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1. Introduction

From the end of the 1990s, Functional Data Analysis (FDA) has become increas‑
ingly popular and is now one of the major research fields in statistics. In FDA, the 
theory and practice of statistical methods are studied in situations where the avail‑
able data are functions. Such data appear and are analized in different fields of ap‑
plications, including economics (e.g., the GDP per capita, Górecki, Łaźniewska, 
2013; the level of income, Jaworski, Pietrzykowski, 2014), meteorology (e.g., the 
temperatures, pressure, etc., in a given location, Collazos, Dias, Zambom, 2016), 
and many others (see, for example, Ramsay, Silverman, 2002, where the illustration 
of certain FDA methods through the study of specific case studies with real data 
is given). Particular problems of FDA considered in the literature are as follows: 
analysis of variance (Zhang, 2013; Górecki, Smaga, 2015; 2017), canonical cor‑
relation analysis (Krzyśko, Waszak, 2013), classification problem (James, Hastie, 
2001; Górecki, Krzyśko, Wołyński, 2015), cluster analysis (Giacofci et al., 2013), 
nonparametric analysis (Ferraty, Vieu, 2006), outlier detection (Febrero‑Bande, 
Galeano, González‑Manteiga, 2007; 2008; Hubert, Rousseeuw, Segaert, 2015), 
principal component analysis (Ramsay, Silverman, 2005; Kayano, Konishi, 2009; 
Horváth, Kokoszka, 2012), regression analysis (Chiou, Müller, Wang, 2004; Chiou, 
Yang, Chen, 2016; Matsui, Konishi 2011; Collazos, Dias, Zambom, 2016).

In this paper, we consider one of the main problems of FDA, namely, the bina‑
ry classification problem of multi‑dimensional functional data. Recently, Górecki, 
Krzyśko, Wołyński (2015) studied this problem by using multivariate functional 
regression techniques, e.g., functional logistic regression model, which performed 
best on real data examples. It is worth noting that for estimation of unknown pa‑
rameters, they used standard maximum likelihood estimation method. However, 
in the presence of outliers, this method may behave poorly, which probably ad‑
versely affects the classification process. In this article, we propose an extension 
of the method of Górecki, Krzyśko, Wołyński (2015). More precisely, we study 
a more general representation of the functional logistic regression model and use 
the robust estimation methods in logistic regression. Numerical results indicate 
that the new classification rules behave promisingly and may be reasonable com‑
petitors to existing methods. The binary classification rules can be extended for 
multi‑label classification problems by using existing techniques (see, for instance, 
Krzyśko, Wołyński, 2009).

The rest of the present paper is organized as follows. In Section 2, we intro‑
duce a binary classification problem for multivariate functional data. Section 3 
contains the construction of the functional logistic regression model and its re‑ex‑
pression based on the basis functions representation of coefficients and explana‑
tory variables. The classification rule based on this model is also presented there. 
In Section 4, we review robust estimation methods in logistic regression model. 
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The accuracy of the proposed methods and their comparison with existing ones 
is demonstrated using two real functional data sets in Section 5. Section 6 con‑
cludes the article.

2. Binary classification problem for functional data

In binary classification problem, we have to determine a procedure assigning a giv‑
en object to one of two populations. Classically, the objects are characterized 
by p scalar features, and then the observations are p‑dimensional random vectors. 
In functional data analysis, the features are given by functions observed at pos‑
sibly different time points. Below, we precisely formulate the problem of binary 
classification for multi‑dimensional functional data.

Assume that we have the learning sample {(xi(t), Yi): i = 1, …, N}, where 
xi(t) = (xi1(t), …, xip(t))’ are p‑dimensional vectors of random functions describing 
the objects, and Yi ∈ {0, 1} are the labels of classes to which the objects belong. The 
functions xij(t), i = 1, …, N are supposed to belong to the Hilbert space of square 
integrable functions over Tj = [aj, bj], aj, bj ∈ R, j = 1, …, p. This space will be de‑
noted by L2(Tj), j = 1, …, p.

