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3.1 Introduction

For the theory of linear systems and circuits, investigated in telecommunica-
tions, electronics and signal processing [10, 12], the Dirac delta impulse δ is
a natural and useful object but no function in the classical sense corresponds
to it. The notion can be mathematically justified on the base of the theory of
distributions created by L. Schwartz [21] and appears to be very fruitful in var-
ious fields of applications and in mathematics itself. In particular, the signal
δ = δ (t), meant as a distribution (generalized function) of time t on the real
line R, allows one to determine in some cases the input-output characteristics
of a non-autonomous linear system as well as its impulse response in the theory
of systems and circuits.

We present here our attempt to deliver a strict mathematical basis for some
aspects of the theory of linear and nonlinear systems and circuits extending
the domain of objects in use from functions to distributions to embrace δ , in
particular. The presented work was inspired by the talk [5] delivered by the first
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author during the conference on generalized functions in Bȩdlewo in 2007. We
recall the results of the present authors given in [4] and in [16], extending
them in section 7 by one of the results of the third author which are going to
be published separately (see [4]).

The basic notation and the definition of the convolution of kth order, the
notion crucial for our considerations, are given in section 2.

In section 3, the two types of linear circuits are discussed: circuits with de-
caying memory and memoryless ones. We describe them in terms of linear
operators defined for functions and extended suitably for distributions. This
extension allows one to represent both types of circuits as convolution opera-
tors determined by the impulse response distributions.

In section 4, we extend the theory to the nonlinear Volterra systems de-
scribed by Volterra and Taylor series and discuss conditions under which the
corresponding nonlinear operators are well defined on certain spaces of func-
tions. A possibility of defining these nonlinear operators for the Dirac delta
impulse, desirable for applications but not attainable in the standard sense of
operations on distributions, was posed as a problem in [5].

Two aspects of the problem, concerning the product of k distributions (in
particular, the kth power of the Dirac delta) and the convolution of kth order
of distributions (in particular, the kth convolution of the Dirac delta) are dis-
cussed and solved in sections 6 and 7 by means of the notion of neutrix. A
general concept of neitrix was introduced by J. G. van der Corput in [7] and
then it was adapted in a particular form to the product and the convolution of
distributions by B. Fisher and his co-authors in numerous papers, but their ap-
proach contains certain mathematical incoherences (see Remarks 3.4 and 3.5).

Therefore we discuss in section 5 some aspects of the theory more carefully
and remove its drawbacks due to certain essential modifications and general-
izations. In particular, we replace Fisher’s neutrix of sequences by the corre-
sponding neutrix of nets. In our opinion, this is a good example of the situation
where nets appear to be a more adequate tool in the theory of the product of
generalized functions (see also [6, 20]).

In section 6, we present a solution to the first part of the problem, concerning
the product of distributions. Following the ideas of E. L. Koh and C. K. Li in
[17], we show how to define the kth power of the Dirac delta distribution and,
more generally, the product of k distributions, in the sense of the notion of
neutrix suitably modified in section 5. We prove the result of Koh and Li for
a certain net neutrix.
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Theorem 3.2 given in section 7 is an answer to the second part of the prob-
lem, concerning the kth convolution of distributions, also in the sense of net
neutrix discussed in section 5. A complete proof of Theorem 3.2 and other
aspects of the theory are discussed in [22].

3.2 Basic definitions and notation

The symbols N, N0 and R denote the sets of all positive integers, all non-
negative integers and all real numbers, respectively. For given j ∈ N the sym-
bols N j

0 and R j denote the Cartesian products of j copies of the sets N0 and
R, respectively; in particular, the symbol R jk for j,k ∈ N means the Carte-
sian product of k copies of R j. The expressions: measurable functions, almost
everywhere, almost all are meant in the sense of Lebesgue.

We will start with considering certain convolution operators on the spaces
L1(R j) and L1(R jk) of integrable functions on R j and R jk as well as on the
spaces L∞(R j) and L∞(R jk) of essentially bounded functions on R j and R jk,
respectively, but later we will extend our considerations for spaces D ′ of dis-
tributions and S ′ of tempered distributions defined on the Euclidean space of
a suitable dimension.

