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Abstract
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One of the interesting and still not satisfactorily resolved problems in
metalogic concerns the character and nature of relationship holding be-
tween probability theory and the  Luksiewicz infinite-valued logic. It is
sometimes argued that  Lukasiewicz logic is appropriate for the formula-
tion of the ’fuzzy set theory’. On the other hand, logical values assigned
to propositions in accordance with the scheme provided by the infinite
 Lukasiewicz algebra should not be interpreted as probabilities of these
propositions, because the structural algebraic properties of this algebra are
incoherent with the standard Kolmogorov’s axiom system of probability
theory. In the simplest case, the values assigned to compound propositions
in the  Lukasiewicz infinite-valued algebra do not agree with the values com-
puted according to the rules of probability theory, e.g., for the conjunction



48 Janusz Czelakowski

of two propositions. But nevertheless, there are some interesting interde-
pendencies holding between probability and infinite-valued logics. More
specifically, in this paper we want to shed more light on the relationship
between  Lukasiewicz logic and the theory of cumulative distribution func-
tions. Some aspects of this problem have been signalled in Czelakowski’s [6].
Here the problem is discussed in a more thorough way from the viewpoint
of the algebra of cumulative distribution functions.

1. The infinite-valued  Luksiewicz algebra

R is the set of real numbers. On the unit interval I := [0, 1] := {x ∈ R :
0 ≤ x ≤ 1} we define the operations →,∧,∨,⊗,⊕,¬ as follows:

(→) L a → b := min(1, 1 − a + b),
(∧) L a ∧ b := min(a, b),
(∨) L a ∨ b := max(a, b),
(⊗) L a⊗ b := max(0, a + b− 1),
(⊕) L a⊕ b := min(1, a + b),
(¬) L ¬a := 1 − a.

They are called the  Lukasiewicz operations. The operations →,∧ and ∨

are succesively called implication, conjunction and disjunction. ⊗ is called
the strong conjunction and ⊕ is the weak disjunction. ¬ is the negation
operation.

Ac := 〈I,→,∧,∨,⊕,⊗,¬〉 is the infinite-valued  Lukasiewicz algebra.
All the displayed operations are treated here as primitive operations of Ac

but they are definable in terms of the operations → and ¬ in the well-
known manner. (One may also take ⊕ and ¬ as primitive operations,
because a → b = ¬a ⊕ b, a ∨ b = ¬(¬a ⊕ b) ⊕ b, a ∧ b = ¬(a ∨ ¬b), and
a⊗ b = ¬(a⊕ ¬b), for all a, b ∈ I.)

The pair 〈Ac, {1}〉 is called the infinite  Lukasiewicz matrix.

L is the sentential language appropriate for Ac. Thus L is the absolute
free algebra freely generated by a countably infinite set V ar of propositional
variables and endowed with the connectives →,∧,∨,⊕,⊗ and ¬. (The
connectives of L are marked by the same symbols as the corresponding
operations in the algebra Ac; such doubleness in the meaning of the above
symbols should not lead to confusion.)
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2. Cumulative distribution functions

In probability theory, one-dimensional cumulative distributions (CDFs, for
short) are defined as functions F : R −→ [0, 1] that satisfy the following
conditions:

(2a) F is non-decreasing.

(2b) F is right-continuous,

(2c) lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

F is therefore a càdlàg function which means that for every real r, the
left limit F (r−) exists; and the right limit F (r+) exists and equals F (r).

Cumulative distribution functions are also called unary probabilistic
attributes. This name is justified by the fact that each CDF provides a
probabilistic characterization of unary properties (attributes) of statistical
populations (see [11]). Examples of such attributes are weight, height etc.

One of the main theorems in probability theory states that every CDF F ,
defined as above, determines a probability measure µF on the σ-field B(R)
of Borel subsets of R such that µF ((a, b]) = F (b) − F (a) for any real num-
bers a, b, where a < b. (If a = b, then µF ({a}) = F (a) − F (a−), where
F (a−) is the left limit of F at a. If F is continuous at a, then µF ({a}) = 0.)