To solve the classification problem described above, the Bayes rule can be used. 
This rule assigns x to class Y = k with the maximum posterior probability given x, 
denoted by P(Y = k|x), k = 0, 1. The Bayesian classifier then takes the form (see, 
for example, Krzyśko et al., 2008):

 d  (1)

In classical classification problem, it is well known that P(Y = 1|x) = E(Y|x) = r(x), 
where r(x) is the regression function of the random variable Y with respect to the 
random vector x. Then the classifier (1) can be rewritten as follows:

 d  (2)

Different regression functions as well as their estimates are able to be used 
in classifier (2), e.g., linear or logistic regression function.

Górecki, Krzyśko, Wołyński (2015) applied the above idea to the classification 
problem for multi‑dimensional functional data. They used four functional regres‑
sion methods as r(x), i.e., multivariate linear regression, logistic regression, local 
linear regression smoothers and Nadaraya‑Watson kernel estimation method. The 
best numerical results were obtained by applying the functional logistic regression 
model. Therefore, we consider this method and propose possible improvement of it 
in the next Sections.
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3. Functional logistic regression model

In this Section, we present the functional logistic regression model in more gen‑
eral form, as in Górecki, Krzyśko, Wołyński (2015). Using this model, we then 
propose the classification rule for functional data.

Let us introduce the functional logistic regression model by using the assump‑
tions and notation of Section 2. The variables Yi, i = 1, …, N are assumed to be 
independent Bernoulli response variables. The components of the vector xi(t) are 
considered as explanatory functional variables. Let observations follow the func‑
tional logistic regression model of the form:

 P  (3)

where β0 is the intercept and βj(t) ∈ L2(Tj), j = 1, …, p are the unknown coefficient 
functions.

The model (3) can be rewritten by using the basis functions representation 
as described below. Since xij(t), βj(t) ∈ L2(Tj), j = 1, …, p, these functions can be ap‑
proximated arbitrarily well by a linear combination of a sufficiently large number 
of basis functions 

4 
 

 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝐱𝐱𝑖𝑖) =
exp(𝛽𝛽0+∑ ∫𝑇𝑇𝑗𝑗

𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝑝𝑝
𝑗𝑗=1 ) 

1+exp(𝛽𝛽0+∑ ∫𝑇𝑇𝑗𝑗
𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝑝𝑝

𝑗𝑗=1 ) 
,  (3) 

Where β0 is the intercept and βj(t)  L2(Tj), j = 1, …, p are the unknown coefficient functions. 

The model (3) can be rewritten by using the basis functions representation as described be

low. Since xij(t), βj(t)  L2(Tj), j = 1, …, p, these functions can be approximated arbitrarily wel

l by a linear combination of a sufficiently large number of basis functions {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
∞

 of 𝐿𝐿2(𝑇𝑇𝑗𝑗) 

(Ramsay and Silverman 2005). Thus, assume that the functions xij(t) and βj(t) can be represent

ed as follows: 

 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑗𝑗𝜑𝜑𝑗𝑗𝑗𝑗(𝑡𝑡)𝐵𝐵𝑗𝑗
𝑗𝑗=1 = 𝐰𝐰𝑖𝑖𝑗𝑗
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′𝛗𝛗𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇𝑗𝑗, (4) 

Where i = 1, …, N, j = 1, …, p, 𝐰𝐰𝑖𝑖𝑗𝑗
′ = (𝑤𝑤𝑖𝑖𝑗𝑗1, … , 𝑤𝑤𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗) and 𝐛𝐛𝑗𝑗

′ = (𝑏𝑏𝑗𝑗1, … , 𝑏𝑏𝑗𝑗𝐵𝐵𝑗𝑗) are the vectors 

of unknown coefficients, and 𝛗𝛗𝑗𝑗
′ (𝑡𝑡) = (𝜑𝜑𝑗𝑗1(𝑡𝑡), … , 𝜑𝜑𝑗𝑗𝐵𝐵𝑗𝑗(𝑡𝑡)) are the vectors of basis functions. 