Let us recall that the space D ′ = D ′(R j) of distributions on R j is the strong
dual of the space D =D(R j) of test functions on R j, i.e. smooth (infinitely dif-
ferentiable) functions of compact support, endowed with the respective induc-
tive limit topology, while the space S ′ = S ′(R j) of tempered distributions,
a subspace of D ′ = D ′(R j), is the dual of the space S = S (R j) of smooth
functions rapidly decreasing together with all derivatives at infinity, endowed
with the respective metric topology (see [21]; see also [1] and [13]).

The space D ′ of distributions contains regular distributions corresponding
to locally integrable functions and, in particular, to members of the spaces L1

and L∞. Important examples of (tempered) distributions on R j (which are not
represented by usual functions) are the Dirac delta, that we denote by δ or by
δ( j) to mark the dimension of R j, defined as follows:

< δ ,ϕ >=< δ( j),ϕ >:= ϕ(0), ϕ ∈D(R j) (ϕ ∈S (R j)) (3.1)

as well as its distributional derivatives δ (l) = δ
(l)
( j) defined by

< δ
(l),ϕ >:= (−1)l

ϕ
(l)(0), ϕ ∈D(R j) (ϕ ∈S (R j))
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for arbitrary l ∈ N j
0, according to the standard multidimensional notation.

The following modification of the convolution of functions plays an impor-
tant role in further considerations concerning nonlinear circuits.

Definition 3.1. Let j,k ∈N. Assume that f : R j→R and h : R jk→R are mea-
surable functions. By the convolution of kth order or shortly the kth convolu-

tion of the functions h and f we mean the measurable function h
k∗ f : R j→R

defined almost everywhere on R j by the following k-multiple integral:

(h
k∗ f )(x) :=

∫
R jk

h(η1, . . . ,ηk) f (x−η1) · . . . · f (x−ηk) dη1 . . .dηk, (3.2)

where x,η1, . . . ,ηk ∈ R j, under the condition that∫
R jk
|h(η1, . . . ,ηk) f (x−η1) · . . . · f (x−ηk)| dη1 . . .dηk < ∞

for almost all x ∈ R j.

Remark 3.1. Assume that h∈ L1(R jk). If f ∈ L1(R j), then h
k∗ f ∈ L1(R j), due

to the Fubini theorem. On the other hand, if f ∈ L∞(R j), then h
k∗ f ∈ L∞(R j).

Assume now that h ∈ L∞(R jk). If f ∈ L1(R j), then h
k∗ f ∈ L∞(R j). But if

f ∈ L∞(R j), then the convolution of kth order h
k∗ f need not exist, e.g. in case

f and h are constantly equal to 1 on R j and R jk, respectively.

Clearly, h
1∗ f = h ∗ f , where h ∗ f means the classical convolution of the

functions h and f .

3.3 Linear circuits

For simplicity we will assume further on that j = 1 and k ∈ N.
To describe a linear circuit one usually assumes that an input signal x = x(t)

and an output signal y = y(t), functions of time t ∈ R, are related to each
other by a black box linear operator L, i.e. a convolution operator of the form:
y = Lx = h ∗ x for a certain function h = h(t), interpreted as a circuit impulse
response. This is schematically shown on Fig. 1.
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input output

x=x(t) y=y(t)

black box

linear operator L : x 7→ y;
y(t) = (Lx)(t) = (h∗ x)(t)

- -

Fig. 1. Scheme of linear circuit

In linear circuits with decaying memory, one usually assumes that h is an
integrable function on R and L = Lm is the convolution operator given in the
two cases: (a) for x ∈ L1(R), (b) for x ∈ L∞(R), by the same formula:

y(t) = (Lmx)(t) = (h∗ x)(t) =
+∞∫
−∞

h(τ)x(t− τ)dτ, t ∈ R, (3.3)

i.e. Lm maps the input signals: (a) x ∈ L1(R), (b) x ∈ L∞(R) to the output
signals: (a) y ∈ L1(R), (b) y ∈ L∞(R), respectively.

In other words, Lm is the convolution operator acting in the two considered
cases as follows:

(a) Lm : L1(R)→ L1(R), (b) Lm : L∞(R)→ L∞(R).