Moreover, every probability measure on B(R) is determined by a unique
CDF (see e.g. [1]).

If F is a continuous CDF, the measure µF takes value zero on one-
element subsets of R. Consequently, for any numbers a, b with a < b, it is
the case that µF ((a, b)) = µF ((a, b]) = µF ([a, b)) = µF ([a, b]).

3. The Algebra of Cumulative Distribution Functions

Let µ be a probability measure on the σ-field B(R) of Borel subsets of R.
µd is the measure dual to µ. Thus

(1) µd(X) := µ(−X),

for any set X ∈ B(R), where −X := {−x : x ∈ X}. (If X is a Borel set,
then so is −X.)

µd is a probability measure on B(R). This directly follows from the
equivalence that A ∩ B = ∅ if and only if −A ∩ −B = ∅, for any sets
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A,B ⊆ R, and the fact that µ is a measure. µd agrees with µ on Borel sets
A such that A = −A. Such sets A are called symmetric.

It is also clear that (µd)d = µ.

Let F : R −→ [0, 1] be a CDF. The cumulative distribution function
dual to F is the function F d : R −→ [0, 1] defined as follows. Let µF be
the probability measure on B(R) corresponding to F . F d is, by definition,
the cumulative distribution function that determines the dual measure µd.
F d is unambiguously defined. In fact,

(2) F d(x) := µd

F
((−∞, x]),

for every x ∈ R. Thus

(3) F d(x) := µF ([−x,+∞),

for every x ∈ R. Since µF ([−x,+∞)) = 1 − µF ((−∞,−x)), we have that

(4) F d(x) := 1 − F ((−x)−),

where F ((−x)−) is the left limit of F at −x, for every x ∈ R.

Lemma 3.1. (F d)d = F .

Proof. Let µ be the measure corresponding to F and let µd be the dual
measure. µd is the measure corresponding to F d. Then (F d)d(x) = (by
(3)) µd([−x,+∞)) = µ(−[−x,+∞)) = µ((−∞, x]) = F (x), for all x ∈ R.

F is continuous at a point a if and only if the left limit of F at a is
equal to F (a). It follows from (4) that if F is continuous at −x, then
F d(x) = 1 − F (−x). We thus obtain

Corollary 3.2. If F is a continuous CDF, then F d is a continuous CDF
as well. Moreover

F d(x) = 1 − F (−x),

for every x ∈ R.

The corollary follows from the above remarks. �

Suppose F is a continuous CDF and it has density, i.e., there exists a
measurable non-negative function f : R −→ R such that
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(5) F (x) =
x
∫

−∞

f(t)dt,

for all x ∈ R. The function g : R −→ R given by g(x) := f(−x), x ∈ R, is
the density function of F d. The graph of g is obtained by the reflection of
the graph of f with respect to the y-axis.

CDF is the set of (unary) cumulative distribution functions. The order
relation ≤ on CDF is defined pointwise as follows:

(6) F ≤ G
df

⇐⇒ F (x) ≤ G(x) for every real number x.

Thus, in accordance to the meaning attached to cumulative distribu-
tions, F ≤ G states that for every real number x, the probability that
the numerial value of the probabilistic attribute F belongs to the interval
(−∞, x] is smaller or equal to the probability that a numerical value of G
belongs to (−∞, x].

Other operations are also performable in the set CDF. Suppose F and
G are cumulative distribution functions, not necessarily continuous. We
define further operations on cumulative distribution functions:

(F ∧G)(x) := min(F (x), G(x)),
(F ∨G)(x) := max(F (x), G(x)),
(F ⊕G)(x) := min(1, F (x) + G(x)),
(F ⊗G)(x) := max(0, F (x) + G(x) − 1),

for all x ∈ R.