For each j = 1, …, p, the vectors wij can be estimated by using the functional observations xij(t

), i = 1, …, N and the least squares method (see Krzyśko, Waszak, 2013). The truncation para

meters Bj and the basis functions φjm may be chosen in such a way to improve the solution of t

he problem under consideration, e.g., reduce the classification error of a particular classifier. B

y (4), the model (3) can be re‑expressed as follows: 
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= exp(𝛽𝛽0+𝐰𝐰𝑖𝑖
′𝐛𝐛)

1+exp(𝛽𝛽0+𝐰𝐰𝑖𝑖
′𝐛𝐛),  (5) 

where i = 1, …, N, 𝐉𝐉𝛗𝛗𝑗𝑗 ≔ ∫𝑇𝑇𝑗𝑗
𝛗𝛗𝑗𝑗(𝑡𝑡)𝛗𝛗𝑗𝑗

′ (𝑡𝑡)𝑑𝑑𝑡𝑡, j = 1, …, p, 𝐰𝐰𝑖𝑖
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′ 𝐉𝐉𝛗𝛗1, … , 𝐰𝐰𝑖𝑖𝑖𝑖
′ 𝐉𝐉𝛗𝛗𝑝𝑝) and 𝐛𝐛′ =

(𝐛𝐛1
′ , … , 𝐛𝐛𝑖𝑖

′ ). The matrix Jφj is the Bj × Bj cross product matrix corresponding to basis {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
∞

, j = 1, …, p. For an orthonormal basis (e.g., Fourier basis), this matrix is the identity matrix.1 

Thus, we re‑expressed the functional logistic regression model (3) as the logistic regressio

n model (5), where (β0, b')' is the (1 + ∑ 𝐵𝐵𝑗𝑗
𝑖𝑖
𝑗𝑗=1 ) × 1 vector of unknown parameters. We can u

                                                           
1 For a non‑orthonormal basis (e.g., B‑spline basis), it can be approximated, for example, by using the function 
inprod from the R package fda (Ramsay, Hooker, Graves, 2009; Ramsay et al., 2014; R Core Team, 2017). 
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𝛗𝛗𝑗𝑗(𝑡𝑡)𝛗𝛗𝑗𝑗
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′ ∫𝑇𝑇𝑗𝑗
𝛗𝛗𝑗𝑗(𝑡𝑡)𝛗𝛗𝑗𝑗
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𝑝𝑝
𝑗𝑗=1 𝐛𝐛𝑗𝑗)

  

= exp(𝛽𝛽0+𝐰𝐰𝑖𝑖
′𝐛𝐛)

1+exp(𝛽𝛽0+𝐰𝐰𝑖𝑖
′𝐛𝐛),  (5) 

where i = 1, …, N, 𝐉𝐉𝛗𝛗𝑗𝑗 ≔ ∫𝑇𝑇𝑗𝑗
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′ 𝐉𝐉𝛗𝛗𝑝𝑝) and 𝐛𝐛′ =

(𝐛𝐛1
′ , … , 𝐛𝐛𝑖𝑖

′ ). The matrix Jφj is the Bj × Bj cross product matrix corresponding to basis {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
∞

, j = 1, …, p. For an orthonormal basis (e.g., Fourier basis), this matrix is the identity matrix.1 

Thus, we re‑expressed the functional logistic regression model (3) as the logistic regressio

n model (5), where (β0, b')' is the (1 + ∑ 𝐵𝐵𝑗𝑗
𝑖𝑖
𝑗𝑗=1 ) × 1 vector of unknown parameters. We can u

                                                           
1 For a non‑orthonormal basis (e.g., B‑spline basis), it can be approximated, for example, by using the function 
inprod from the R package fda (Ramsay, Hooker, Graves, 2009; Ramsay et al., 2014; R Core Team, 2017). 

 are the vectors of basis functions. For each j = 1, …, p, the vectors wij can 
be estimated by using the functional observations xij(t), i = 1, …, N and 
the least squares method (see Krzyśko, Waszak, 2013). The truncation 
parameters Bj and the basis functions φjm may be chosen in such a way 
to improve the solution of the problem under consideration, e.g., reduce 
the classification error of a particular classifier. By (4), the model (3) can 
be re‑expressed as follows:
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Where β0 is the intercept and βj(t)  L2(Tj), j = 1, …, p are the unknown coefficient functions. 