It is known that L1(R) is a convolution algebra without unit, but the Dirac
delta plays the role of the convolution unit in the wider space D ′ of distribu-
tions with the convolution meant in the more general distributional sense (see
[1, 21]):

f ∗δ = δ ∗ f = f , f ∈D ′. (3.4)

The operator Lm, defined in (3.3) in case the input signal x and the impulse
response h are functions, can be extended to include both x = δ and h = δ . If
h = δ , due to (3.4), one extends Lm to the linear operator Lm : D ′→D ′ of the
form:

y = Lmx = δ ∗ x = x, x ∈D ′. (3.5)

If x = δ , the extension of Lm makes sense for every h ∈D ′ and has the form:

y = Lmδ = h∗δ = h, h ∈D ′, (3.6)

which is particularly useful, because the output signal and the impulse response
are then equal, i.e. a system is fully described by its impulse response. In par-
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ticular, if x = δ and h = δ , then both (3.5) and (3.6) yield Lmδ = δ ∗ δ = δ .
We use the same symbol Lm for the extended linear operator given by (3.5) and
(3.6) and for that originally defined in (3.3), because the extension is consis-
tent.

Another type of linear systems, without memory, considered in electrical
engineering and telecommunications as linear memoryless systems (circuits),
may be described by a linear operator L = Lnm of the form:

y = Lnmx = αx, α ∈ R, (3.7)

where the input signals x are, as in (3.3), functions from a given space or, as
in (3.5), distributions. The latter is more general and Lnm : D ′→ D ′ given by
(3.7) can be expressed in the form:

y = Lnmx = αx = h0 ∗ x, α ∈ R, x ∈D ′, (3.8)

where h0 := αδ , because

αx = α(δ ∗ x) = (αδ )∗ x, x ∈D ′,

in view of (3.4). Hence Lnm in (3.8) can be treated as an input-output descrip-
tion of a memoryless circuit in the form of the extended convolution operator
with the impulse response h0 = αδ ∈D ′.

An example of a memoryless circuit is a simple resistive voltage divider,
consisting of two resistors R1 and R2, presented on Fig. 2.

◦

◦

◦

◦

•

•

6

6

y = y(t)

x = x(t)

R2

R1

Fig. 2. Example of resistive voltage divider
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The linear memoryless operator Lnm has the form:

y = Lnm x =
R2

R1 +R2
x = h0 ∗ x,

where
h0 :=

R2

R1 +R2
δ .

Combining a memoryless circuit and a circuit with (decaying) memory, de-
scribed by Lnm and Lm, we see that the linear operator Lov := Lnm+Lm describ-
ing the overall circuit is, by (3.3), (3.5) and (3.8), of the following form:

y = Lovx = Lnmx+Lmx = αx+h∗ x = hov ∗ x, x ∈D ′, (3.9)

where
hov := h0 +h = αδ +h ∈D ′

is the impulse response of the overall circuit.

3.4 Nonlinear circuits

An important class of nonlinear circuits, studied e.g. in [2, 3, 11], is described
by the Taylor power series and Volterra series, i.e. the formal series of the
form:

y = Tnmx =
∞

∑
k=1

αkxk, y = Tmx =
∞

∑
k=1

hk
k∗ x, (3.10)

where αk ∈ R, x = x(t) is a function on R, hk = hk(t1, . . . , tk) are functions

on Rk and hk
k∗ x are functions on R described in Definition 3.1 such that all

expressions in (3.10) and (3.2) are well defined. The nonlinear mappings Tnm

and Tm, defined by (3.10), as well as Tov of the form:

Tovx = (Tnm +Tm)x =
∞

∑
k=1

αkxk +
∞

∑
k=1

hk
k∗ x, (3.11)

are extensions of the linear operators Lnm, Lm and Lov, defined for suitable
functions x in (3.3), (3.7) and (3.9), respectively (and coincide with them, re-
spectively, if αk = 0 and hk = 0 for k ≥ 2). The functions hk on Rk are called
the linear (for k = 1) and nonlinear (for k > 1) impulse responses of the kth
order.
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Obviously, to have the mappings Tnm, Tm and Tov well defined, one has to
impose some assumptions on the right-hand sides of (3.10) and (3.11). Assume
that hk ∈ L1(Rk) for k ∈ N and consider the two cases: (a) x ∈ L1(R), (b)
x ∈ L∞(R). In both cases, each member of the second series in (3.10) is well

defined and, by the Fubini theorem, hk
k∗ x ∈ L1(R) in case (a), and hk

k∗ x ∈
L∞(R) in case (b). Additional assumptions concerning convergence of the two
series in (3.10) are necessary. In case (b), the mappings Tnm, Tm and Tov are
well defined if both series are convergent uniformly, i.e. in L∞. In case (a), Tm

is well defined if the second series in (3.10) is convergent in L1(R), but to have
the mapping Tnm well defined assume, in addition, that x ∈ Lk(R) for all k ∈N
and the first series in (3.10) is convergent in L1(R).