Theorem 3.3. The sets CDF is closed with respect to the operations
∧,∨,⊕ and ⊗. Moreover, if F and G are continuous, then so are F ∧ G,
F ∨G, F ⊕G and F ⊗G.

Proof. See [6].

The operations ∧ and ∨ are called the conjunction and the disjunction,
respectively. ⊕ is the bounded addition of CDFs. By the analogy to
 Lukasiewicz algebra Ac, the sum F⊕G will be called the weak disjunction of
cumulative distributions F and G. In turn, F ⊗G is the strong conjunction
(also in the analogy to  Lukasiewicz algebra).

The set CDF of cumulative distributions equipped with the operations
∧ and ∨ forms a distributive lattice. The order relation ≤ defined in (6) is
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thus the order relation of the distributive lattice 〈CDF, ∧,∨〉. Note that
F ∨G + F ∧G = F + G, where + is the addition of real functions.

A slightly less obvious is the fact that the above distributive lattice
together with the operation of dualization d satisfies De Morgan’s laws:

Lemma 3.4. For any cumulative distribution functions F and G,

(F ∧G)d = F d ∨Gd and (F ∨G)d = F d ∧Gd.

Proof. We shall show the first equality. The proof is restricted here to
continuous CDFs. (The proof in the general case is a bit more involved.)
Let x be a real number. In view of Corollary 3.2 we have:

(F ∧G)d(x) = 1 − (F ∧G)(−x) = 1 − min(F (−x), G(−x)) =

max(1 − F (−x), 1 −G(−x)) = max(F d(x), Gd(x)) = (F d ∨Gd)(x). �

Thus d is an involution operation satisfying De Morgan’s laws.
The algebra

〈CDF,∧,∨, d〉

satisfies the axioms of De Morgan algebras with one exception: it is not
bounded as a distributive lattice, that is, it does not possess the bottom and
top elements. We shall use, however, the suggestive term the De Morgan
algebra of cumulative distribution functions as a proper name.

The distributive lattice 〈CDF,∧,∨〉 is not complete because it is lack-
ing the top and bottom elements.

One may extend the universe CDF by augmenting it with two addi-
tional elements 0 and 1 so that one obtains a bounded distributive lattice
(with zero 0 and unit 1) satisfying all conditions imposed on De Morgan
algebras. Since we want 0 and 1 to be functions defined throughout set R,
we shall assume that 0 is the constant function with value 0 and, likewise
1 is the constant function taking only value 1. The constants 0 and 1 are
not cumulative distribution functions on R. But trivially, 0 ≤ F ≤ 1, for
every CDF F , i.e., 0(x) ≤ F (x) ≤ 1(x) for all x ∈ R. We also put: 0d := 1
and 1d := 0.

We mark CDFb := CDF ∪ {0, 1}. But despite of the fact that the
bounded lattice 〈CDFb,∧,∨,

d, 0, 1〉 is a De Morgan algebra, it is not a
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complete lattice To show this we define the following sequence Fn, n =
1, 2, . . . of continuous cumulative distribution functions:

Fn(x) :=











0 x ≤ 0

x
1

n 0 < x ≤ 1

1 1 < x.

The sequence {Fn} is pointwise covergent to the function F , where
F (x) = 0 for x ≤ 0 and F (x) = 1 for x > 0. F is not right-continuous at
x = 0. Hence, F is not a CDF. On the other hand, we have that {Fn} is
monotone, that is, F1 ≤ F2 ≤ . . . in the lattice 〈CDF,∧,∨〉. It is then easy
to see that sup{Fn : n ≥ 1} does not exist in 〈CDFb,∧,∨,

d, 0, 1〉.
CCDF is the set of continuous cumulative distribution functions on R.

The system

〈CCDF,∧,∨, d〉

is a subalgebra of 〈CDF,∧,∨, d〉 called the De Morgan algebra of continuous
cumulative distributions.