The model (3) can be rewritten by using the basis functions representation as described be

low. Since xij(t), βj(t)  L2(Tj), j = 1, …, p, these functions can be approximated arbitrarily wel

l by a linear combination of a sufficiently large number of basis functions {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
∞

 of 𝐿𝐿2(𝑇𝑇𝑗𝑗) 

(Ramsay and Silverman 2005). Thus, assume that the functions xij(t) and βj(t) can be represent

ed as follows: 
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′ = (𝑏𝑏𝑗𝑗1, … , 𝑏𝑏𝑗𝑗𝐵𝐵𝑗𝑗) are the vectors 

of unknown coefficients, and 𝛗𝛗𝑗𝑗
′ (𝑡𝑡) = (𝜑𝜑𝑗𝑗1(𝑡𝑡), … , 𝜑𝜑𝑗𝑗𝐵𝐵𝑗𝑗(𝑡𝑡)) are the vectors of basis functions. 
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), i = 1, …, N and the least squares method (see Krzyśko, Waszak, 2013). The truncation para

meters Bj and the basis functions φjm may be chosen in such a way to improve the solution of t

he problem under consideration, e.g., reduce the classification error of a particular classifier. B
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′𝐛𝐛)

1+exp(𝛽𝛽0+𝐰𝐰𝑖𝑖
′𝐛𝐛),  (5) 

where i = 1, …, N, 𝐉𝐉𝛗𝛗𝑗𝑗 ≔ ∫𝑇𝑇𝑗𝑗
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′ (𝑡𝑡)𝑑𝑑𝑡𝑡, j = 1, …, p, 𝐰𝐰𝑖𝑖
′ = (𝐰𝐰𝑖𝑖1
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′ 𝐉𝐉𝛗𝛗𝑝𝑝) and 𝐛𝐛′ =

(𝐛𝐛1
′ , … , 𝐛𝐛𝑖𝑖

′ ). The matrix Jφj is the Bj × Bj cross product matrix corresponding to basis {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
∞

, j = 1, …, p. For an orthonormal basis (e.g., Fourier basis), this matrix is the identity matrix.1 

Thus, we re‑expressed the functional logistic regression model (3) as the logistic regressio

n model (5), where (β0, b')' is the (1 + ∑ 𝐵𝐵𝑗𝑗
𝑖𝑖
𝑗𝑗=1 ) × 1 vector of unknown parameters. We can u

                                                           
1 For a non‑orthonormal basis (e.g., B‑spline basis), it can be approximated, for example, by using the function 
inprod from the R package fda (Ramsay, Hooker, Graves, 2009; Ramsay et al., 2014; R Core Team, 2017). 
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′ (𝑡𝑡)𝐛𝐛𝑗𝑗𝑑𝑑𝑡𝑡𝑝𝑝
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1+exp(𝛽𝛽0+∑ ∫𝑇𝑇𝑗𝑗
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′(𝑡𝑡)𝑑𝑑𝑡𝑡𝑝𝑝

𝑗𝑗=1 𝐛𝐛𝑗𝑗)
  

=
exp(𝛽𝛽0+∑ 𝐰𝐰𝑖𝑖𝑗𝑗

′ 𝐉𝐉𝛗𝛗𝑗𝑗
𝑝𝑝
𝑗𝑗=1 𝐛𝐛𝑗𝑗)

1+exp(𝛽𝛽0+∑ 𝐰𝐰𝑖𝑖𝑗𝑗
′ 𝐉𝐉𝛗𝛗𝑗𝑗

𝑝𝑝
𝑗𝑗=1 𝐛𝐛𝑗𝑗)

  

= exp(𝛽𝛽0+𝐰𝐰𝑖𝑖
′𝐛𝐛)

1+exp(𝛽𝛽0+𝐰𝐰𝑖𝑖
′𝐛𝐛),  (5) 

where i = 1, …, N, 𝐉𝐉𝛗𝛗𝑗𝑗 ≔ ∫𝑇𝑇𝑗𝑗
𝛗𝛗𝑗𝑗(𝑡𝑡)𝛗𝛗𝑗𝑗

′ (𝑡𝑡)𝑑𝑑𝑡𝑡, j = 1, …, p, 𝐰𝐰𝑖𝑖
′ = (𝐰𝐰𝑖𝑖1

′ 𝐉𝐉𝛗𝛗1, … , 𝐰𝐰𝑖𝑖𝑖𝑖
′ 𝐉𝐉𝛗𝛗𝑝𝑝) and 𝐛𝐛′ =

(𝐛𝐛1
′ , … , 𝐛𝐛𝑖𝑖

′ ). The matrix Jφj is the Bj × Bj cross product matrix corresponding to basis {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
∞