We may try to extend the nonlinear mappings Tnm, Tm and Tov, as it was done
for their linear counterparts in the preceding section, from the above particular
spaces of functions to distributions, at least in the special case of the input
signal x and the impulse response hk are the Dirac delta distributions: x =

δ = δ(1) on R and hk = δ(k) on Rk, respectively (according to the notation
introduced in (3.1)).

However, we then encounter mathematical difficulties: putting x = δ in the
first series in (3.10) for k > 1 is not allowed, because the power δ k of δ for
k > 1 does not exist in the standard sense of the theory of distributions (for

k = 2 see e.g. [1], pp. 243-244); a similar difficulty concerns δ(k)
k∗ δ in the

second series, where δ(k) is the Dirac delta on Rk.
How to overcome these two difficulties was asked in [5]. In section 3.6,

we present a solution to the first part of the problem and in section 3.7 to the

second one: both the power δ k of δ and the convolution of kth order δ(k)
k∗ δ

exist in the sense of net neutrix described in the next section.

3.5 Neutrices

We start from recalling van der Corput’s general definition of neutrix given in
[7]. Then we impose Assumptions 3.1 and 3.2 used in the sequel and specify
the form of neutrices used in the theory of the product of distributions.

Definition 3.2. Let N′ be an arbitrary nonempty set and N′′ be a commuta-
tive additive group. By a neutrix (of type (N′, N′′)) one means a commutative
additive group N of functions ν : N′ → N′′ (called negligible functions) such
that

(∗) the only constant function ν in N is ν ≡ 0.
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Condition (∗) guarantees the uniqueness of N−limits in the sense of the
N−convergence, defined by means of the neutrix N in the following way:

Definition 3.3. Let N′ be a nonempty subset of a certain set N′, let a be a fixed
element of N′ and assume that ξ → a is well defined for ξ ∈ N′, e.g. N′ is a
subset of a topological space N′ and a ∈ N′ is a limit point of N′. Moreover,
assume that N′′ is a commutative additive group and N is a neutrix in the sense
of Definition 3.2. For ν : N′→ N′′ and l ∈ N′′, we define

N−lim
ξ→a

ν(ξ ) = l, if ν0 ∈ N, (3.12)

where
ν0(ξ ) := ν(ξ )− l, ξ ∈ N′.

Clearly, if N1 and N2 are neutrices as in Definition 3.3 such that N1 ⊆ N2,
then N1−convergence implies N2−convergence.

Proposition 3.1. Let N′ := (0,1), N′ := [0,1] and a := 0 ∈ N′ be a limit point
of (0,1) in the standard topology of [0,1]. Assume that N ′′ := X is a topo-
logical vector space (over R) and fix a neutrix N := NX of type ((0,1),X),
i.e. a commutative additive group of γ ∈ X (0,1) satisfying (∗). We call γ =

(γτ) = (γτ)τ∈(0,1) nets in X. If N′ and N′ above are replaced by N′ := N,
N′ := N∪{∞}, a fixed neutrix N of type (N,X) of sequences (γn) ∈ XN sat-
isfying (∗) will be denoted by NX . Formula (3.12) defines the neutrix limits
NX−lim

τ→0
γτ and NX− lim

n→∞
γn in X for all nets γ = (γτ)∈X (0,1) and all sequences

(γn) ∈ XN, respectively.

Denote by c0(X) the set of all nets α = (ατ) ∈ X (0,1) convergent to 0 as
τ → 0 and by c0(X) the set of all sequences (αn) ∈ XN convergent to 0 as
n→ ∞ in the topology of X ; if X = R we write c0 := c0(R) and c0 := c0(R).
By d∞ denote the set of all nets β = (β τ) ∈R(0,1) divergent to ∞ as τ→ 0 and
by d∞ the set of all sequences (βn)∈RN divergent to ∞ as n→∞. Clearly, α =

(ατ) ∈ c0(X) iff (αn) ∈ c0(X) for all (αn) of the form αn := ατn , τn ∈ (0,1),
τn → 0 and β = (β τ) ∈ d∞ iff (βn) ∈ d∞ for all (βn) of the form βn := β τn ,
τn ∈ (0,1), τn→ 0.