Continuous cumulative distributions F such that F = F d determine
symmetric probability measures with respect to the y-axis. This means
that µF ([−r, 0]) = µF ([0, r]) for all real numbers r. (µF is the probability
measure on the σ-field B(R) corresponding to F .) If F possesses a density
function f , we see that f is an even function, that is f(x) = f(−x) for all
x, whenever F = F d.

It is also sensible to talk about the operations ⊕ and ⊗ in the ex-
tended lattice 〈CDFb,∧,∨,

d, 0, 1〉. The operations ⊕ and ⊗ are defined on
CDFb = CDF ∪{0, 1} according to the same formulas as above. It is then
easy to see that

1 ⊕ a = a⊕ 1 = 1 and 0 ⊕ a = a⊕ 0 = a

and

1 ⊗ a = a⊗ 1 = a and 0 ⊗ a = a⊗ 0 = 0

for all a ∈ CDF ∪ {0, 1}.

Here is a bunch of simple facts concerning the above operations:
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Lemma 3.5. For any cumulative distribution functions F and G:

(1) F ⊕G = G⊕ F ,

(2) F ⊕ (G⊕H) = (F ⊕G) ⊕H,

(3) F ⊗G = (F d ⊕Gd)d and F ⊕G = (F d ⊗Gd)d,

(4) F ⊗G ≤ F ∧G ≤ F ∨G ≤ F ⊕G,

for any F,G,H ∈ CDF .

Proof. Straightforward. For details – see [6]. �

The above lemma continues to hold for the bounded lattice
〈CDFb,∧,∨,

d, 0, 1〉 augmented with ⊗ and ⊕.
The algebraic structure of the set CDF of cumulative distribution fun-

tions is much richer. This set is also endowed with the operation of convo-
lution

(7) (F ∗G)(x) :=
+∞
∫

−∞

F (t)G(x− t)dt,

for all x ∈ R. The convolution of cumulative distributions is a CDF.
The convolution operation preserves continuity of CDFs. As it is known,
the operation ∗ is associative and commutative. It is also distributive:
(F +G) ∗H = (F ∗H) + (G ∗H). (But the sum F +G is not a CDF.) If F
and G are cumulative distributions corresponding to independent random
variables X and Y defined on a probabilistic space, then the convolution
F ∗ G is the cumulative distribution of the sum X + Y of these random
variables.

The list of operations which are performable on the set CDF is longer.
We mention here convex combinations of finite sequences of cumulative
distributions as well as translations along the x-axis.These operations have
not been included to the list of primitive operations of 〈CDF,∧,∨, d,⊕,⊗〉.

Let F be a cumulative distribution. For each real number r we define
the function Fr by the condition:

Fr(x) := F (x + r), for all x ∈ R.

Fr is a cumulative distribution. If r > 0, the graph of Fr is obtained from
the graph of F by means of the translation r units to the left. Obviously,
F0 = F . We have:

Lemma 3.6. For any a, b ∈ R, a ≤ b if and only if Fa ≤ Fb.
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Proof. Straightforward. �

It follows from the lemma that the family of cumulative distributions
{Fr : r ∈ R} forms a chain in the poset 〈CDF,≤〉 and the order type of
this chain is equal to λ, the order type of the set R. One may then say that
the poset 〈CDF,≤〉 has a rather complicated order structure, also due to
the fact that R is unbounded. For example, the poset 〈CDF,≤〉 contains
neither maximal nor minimal elements.

It is easy to see that F ≤ G implies that F ∗ H ≤ G ∗ H for any
cumulative distribution functions F,G and H.

The next lemma is rather special. It shows that the convolution par-
tially distributes over the weak disjunction.

Lemma 3.7. (F ⊕ G) ∗ H ≤ (F ∗ H) ⊕ (G ∗ H), for any continuous
cumulative distribution functions F,G and any H ∈ CDF .

