, Measure and category, Springer-Verlag, Berlin, 1987.
- [6] W. Wilczyński, A category analogue of the density approximate continuity and approximate derivative, Real Analysis Exchange 10 (1984/85), 241-265.
- [7] W. Wilczyński, *Density topologies*, Chapter 15 in Handbook of Measure Theory, Ed. E. Pap. Elsevier, 2002, 675-702.

- [8] W. Wilczyński, W. Wojdowski, A category Ψ-density topology, Cent. Eur. J. Math. 9(5) (2011), 1057-1066.
- [9] W. Wojdowski, *A category analogue of the generalization of Lebesgue density topology*, Tatra Mt. Math. Publ. **42** (2009), 11-25.
- [10] W. Wojdowski, A generalization of the c-density topology, Tatra Mt. Math. Publ. 62 (2015), 67-87.
- [11] W. Wojdowski, *Density topologies involving measure and category*, Demonstratio Math. 22 (1989), 797-812.
- [12] W. Wojdowski, On a generalization of the density topology on the real line, Real Anal. Exchange **33** (2007/2008), 201-216.

KATARZYNA FLAK

Faculty of Mathematics and Computer Science, University of Łódź

Banacha 22, PL-90-238 Łódź, Poland

E-mail: flakk@math.uni.lodz.pl

JACEK HEJDUK

Faculty of Mathematics and Computer Science, University of Łódź

Banacha 22, PL-90-238 Łódź, Poland

E-mail: hejduk@math.uni.lodz.pl