Remark 3.2. The convergence of nets (sequences) in the topology of X implies
the NX−convergence (resp. NX−convergence) to the same limit iff NX ⊇ c0(X)

(resp. NX ⊇ c0(X)); they coincide if the equality holds in the inclusion, so
to extend essentially the respective neutrix convergence one has to add nets
(sequences) not convergent to 0 in X to the neutrix. For example, if X = R,
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it is standard to assume [7, 9] that a given neutrix NR (resp. NR) contains c0

(resp. c0) and a certain subclass d∗ of d∞ (resp. d∗ of d∞) which determines
the neutrix NR = Nd∗ (resp. NR = Nd∗) in the following way: all negligible
functions in Nd∗ (resp. Nd∗) are finite linear sums of elements of c0 and d∗

(resp. c0 and d∗). That means,

Nd∗ := span(c0∪d∗); Nd∗ := span(c0∪d∗). (3.13)

The range of the extensions of the Nd∗−convergence and Nd∗−convergence de-
pends essentially on the selection of the subclasses d∗ and d∗ of d∞ and d∞,
respectively.

If X = E ′ is the dual of a topological vector space E (over R) endowed with
the weak topology, then it is natural to define the corresponding neutrices NX

and NX via given neutrices NR and NR, by means of values of x′ ∈ E ′ on x ∈ E.

Proposition 3.2. Assume that E is a topological vector space (over R) and
X := E ′ is its dual endowed with the weak topology. Under Assumption 3.1,
define the neutrix NX generated by NR as follows: (γτ) ∈ NX if (〈γτ ,x〉) ∈ NR

for x ∈ E. Obviously, for γ = (γτ) ∈ X (0,1) and γ∗ ∈ X, we have NX− lim
τ→0

γτ =

γ∗ iff NR− lim
τ→0
〈γτ ,x〉 = 〈γ∗,x〉 for x ∈ E. Denote, in particular, by NX ,d∗ the

neutrix generated by Nd∗ of the form (3.13). Similarly, we define the neutrices
NX , NX ,d∗ , generated by given neutrices NR, NR,d∗ , and the respective neutrix
convergences.

Remark 3.3. In particular, if X = D ′ (X = S ′) in Assumption 3.2, we have
( f τ) ∈ NX ,d∗ iff (〈 f τ ,ϕ〉) ∈ Nd∗ for ϕ ∈ E and, consequently,

NX ,d∗− lim
τ→0

f τ = f iff Nd∗− lim
τ→0
〈 f τ ,ϕ〉= 〈 f ,ϕ〉 for ϕ ∈ E,

where E = D (E = S ), respectively. Analogously, we define the neutrix con-
vergence Nd∗− lim

n→∞
fn in D ′ (in S ′). Thus the neutrix convergences in D ′ and

in S ′ are determined by a suitable choice of the classes d∗ and d∗.

B. Fisher in [9] has chosen and used in his numerous papers on neutrix prod-
ucts and convolutions of distributions the fixed neutrix of sequences defined by
the class d∗ := dF , where dF consists of all sequences (βn)n∈N whose members
are of the form:

βn := nλ lnr n for λ > 0, r ∈ N0 or λ = 0, r ∈ N. (3.14)
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Consider the corresponding neutrix of nets defined by d∗ := dF , where dF

consists of all nets (β τ)τ∈(0,1) whose members are of the form:

β
τ := τ

−λ (− lnτ)r for λ > 0, r ∈ N0 or λ = 0, r ∈ N. (3.15)

To prove Theorem 3.1 and 3.2 in a stronger form, consider also the follow-
ing narrower class d∗ := dP, where dP consists of all nets (β τ)τ∈(0,1) whose
members are of the form:

β
τ := τ

−r for r ∈ N. (3.16)

Definition 3.4. Denote by NF the sequential neutrix of Fisher defined by the
equality on the right hand side of (3.13) with d∗ = dF given by (3.14). On the
other hand, denote by NF and NP the net neutrices defined by the equality on
the left hand side of of (3.13) with d∗ = dF and d∗ = dP given by (3.15) and
(3.16), respectively.