Proof. Let a be an arbitrary but fixed real number such that F (a) +
G)(a) = 1. Such an a exists because F + G is continuous and has the
Darboux property. Moreover F (t) + G)(t) ≥ 1 for all t ≥ a. We compute:

(∗) ((F ⊕G) ∗H)(x) =
+∞
∫

−∞

(F ⊕G)(t)H(x− t)dt =
+∞
∫

−∞

min(1, F (t) +

G(t))H(x− t)dt =
a
∫

−∞

(F (t) + G(t))H(x− t)dt +
+∞
∫

a

H(x− t)dt.

We then obtain:

((F ∗H) ⊕ (G ∗H))(x) = min(1, (F ∗H)(x) + (G ∗H)(x)) =

min(1,
+∞
∫

−∞

F (t)H(x− t)dt +
+∞
∫

−∞

G(t)H(x− t)dt =

min(1,
+∞
∫

−∞

(F (t) + G(t))H(x− t)dt =

min(1,
a
∫

−∞

(F (t) + G(t))H(x− t)dt +
+∞
∫

a

(F (t) + G(t))H(x− t)dt) ≥

min(1,
a
∫

−∞

(F (t) + G(t))H(x− t)dt +
+∞
∫

a

H(x− t)dt)
(by (∗))

=

min(1, ((F ⊕G) ∗H)(x)) = ((F ⊕G) ∗H)(x).
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(The last equality follows from the fact that every cumulative distributive
function is bounded by 1.) �

It is unclear how to meaningfully combine the constant function 1 with
the convolution operation ∗. In the technical sense, one may declare that
1 is the both-sided unit (that is, the neutral element) for the convolution
operation ∗ and 0 is the zero for ∗, i.e.,

1 ∗ a = a ∗ 1 = a and 0 ∗ a = a ∗ 0 = 0

hold for all a ∈ CCDF ∪ {0, 1}. But then formula (7) does not apply to
the above extension of ∗, because the definite integral of the function 1
throughout R does not exist. Therefore 1 ∗ 1 is not definable by means of
formula (7).

In what follows we shall diregard the convolution operation ∗ on CDF.

We introduce some notation for the algebras we have defined:

CDF := 〈CDF,∧,∨, d,⊕,⊗〉.

CDF is called the algebra of cumulative distribution functions.

CDFb := 〈CDFb,∧,∨,
d,⊕,⊗, 0, 1〉.

CDF is called the extended algebra of cumulative distribution functions. In
a fully analogous way one defines

CCDF := 〈CCDF,∧,∨, d,⊕,⊗〉,

the algebra of continuous cumulative distribution functions, and

CCDFb := 〈CCDFb,∧,∨,
d,⊕,⊗, 0, 1〉,

the extended algebra of continuous cumulative distribution functions.
The algebra CDF is also endowed with the operation →, where

(F → G) := F d ⊕G,

for all F,G ∈ CDF . It is clear that F → G is a cumulative distribution,
that is, F → G ∈ CDF whenever F,G ∈ CDF . Moreover F → G is a
continuous cumulative distribution whenever F,G ∈ CCDF .

We obviously have that

(F → G)(x) = min(1, F d(x) + G(x)) = min(1, 1 − F (−x) + G(x)),
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for any real number x. Moreover

(1) F → G = Gd → F d

and

(2) G ≤ F → G

for all F,G ∈ CDF .
For the proof of (1) and (2) – see [6].

Proposition 3.8. Suppose F,G ∈ CDF and x ∈ R. Then the conditions
F (−x) = 1 and (F → G)(x) = 1 imply G(x) = 1.

Proof. We assume that F (−x) = 1 and (F → G)(x) = 1. We have:
1 = (F → G)(x) = min(1, 1 − F (−x) + G(x)), which gives that 1 −

F (−x) + G(x) ≥ 1. Hence F (−x) ≤ G(x). As F (−x) = 1, we infer that
G(x) = 1. �

The property of the operation → expressed in Proposition 3.8 may be
regarded as the validity of a version of the detachment rule.