, j = 1, …, p. For an orthonormal basis (e.g., Fourier basis), this matrix is the identity matrix.1 

Thus, we re‑expressed the functional logistic regression model (3) as the logistic regressio

n model (5), where (β0, b')' is the (1 + ∑ 𝐵𝐵𝑗𝑗
𝑖𝑖
𝑗𝑗=1 ) × 1 vector of unknown parameters. We can u

                                                           
1 For a non‑orthonormal basis (e.g., B‑spline basis), it can be approximated, for example, by using the function 
inprod from the R package fda (Ramsay, Hooker, Graves, 2009; Ramsay et al., 2014; R Core Team, 2017). 

and 

4 
 

 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝐱𝐱𝑖𝑖) =
exp(𝛽𝛽0+∑ ∫𝑇𝑇𝑗𝑗

𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝑝𝑝
𝑗𝑗=1 ) 

1+exp(𝛽𝛽0+∑ ∫𝑇𝑇𝑗𝑗
𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)𝛽𝛽𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡𝑝𝑝

𝑗𝑗=1 ) 
,  (3) 

Where β0 is the intercept and βj(t)  L2(Tj), j = 1, …, p are the unknown coefficient functions. 

The model (3) can be rewritten by using the basis functions representation as described be

low. Since xij(t), βj(t)  L2(Tj), j = 1, …, p, these functions can be approximated arbitrarily wel

l by a linear combination of a sufficiently large number of basis functions {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
∞

 of 𝐿𝐿2(𝑇𝑇𝑗𝑗) 

(Ramsay and Silverman 2005). Thus, assume that the functions xij(t) and βj(t) can be represent

ed as follows: 

 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑗𝑗𝜑𝜑𝑗𝑗𝑗𝑗(𝑡𝑡)𝐵𝐵𝑗𝑗
𝑗𝑗=1 = 𝐰𝐰𝑖𝑖𝑗𝑗

′ 𝛗𝛗𝑗𝑗(𝑡𝑡), 𝛽𝛽𝑗𝑗(𝑡𝑡) = ∑ 𝑏𝑏𝑗𝑗𝑗𝑗𝜑𝜑𝑗𝑗𝑗𝑗(𝑡𝑡)𝐵𝐵𝑗𝑗
𝑗𝑗=1 = 𝐛𝐛𝑗𝑗

′𝛗𝛗𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇𝑗𝑗, (4) 

Where i = 1, …, N, j = 1, …, p, 𝐰𝐰𝑖𝑖𝑗𝑗
′ = (𝑤𝑤𝑖𝑖𝑗𝑗1, … , 𝑤𝑤𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗) and 𝐛𝐛𝑗𝑗

′ = (𝑏𝑏𝑗𝑗1, … , 𝑏𝑏𝑗𝑗𝐵𝐵𝑗𝑗) are the vectors 

of unknown coefficients, and 𝛗𝛗𝑗𝑗
′ (𝑡𝑡) = (𝜑𝜑𝑗𝑗1(𝑡𝑡), … , 𝜑𝜑𝑗𝑗𝐵𝐵𝑗𝑗(𝑡𝑡)) are the vectors of basis functions. 

For each j = 1, …, p, the vectors wij can be estimated by using the functional observations xij(t

), i = 1, …, N and the least squares method (see Krzyśko, Waszak, 2013). The truncation para

meters Bj and the basis functions φjm may be chosen in such a way to improve the solution of t
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′ , … , 𝐛𝐛𝑖𝑖

′ ). The matrix Jφj is the Bj × Bj cross product matrix corresponding to basis {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
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, j = 1, …, p. For an orthonormal basis (e.g., Fourier basis), this matrix is the identity matrix.1 

Thus, we re‑expressed the functional logistic regression model (3) as the logistic regressio

n model (5), where (β0, b')' is the (1 + ∑ 𝐵𝐵𝑗𝑗
𝑖𝑖
𝑗𝑗=1 ) × 1 vector of unknown parameters. We can u

                                                           
1 For a non‑orthonormal basis (e.g., B‑spline basis), it can be approximated, for example, by using the function 
inprod from the R package fda (Ramsay, Hooker, Graves, 2009; Ramsay et al., 2014; R Core Team, 2017). 
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′ 𝐉𝐉𝛗𝛗1, … , 𝐰𝐰𝑖𝑖𝑖𝑖
′ 𝐉𝐉𝛗𝛗𝑝𝑝) and 𝐛𝐛′ =