Clearly, the neutrix NP is essentially narrower than the neutrix NF .

Remark 3.4. The sequential neutrix NF of Fisher has an essential drawback.
Namely, a subsequence of a sequence belonging to NF does not belong to NF ,
in general. Consequently, a subsequence of a sequence NF− convergent in D ′

(in S ′) is not NF−convergent in D ′ (in S ′). This leads to inconsistency of the
definitions of the product and convolution of distributions in the sense of the
neutrix NF in D ′ and in S ′.

The net neutrices NF and NP are free from such incoherences. For example,
if (τn)n∈N is an arbitrary numerical sequence such that τn→ 0, then in the net
(β τ)τ∈(0,1) of the form (3.15) of the neutrix NF one can find the corresponding
sequence (βn) of the form βn := β τn , i.e. of the form (3.14) with n replaced
by τ−1

n , while in the neutrix NF only the sequences (βn) corresponding to the
single sequence (τn) of the form τn = n−1 are considered.

3.6 Neutrix powers of δ

It will be convenient now to use the following notation for j ∈ N and, in par-
ticular, for j = 1:

D1(R j) :=
{

ϕ ∈D(R j) :
∫
R j

ϕ(t)dt = 1
}

; D1 := D1(R1). (3.17)



38 Andrzej Borys, Andrzej Kamiński and Sławomir Sorek

We begin with giving the definitions of the product of k distributions in D ′

as well as the product and the Gaussian product of k tempered distributions in
S ′ which are modifications and extensions of the sequential definition of the
product of two distributions given in [1] (p. 242), [14] and [18].

Definition 3.5. Fix k ∈N. For given f1, . . . , fk ∈D ′ ( f1, . . . , fk ∈S ′), the prod-
uct f1 · . . . · fk in D ′ (in S ′) is defined by

f1 · . . . · fk := lim
τ→0

( f1 ∗δτ) · . . . · ( fk ∗δτ), (3.18)

if the above limit exists in D ′ (in S ′) for all delta-nets (δτ) of the form

δτ(x) = τ
−1

σ(τ−1x), τ ∈ (0,1), σ ∈D1, x ∈ R (3.19)

and does not depend on σ , where D1 is defined in (3.17).
In particular, if f ∈D ′ ( f ∈S ′), then formula (3.18) with f1 = . . .= fk = f

defines the kth power f k of f in D ′ (in S ′).

Definition 3.6. Let N be a neutrix in R(0,1) and k ∈N. For given f1, . . . , fk ∈D ′

( f1, . . . , fk ∈S ′), the N−product f1 · . . . · fk in D ′ (in S ′) is defined by

f1 · . . . · fk := N− lim
τ→0

( f1 ∗δτ) · . . . · ( fk ∗δτ), (3.20)

if the N−limit on the right hand side exists in D ′ (in S ′) for all delta-nets (δτ)

given by (3.19) and does not depend on σ .
In particular, if f ∈D ′ ( f ∈S ′), then formula (3.20) with f1 = . . .= fk = f

defines the kth N−power in D ′ (in S ′).

Definition 3.7. For f1, . . . , fk ∈ S ′, the Gaussian product and the Gaussian
N−product f1 · . . . · fk in D ′ (in S ′) is defined by (3.18) and by (3.20), respec-
tively, whenever the limits in (3.18) and (3.20) exist in D ′ (in S ′) for all (δτ)

of the form (3.19), where σ is replaced by the single σ0 ∈S given by

σ0(x) := π
−1/2e−x2

, x ∈ R. (3.21)

In particular, if f ∈S ′, then formulas (3.18) and (3.20) with f1 = . . .= fk =

f (and σ = σ0 with σ0 given by (3.21)) define the kth Gaussian power and the
kth Gaussian N−power f k of f , respectively, in D ′ (in S ′).