Although the implication symbol is used to denote the above operation,
it would be rather unnatural to attach the name ‘implication’ to the above
function. The reason is in the fact that the operation → fails to satisfy the
law of identity, relevant in metalogical consequences, that is, it is not the
case that (F → F )(x) = 1 for all x ∈ R. But we have:

(F → F )(x) =

{

1 if 0 ≤ x

1 − F (−x) + F (x) otherwise,

as one can easily check.

It is an open question whether the algebra CDF = 〈CDF,∧,∨, d,⊕,⊗〉

can be endowed with the residuation operation with respect to ⊗, that is,
we ask whether there exists a binary operation ⇒ on CDF , such that for
any cumulative distribution functions F,G and X it is the case that

(res) F ⊗X ≤ G if and only if X ≤ F ⇒ G.

We now consider the algebra

CDF0 = 〈CDF,→,∧,∨,⊕,⊗, d〉
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of cumulative distribution functions augmented with the operation → de-
fined as in Section 6. (The convolution operation is discarded.) CDF0 is
similar to the  Lukasiewicz algebra Ac.

It is appropriate to look at the structure CDF0 from a more general al-
gebraic perspective. We shall apply the terminology and notation adopted
in [7, p. 398].

An abstract algebra 〈A,∧,∨, {oi}i∈I〉 is called a distributoid ([7, p.
398]) if 〈A,∧,∨〉 is a distributive lattice, and each f ∈ {oi}i∈I is a (finitary)
operation on A that “distributes” in each of its places over at least one of
∧ and ∨, leaving the lattice operation unchanged or switching it with its
dual.

Theorem 3.9. The algebra CDF0 = 〈CDF,→,∧,∨,⊕,⊗, d〉 is a distrib-
utoid. More exactly, if F,G,H ∈ CDF , then:

(i) (F ∨G) ⊕H = (F ⊕H) ∨ (G⊕H),

(ii) (F ∧G) ⊗H = (F ⊗H) ∧ (G⊗H),

(iii) (F ∨G) → H = (F → H) ∧ (G → H),

(iv) H → (F ∧G) = (H → F ) ∨ (H → G).

(v) (F ∨G)d = F d ∧Gd and (F ∧G)d = F d ∨Gd.

Proof. See [6]. �

4. The infinite-valued  Lukasiewicz logic

and cumulative distribution functions

We define:

∆ := {F ∈ CDF : F (0) = 1}.

Thus, if F ∈ CDF , then F (x) = 1, for all x ≥ 0. The set ∆ is not
interesting from the viewpoint of probabilty theory, because it contains
cumulative distributions of probabilistic measures concentrated on the the
set of negative real numbers. But ∆ is interesting due to its relationship
with  Lukasiewicz logics.

Theorem 4.1. ∆ satisfies the following conditions:

(a) F → F ∈ ∆,

(b) if F ∈ ∆ and F ≤ G, then G ∈ ∆,
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(c) if F ∈ ∆ and G ∈ ∆, then F ⊗G ∈ ∆,

(d) if F ∈ ∆ and G ∈ ∆, then F ∧G ∈ ∆,

(e) if F ∈ ∆ and F → G ∈ ∆, then G ∈ ∆,

for all F,G ∈ CDF .

Conditions (b) and (c) state that ∆ is a filter in the strong sense.
According to (b) and (d), ∆ is also a “standard” lattice-theoretic filter.
In turn, (a) and (e) state that ∆ validates the identity axiom and the
detachment rule corresponding to →.

Proof. See [6]. �

The following theorem is an immediate consequence of the definitions
of the above two algebras:

Theorem 4.2. The mapping h : CDF −→ I given by h(F ) := F (0) is a
homomorphism from the algebra CDF0 onto the  Lukasiewicz algebra Ac.

Moreover the filter ∆ is the pre-image of {1} with respect to h, that is,
∆ = {F ∈ CDF : h(F ) = 1}.