(𝐛𝐛1
′ , … , 𝐛𝐛𝑖𝑖

′ ). The matrix Jφj is the Bj × Bj cross product matrix corresponding to basis {𝜑𝜑𝑗𝑗𝑗𝑗}𝑗𝑗=1
∞

, j = 1, …, p. For an orthonormal basis (e.g., Fourier basis), this matrix is the identity matrix.1 

Thus, we re‑expressed the functional logistic regression model (3) as the logistic regressio

n model (5), where (β0, b')' is the (1 + ∑ 𝐵𝐵𝑗𝑗
𝑖𝑖
𝑗𝑗=1 ) × 1 vector of unknown parameters. We can u

                                                           
1 For a non‑orthonormal basis (e.g., B‑spline basis), it can be approximated, for example, by using the function 
inprod from the R package fda (Ramsay, Hooker, Graves, 2009; Ramsay et al., 2014; R Core Team, 2017). 

, j = 1, …, p. For an orthonormal basis (e.g., Fourier basis), 
this matrix is the identity matrix.1

Thus, we re‑expressed the functional logistic regression model (3) as the logis‑
tic regression model (5), where (β0, b’)’ is the  vector of unknown 
parameters. We can use this relationship for estimation problem in functional logis‑
tic regression model (3) by using estimation methods for the logistic regression 
model (5). Let  be the estimator of (β0, b’)’ obtained under the model (5). 
Thus we have the following estimator of the regression function:

  (6)

By (2) and (6), we obtain the following classifier for the binary classification 
problem for functional data presented in Section 2:

  (7)

Now, we have to take into account the estimation problem in the logistic re‑
gression model (5). This problem is discussed in the next Section.

1 For a non‑orthonormal basis (e.g., B‑spline basis), it can be approximated, for example, 
by using the function inprod from the R package fda (Ramsay, Hooker, Graves, 2009; Ramsay 
et al., 2014; R Core Team, 2017).
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4. Robust estimation in logistic regression

For estimating the vector of parameters γ = (β0, b’)’ in the logistic regression mod‑
el (5), the maximum likelihood estimator (MLE) is classically used, which is the 
most efficient estimator (asymptotically). It is defined as

  (8)

where ln denotes the natural logarithm, 

 
 is the conditional ln‑likelihood function,

and  is the deviance component. To find , 
one has to solve the likelihood score equation

  (9)

The equations (9) can be solved iteratively by using, for example, the New‑
ton‑Raphson method.

Unfortunately, the MLE may behave very poorly in presence of outliers. 
In functional data, the outliers may also appear, and in particular they may have 
a negative effect on performance of the classifier (7), when the MLE is used to es‑
timate the parameters of the model (5). To avoid possible drawback of the MLE, 
it seems to be reasonable to consider robust estimators in classifier (7). For ex‑
cellent overview and comparison of robust estimation in the logistic regression, 
we refer to the survey paper by Ahmad, Ramli, Midi (2010). In the remainder 
of this Section, we describe ideas of robust estimation and certain robust estima‑
tors in the logistic regression, which will be compared to the MLE in numerical 
experiments of Section 5.

The first alternative approach to the MLE is based on weighting the likeli‑
hood score function in equation (9), i.e., a robust estimator is the solution of
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where  is a debiasing factor, i.e., a correction function defi‑
ned to ensure consistency, and  are the weights depending on wi, Yi or both. 
When the weights depend only on the design, i.e., , and 

, the estimator obtained in such a way is an MLE computed 
with weights and is called MALLOWS estimator (Mallows, 1975). For example, 
the robust Mahalanobis distance of the regressors is a particular weight function 
ω, i.e., , where  and S are the robust estimators of the 
center and scatter matrix of the regressors. If the weights depend on the regressors 
and the response, i.e., , the estimators are in the Schwep‑
pe class, and they are also known as the conditionally unbiased bounded influence 
function (CUBIF) estimator (Künsch, Stefanski, Carroll, 1989). In such weights, 
the differences  are usually used.