Remark 3.5. Clearly, delta-nets (δτ) and the net limits in (3.18) and (3.20) as
τ → 0 can be equivalently replaced by delta-sequences (δn) of the form:

δn(x) = τnσ(τnx), (τn) ∈ d∞, σ ∈D1, x ∈ R, (3.22)
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and by the sequential limits as n→ ∞, respectively. The class ∆m of all (δn)

of the form (3.22) called model delta-sequences was introduced in [14]. The
product in D ′ given by (3.18) for k = 2 with (δn) instead of (δτ) and the respec-
tive sequential limit was studied first in [19] and then in [1] for other classes of
delta-sequences. If the sequential limit exists in D ′ (in S ′) for all (δn) ∈ ∆m,
then it does not depend on (τn) ∈ d∞, but it may depend on σ ∈D1, as noticed
in [15]. The same concerns the neutrix product of distributions in D ′ (in S ′).
The additional assumption in Definitions 3.5 and 3.6 is made just to avoid such
a dependence.

Fisher and his followers in their papers on (neutrix) products of distribu-
tions [8, 9] use delta-sequences (δn) of the form (3.22) with one fixed σ ∈D1

(satisfying additional conditions) and one fixed (τn), τn := n (n ∈ N), so their
definition of the (neutrix) product of distributions depends, in general, on these
particularly fixed σ and (τn). Koh and Li [17] use delta-sequences (δn) of the
form (3.22) with the fixed σ0 of the form (3.21) instead of σ ∈D1 and with the
fixed (τn)∈ d∞, this time given by τn :=

√
n (n∈N). The appearance of the two

different particular (τn) motivates additionally the use of arbitrary (τn) ∈ d∞ in
equation (3.22) or of delta-nets of the form (3.19).

The product δ · δ and, more generally, the kth power δ k of δ for k ≥ 2 do
not make sense in the standard approach [21] to the theory of distributions and
do not exist in the sense of the Mikusiński product of distributions (see [1], pp.
243-244). However Koh and Li proved in [17] that δ k (k≥ 2) exists in D ′ in the
sense of Definition 3.7 of the Gaussian N−product (3.20) for f1 = . . .= fk = δ

and N = NF . More exactly, they proved that the Gaussian NF−power δ k exists
in D ′ for (δn) of the form (3.22) with σ = σ0 given by (3.21) and particular
τn :=

√
n.

We extend below the result of Koh and Li replacing the neutrix N = NF of
sequences by the neutrix N = NP (in particular N = NF ) of nets and the limit
in D ′ by the stronger limit in S ′:

Theorem 3.1. The kth Gaussian NP-power (and the more NF−power) of δ

exists in S ′ for arbitrary k ∈ N and the following formulas hold:

δ
2 j = 0 ( j ∈ N), δ

2 j+1 =
1

(4π) j(2 j+1) j+1/2 j!
δ
(2 j) ( j ∈ N0).

(3.23)

Proof. Fix ψ ∈S and a delta-net (δτ) of the form (3.19) with σ = σ0 given
by equation (3.21), i.e.

δτ(x) := τ
−1

σ0(τ
−1x) = (τ2

π)−1/2e−(x/τ)2
, τ ∈ (0,1), x ∈ R.
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Hence
(δ k

τ ,ψ) = (τ2
π)−k/2

∫
R

e−k(x/τ)2
ψ(x)dx, ψ ∈S . (3.24)

By Taylor’s formula and equation (3.24), there exists a certain ξ ∈ (0,1) such
that

(δ k
τ ,ψ) = (τ2π)−k/2

k−1
∑

i=0

ψ(i)(0)
i!
∫
R

e−k(x/τ)2
xi dx+

+ (τ2π)−k/2

k!
∫
R

e−k(x/τ)2
ψ(k)(ξ x)xk dx. (3.25)

Putting t := (k/τ2)1/2x we get∫
R

e−k(x/τ)2
xi dx =

(
τ/
√

k
)i+1

∫
R

e−t2
t i dt i = 0,1, . . . ,k−1

and ∫
R

e−k(x/τ)2
ψ

(k)(ξ x)xk dx = (τ/
√

k)k+1
∫
R

e−t2
ψ

(k)
(

τξ t√
k

)
tk dt.

Since ψ ∈ S (R), applying the Lebesgue’s dominated convergence theorem
we have

lim
τ→0

∫
R

e−t2
ψ

(k)
(

τξ t√
k

)
tk dt = ψ

(k)(0)
∫
R

e−t2
tk dt,

so the second addend in equation (3.25) tends to 0 as τ → 0. Hence, using
(τ i+1−k)τ∈(0,1) as the elements of the neutrix NP for i = 0,1, . . . ,k−2, we see
from equation (3.25) that

NP− lim
τ→0

(δ k
τ ,ψ) =

ψ(k−1)(0)
(kπ)k/2(k−1)!