The pair 〈CDF0,∆〉 is a logical matrix for the language L of  Lukasiewicz
logics. (The negation connective ¬ is interpreted in the distributoid CDF0

as the operation d. The other connectives are interpreted in CDF0 in the
obvious way.

It follows from the above theorem that the mapping h is a strict sur-
jective homomorphism (see [15]) from the matrix 〈CDF0,∆〉 onto the
 Lukasiewicz matrix 〈Ac, {1}〉. This fact implies:

Corollary 4.3. The consequence operation determined by the matrix
〈CDF0,∆〉 in the language L coincides with the consequence operation de-
termined by the  Lukasiewicz matrix 〈Ac, {1}〉. �

But there are more links between cumulative distribution functions and
 Lukasiewicz logics. To elucidate them, we introduce further consequence
operations determined by the above algebras of cumulative distribution
functions.

The symbol Hom(A,B) marks the set of all homomorphisms h :A−→B
from an algebra A to a similar algebra B.
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The relation of probabilistic entailment |=≤ on L is defined as follows.
For any n ≥ 1 and any formulas α1, . . . , αn, β of L: we put:

α1, . . . , αn |=≤ β
df

⇐⇒ (∀h ∈ Hom(L,CDF0))h(α1) ∧ . . . ∧ h(αn) ≤ h(β).

If X is an infinite set of formulas, we assume that

X |=≤ β ⇔df α1, . . . , αn |=≤ β for some n ≥ 1 and some formulas
α1, . . . , αn ∈ X.

Moreover, it is declared that ∅ |=≤ β for no formula β. Thus the above
“probabilistic” logic does not possess tautologies.

Let CDF[−1,1] be the set of all cumulative distribution functions F
such that F is continuous throughout an open interval O that includes the
closed interval [−1, 1] and moreover F is constant on [−1, 1]. (Each such
set O individually depends on F .)

It is not difficult to see that CDF[−1,1] forms a subalgebra of CDF0

(denoted by CDF[−1,1]). Moreover, for any real number r ∈ I, the mapping
ϕr : CDF[−1,1] −→ Ac given by ϕr(F ) := F (r), F ∈ CDF[−1,1], is a
homomorphism between the two algebras. E.g.,

ϕr(F d) = F d(r) = 1 − F ((−r)−)
= 1−F (−r) (because F is continuous on some open set that contains

[−1, 1])
= 1 − F (r) (because F is constant on [−1, 1])
= ¬F (r)
= ¬(ϕr(F )) in Ac.

Note. We may also define the subalgebra of CDF[−1,1] consisting of all
continuous cumulative distribution function being constant on [−1, 1]. The
above reasoning carries over to this subalgebra. �

|=[−1,1] marks the entailment relation determined on L by the algebra
CDF[−1,1]. Thus, for any n ≥ 1 and any formulas α1, . . . , αn, β of L:

α1, . . . , αn |=≤

[−1,1]

df
⇐⇒ (∀h ∈ Hom(L,CDF[−1,1]))h(α1)∧. . .∧h(αn) ≤ h(β).

The remaining cases are defined in a similar way as for |=≤.
Since CDF[−1,1] is a subalgebra of CDF0, we obtain:
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Theorem 4.4. |=≤

[−1,1] is stronger than |=≤, i.e., |=≤ ≤ |=≤

[−1,1]. �

(This is an instantiation of a more general phenomenon holding for
semilattice based logics preserving degrees of truth.)

We mark by |=≤
c the  Lukasiewicz’s infinite valued logic preserving de-

grees of truth determined by the algebra Ac. Thus, for any n ≥ 1 and any
formulas α1, . . . , αn, β of L0

α1, . . . , αn |=≤
c

df
⇐⇒ (∀h ∈ Hom(L0, Ac)h(α1) ∧ . . . ∧ h(αn) ≤ h(β).

The definition of |=≤
c is extended onto infinite sets of formulas and on the

empty set in a similar way as in the case of |=≤. (Note that |=≤
c in [10], is

defined on ∅ in a different way; there the set of theses of the resulting logic
is non-empty.)