The other alternative robust approach is based on modification of the func‑
tion d in (8). Bianco and Yohai (1996) constructed a consistent (BY) estimator de‑
fined by

  (10)

where 

 ,
 c is a tuning parameter,

 

 and IA stands for the usual indicator function on the set A (IA(x) = 1 if x ∈ A and 
0 otherwise). In (10),

 

 is a bias correction term. Bianco and Yohai (1996) also stressed that other 
choices of the bounded function ρ are possible. To reduce the influence of out‑
liers in the regressor space, Croux and Haesbroeck (2003) proposed to include 
the weights in (10). The resulting weighted BY (WBY) estimator is given 
by the formula

 
,
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where for instance, ,  is the 0.975‑quantile 
of the central chi‑squared distribution with  degrees of freedom, and 
RMDi is the robust Mahalanobis distance obtained by using the minimum cova‑
riance determinant estimator (see Rousseeuw, 1985, and Section 4 of Croux, Ha‑
esbroeck, 2003, for description and more details). Since the weights depend sole‑
ly on the regressors, the WBY estimator remains consistent without any further 
distribution assumptions. However, the weights used may be too restrictive, resul‑
ting in a loss of efficiency of this estimator.

The MLE and four methods of robust estimation in logistic regression model 
are compared in the next Section in terms of performance of the classifier (7) for 
functional data.

5. Numerical experiments

In order to test the performance of the classifier (7) described in Section 3, we con‑
ducted computational experiments on real functional data sets2. The problem 
of interest is to compare the behavior of this classification rule based on differ‑
ent methods of parameter estimation. More precisely, we consider the MLE and 
its four robust competitors, i.e., the MALLOWS, CUBIF, BY and WBY estima‑
tors, described briefly in Section 43. In this Section, we present the classification 
results for only two real data sets, since for the other ones the conclusions of the 
results were very similar.

The first data set under consideration is the Canadian weather data set (see 
Figure 1), commonly used in the literature and available in the R package fda 
(Ramsay, Hooker, Graves, 2009; Ramsay et al., 2014). In this data set, the daily 
temperature and precipitation records of 35 Canadian weather stations averaged 
over 1960 to 1994 (365 days) are included. Thus, this data set contains 35 two‑di‑
mensional discrete functional observations observed on 350 design time points. 
These observations are assigned to one of two groups in a natural way. The first 
(resp. second) group consists of 5 Northern (resp. 30 Eastern and Western) weath‑
er stations located at higher latitudes (resp. at lower latitudes than these from the 
first group). 

2 It is worth noting that the outlying observations are present in all functional data sets con‑
sidered. This was checked by the functional outlier detection method of Febrero‑Bande, Galeano, 
González‑Manteiga, (2007; 2008) implemented in the function outliers.depth.trim() avail‑
able in the R package fda.usc (Febrero‑Bande, Oviedo de la Fuente, 2012).

3 The numerical experiments were performed in the R programming language (R Core Team, 
2017). In this program, the implementations of the estimators in the functions glm, glmRob and 
glmrob from the packages stats, robust and robustbase, respectively, were used (Wang et al., 
2014; Maechler et al., 2016).
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As the second data set, we consider the ECG data set originated from Olsze‑
wski (2001) and investigated by Górecki, Krzyśko, Wołyński (2015) (see Figure 2). 
In this data set, two electrodes are used to collect data during one heartbeat. Each 
of 200 heartbeats is described by a two‑dimensional discrete functional observa‑
tion, and it is assigned to normal or abnormal group. Abnormal heartbeats are rep‑
resentative of a cardiac pathology, which is known as supraventricular premature 
beat. The normal (resp. abnormal) group consists of 133 (resp. 67) observations, 
which were observed at different design time points. For this reason, both discrete 
functional variables of this data set were extended to the same length of the longest 
one by using the method of Rodriguez, Alonso, Maestro (2005). The final common 
number of design points is 152.