∫
R

e−t2
tk−1 dt

for arbitrarily fixed ψ ∈S . Consequently, due to Definition 3.6, δ k exists in
the sense of the kth Gaussian NP−power in S ′ and

δ
k =

(−1)k−1

(kπ)k/2(k−1)!
δ
(k−1)

∫
R

e−t2
tk−1 dt. (3.26)
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Clearly ∫
R

e−t2
t2 j−1 dt = 0 and

∫
R

e−t2
t2 j dt =

(2 j−1)!!
2 j

√
π,

where (2 j−1)!! := (2 j−1) · (2 j−3) · . . . ·3 ·1 for j ∈ N. Hence, by equation
(3.26), formula (3.23) follows and the proof is completed. ut

3.7 Neutrix kth convolution of δ(k) and δ

Definition 3.8. Let f ∈D ′(R) ( f ∈S ′(R)) and h ∈D ′(Rk) (h ∈S ′(Rk)) for
fixed k ∈ N. Let (δτ) and (δ̃τ) be delta-nets of the forms

δτ(x) = τ
−1

σ(τ−1x), τ ∈ (0,1), σ ∈D1(R), x ∈ R (3.27)

and

δ̃τ(y) = τ
−1

σ̃(τ−1y), τ ∈ (0,1), σ̃ ∈D1(Rk), y ∈ Rk, (3.28)

respectively. Denote fτ := f ∗δτ and hτ := h∗ δ̃τ for τ ∈ (0,1) and assume that

the convolutions hτ

k∗ fτ exist in D ′(R) (in S ′(R)) for arbitrary delta-nets (δτ)

and (δ̃τ) of the forms (3.27) and (3.28), respectively, and for all τ ∈ (0,1).

The convolution of kth order h
k∗ f in D ′(R) (in S ′(R)) is defined by

h
k∗ f := lim

τ→0
hτ

k∗ fτ , (3.29)

whenever the limit in (3.29) exists in D ′(R) (in S ′(R)) for arbitrary delta-nets
(δτ) and (δ̃τ) of the form (3.27) and (3.28) and does not depend on σ or σ̃ .

Definition 3.9. Let N be a neutrix in R(0,1). Fix k ∈ N and let h and f be as in

Definition 3.8. The N−convolution of kth order h
k∗ f in D ′(R) (in S ′(R)) is

defined by

h
k∗ f := N− lim

τ→0
hτ

k∗ fτ , (3.30)

whenever the N−limit in (3.30) exists in D ′(R) (in S ′(R)) for all delta-nets
(δτ) and (δ̃τ) of the form (3.27) and (3.28), and does not depend on σ or σ̃ .

Definition 3.10. For h ∈ S ′(Rk) and f ∈ S ′(R), the Gaussian convolution

of kth order and the Gaussian N−convolution of kth order h
k∗ f in D ′(R) (in
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S ′(R)) are defined by (3.29) and by (3.30), respectively, whenever the limits
in (3.29) and (3.30) exist in D ′(R) (in S ′(R)) for all delta-nets (δτ) and (δ̃τ)

of the form (3.27) and (3.28), where σ and σ̃ are replaced by σ0 ∈S (R) and
σ̃0 ∈S (Rk), respectively, given by

σ0(x) := π
−1/2e−x2

and σ̃0(y) := π
−k/2E(y),

for x ∈ R and y := (η1, . . . ,ηk) ∈ Rk, where E(y) = e−η2
1−...−η2

k .

Theorem 3.2. For k ∈ N, the Gaussian NP−convolution of kth order (and the
more Gaussian NF−convolution of kth order) of the Dirac delta δ(k) in Rk and
the Dirac delta δ in R exists in S ′(R) and

δ(k)
k∗ δ = δ

k for k ∈ N, (3.31)

where δ k on the right hand side of (3.31) exists in the sense of the kth Gaussian
NP-power (and the more NF−power) and is given by (3.23).
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[18] J. Mikusiński, Criteria of the existence and of the associativity of the product of
distributions, Studia Math. 21 (1962), 253-259.
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