Although the three logical systems |=≤, |=≤

[−1,1] and |=≤
c are semanti-

cally defined by disparate algebras of different proveniences, they, quite
suprisingly, can be compared.

Theorem 4.5. |=≤

[−1,1] is stronger than the  Lukasiewicz system |=≤
c , i.e.,

|=≤
c ≤ |=≤

[−1,1].

Proof. Assume α1, . . . , αn |=≤
c . Let h : L −→ CDF[−1,1] be a homomor-

phism. We claim that h(α1) ∧ . . . ∧ h(αn) ≤ h(β).
In view of the above remarks, for every r ∈ I, the mapping ϕr :

CDF[−1,1] −→ Ac given by ϕr(F ) := F (r), is a homomorphism. Hence the
assumption α1, . . . , αn |=≤

c β implies that that every r ∈ I, ϕr(h(α1))∧. . .∧
ϕr(h(αn)) ≤ ϕr(h(β)) in the algebra Ac. This means that min(h(α1)(r),. . .,
h(αn)(r)) ≤ h(β)(r) for all r ∈ I. Thus h(α1) ∧ . . . ∧ h(αn) ≤ h(β). �

We define the following congruence Φ on the algebra CDF[−1,1]. For
F,G ∈ CDF[−1,1]:

F ≡ G(modΦ)
df

⇐⇒ there exists an open interval O on R such that
[−1, 1] ⊂ O, both F and G are continuous on O
and agree on [−1, 1].

In the light of the above remarks, it is easy to see that the quotient
algebra CDF[−1,1]/Φ is isomorphic with the  Lukasiewicz algebra Ac.
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Theorem 4.6. The  Lukasiewicz algebra Ac is embeddable into the algebra
CDF0. Consequently, the  Lukasiewicz logic |=≤

c is stronger than |=≤, i.e.,
|=≤≤|=≤

c .

Proof. For each real number r ∈ I we define the cumulative distribution
function Fr as follows:

Fr(x) :=











0 x < −1

r −1 ≤ x < 1

1 x ≥ 1.

The set {Fr : r ∈ I} is closed with respect to the operations →, ∧, ∨, ⊕,
⊗, d. In fact, for any a, b ∈ I,

Fa ∧ Fb = Fmin(a,b) = Fa∧b

Fa ∨ Fb = Fmax(a,b) = Fa∨b

F d
a = F1−a = F¬a

Fa ⊕ Fb = Fmin(1,a+b) = Fa⊕b

Fa ⊗ Fb = Fmax(0,a+b−1) = Fa⊗b

Fa → Fb = F d
a ⊕ Fb = F1−a ⊕ Fb = Fmin(1,1−a+b) = Fa→b.

As the mapping assigning to each number r ∈ I the cumulative distri-
bution Fr is injective, it follows from the above equations that the algebra
Ac is isomorphic with the subalgebra of CDF0 whose underlying set is
{Fr : r ∈ I}.

The second statement of the theorem follows from the first one. �

Let CCDF[−1,1] be the subalgebra of CDF[−1,1] consisting of all cu-
mulative distribution functions that are continuous throughout the real
line and constant in the interval [−1, 1]. Let |=≤

cont,[−1,1] be the entail-

ment relation on L determined by the algebra CCDF[−1,1]. It is clear that

|=≤

[−1,1] ≤ |=≤

cont,[−1,1].

Corollary 4.7. |=≤ ≤ |=≤
c ≤ |=≤

[−1,1] ≤ |=≤

cont,[−1,1].

Proof. By Theorems 4.4-4.6 and the above remark. �
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Thus, according to the above corollary, the  Lukasiewicz logic |=≤
c is

bounded from the bottom and from the above by the logical systems |=≤

and |=≤

[−1,1], respectively. The latter systems bear clear probabilistic con-
notations.
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