Figure 1. Canadian weather data
Source: the authors’ research

Classifying the observations in both data sets is the binary classification prob‑
lem for multi‑dimensional functional data. The classifier (7) based on estimation 
methods described above is applied to this problem. The basis functions representa‑
tion (4) of the observations was obtained by using the orthonormal Fourier basis 
and the least squares estimation method (see, for example, Krzyśko, Waszak 2013). 
For simplicity, equal truncation parameters for all variables were considered, i.e., 
B1 = B2 = B. More precisely, we only present the results for B = 3, 5, …, 13 and B = 3, 
5, …, 81 for the Canadian weather and ECG data, respectively, since for greater val‑
ues of B the classification error of all methods was very high (There was probably 
too many variables in the model (5) to obtain sensible estimation). Odd values of B 
are dictated by implementation of the Fourier basis in the R package fda (Ramsay, 
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Hooker, Graves, 2009; Ramsay et al., 2014), which we used. Unfortunately, due to the 
low number of observations, the WBY estimator could not be used for the Canadian 
weather data set. This is to illustrate the limitation of the new methods, i.e., more ob‑
servations may be needed to conduct the robust methods than for standard one.

Figure 2. ECG data
Source: the authors’ research

The 10‑fold cross‑validation method was used to calculate the classification error 
rates of the classifier (7) based on the MLE, MALLOWS, CUBIF, BY and WBY es‑
timators. The results are depicted in Figures 3 and 4 for different values of truncation 
parameter B. They suggest that both functional data sets are quite difficult to recog‑
nize. Nevertheless, we can observe that the classifier (7) based on selected estimation 
techniques does not perform equally well. The robust estimators work at least as good 
as or even better than the MLE for most values of truncation parameter B. However, 
there is no method, which is superior in all situations. For different values of trunca‑
tion parameter B, different estimation methods may classify best, e.g., for the ECG 
data and B = 59, the BY estimator works best, while for B = 61, the WBY one. For the 
Canadian weather data, the smallest 10‑fold cross‑validation error rate was achieved 
by the CUBIF estimator for B = 5, while for the ECG data, by the MALLOWS one 
for B = 33, 35. Therefore, for a given data set, the classifier (7) based on estimation 
methods under consideration as well as different bases and truncation parameters 
may be examined to select the method giving the smallest classification error.
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6. Conclusions

We proposed the classification rule based on the functional logistic regression mod‑
el with robust estimation methods of unknown parameters which leads to a nov‑
el solution of the classification problem of multivariate functional data. Numerical 
experiments for two real functional data sets indicate that the new methods usually 
work at least on par with the procedure of Górecki, Krzyśko, Wołyński (2015) and 
may be superior to it, especially in the presence of outlying observations. The pro‑
posed classifier is generic in nature, e.g., other choices of robust estimation meth‑
ods in logistic regression model are also possible. The new classification rule can 
also be constructed by using non‑orthogonal bases in contrast to that of Górecki, 
Krzyśko, Wołyński (2015). The appropriate choice of robust estimation method, ba‑
sis functions, etc., should result in better performance of the proposed methods.

Figure 3. 10‑fold cross‑validation error rates (as percentages) for different values of truncation parameter 
B by using classifier (7) based on the MLE, MALLOWS, CUBIF and BY estimators for Canadian weather data

Source: the authors’ research

Figure 4. 10‑fold cross‑validation error rates (as percentages) for different values of truncation parameter 
B by using classifier (7) based on the MLE, MALLOWS, CUBIF, BY and WBY estimators for ECG data

Source: the authors’ research
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Zastosowanie odpornej regresji logistycznej do klasyfikacji wielowymiarowych danych 
funkcjonalnych

Streszczenie: W niniejszym artykule rozważany jest problem dwuetykietowej klasyfikacji wielowy‑
miarowych danych funkcjonalnych. Zaproponowane rozwiązanie tego problemu oparto na tech‑
nikach regresyjnych i modelu regresji logistycznej dla danych funkcjonalnych. Model ten został 
przekształcony do szczególnego modelu regresji logistycznej za pomocą rozwinięcia (będących 
funkcjami) współczynników regresji i zmiennych objaśniających w bazie funkcyjnej. Na podstawie 
tego modelu skonstruowana została reguła klasyfikacyjna. W przypadku występowania obserwacji 
odstających rozważane są również metody odpornej estymacji nieznanych parametrów. Ekspery‑
menty numeryczne sugerują, że proponowane metody mogą z powodzeniem być wykorzystane 
w praktycznych zagadnieniach.

Słowa kluczowe: analiza regresji dla danych funkcjonalnych, estymacja odporna, model regresji lo‑
gistycznej, rozwinięcie funkcji w bazie funkcyjnej, wielowymiarowe dane funkcjonalne, zagadnienie 
klasyfikacji
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