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I. STATISTICAL MODELS
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C LA SSIFIC A T IO N  IN T O  TYVO PO PU L A T IO N S  FO R  T IM E  
D EPEN  D E N I O BSERV A TIO N S

Abstract. Optimal classification rules based on linear functions which maximize the 
area under the relative operating characteristic curve or which maximize the chosen 
probabilistic distance between two populations are studied here. We obtain an expression 
for the optimal linear discriminant function and show that the resulting procedure 
belongs to the Anderson-Bahadur admissible class. The asymptotic form of the discriminant 
function is also studied.

1. INTRODUCTION

A num ber o f practical problem s in the analysis o f  d ata  reduce to 
classifying a realization o f a sta tionary  norm al stochastic process as 
belonging to  one or the other o f two categories. S c h u m w a y  (1982) has 
provided an extensive list o f references and applications o f discrim inant 
analysis for time series. Applications listed there include discrim inating 
between presumed earthquakes and underground nuclear explosions, the 
detection o f a signal imbedded in a noise series, discrim inating between 
different classes o f brain wave recordings, and discrim inating between 
various speakers or speech patterns on the basis o f recorded speech data .

The admissible procedures for classification provided by the Neym an- 
-Pearson theory as well as the Bayes’ rule are based on the likelihood ratio. 
In  the case of unequal covariance m atrices this likelihood ratio  depends 
on a quadratic function o f observations. U nfortunately, the distribution of 
the quadratic discrim inant function is very com plicated. It involves the
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linear com bination o f non-central chi-square random  variables so that 
com puting error rates resulting from its use seems difficult. Hence, following 
A n d e r s o n  and B a h a d u r  (1962) we will consider a linear discrim inant 
function.

2. THE RELATIVE OPERATING CHARACTERISTIC (ROC) CURVE 
AND ITS PROPERTIES

Let the T-dimensional time series X  = (X(0),  A ^l), J r C T - l ) ) ' be 
a realization o f a stationary stochastic process from the population л , and 
let Y =  0), y^l), Y ( T -  1))' be an independent realization o f a stationary 
stochastic process from the population n 2. Suppose that X  N j ( p i, Z x) 
and Y ~  N r (/i2, I 2), where \ix =  Oi(0), ^ ( l ) ,  n t f - l ) }  ц 2 =  (^2(0), ц г(\), 
..., and the covariance m atrices =  (c t^Is - 1|)> and 
S 2 =  (ff2(ls ~  *D), s, t = 0, I ........ T -  1 are positive definite.

The param etres are assumed to be known. The phrase “X  is stationary 
with m ean /i and covariance m atrix I ” m eans that “(X  — (i) is stationary 
with zero m ean and covariance m atrix E ” .

For each a e R T, a ŕ  0, and each c e R  let R(a'X, с) denote the discriminant 
role that assigns the time series X  to the population n l if a 'X  ^  с and to 
the population n 2 if a 'X  > c.

where Ф is the distribution function o f a N(0, 1) randon variable.
Each discrim inant rule is characterized in terms o f the two probabilities 

of misclassification or in term s of the two conditional probabilities o f  the 
correct classification.

The probability  of misclassifying an observation when it comes from 
the first population  is

We have

a 'X ~ N (a 'f i i, aTje), a'Y~N(a'n2, a X 2a).

Let

and



P(n2 K )  =  P(a 'X  > c) =  1 -  P(a 'X  <  c) =  1 -  F x(c)

and the probability o f misclassifying an observation when it comes from 
the second population is

P(n i \ n 2) — P ( a 'Y ^  c) = F 2(c).

T he corresponding conditional probabilities o f the correct classification are 
equal to

Р (л i K )  =  P (a'X  š  c) =  F ^ c )

and
Р (л 2\п2) = P(a 'Y> c) =  1 -  F 2(c).

1 he probability Р(7г1|я 1) is called the specificity o f the discrim inant rule 
and the probability P(n2\n2) is called the sensitivity o f the discrim inant rule. 

In the param etric representation, the curve o f the form

x =  Fj(c), у  =  1 -  F 2(c), -  oo <  с <  oo

is called the Relative O perating Characteristic (R O C ) curve o f the class 
rules R (a 'X , •). A  plot o f  the R O C  curve is given in Fig. 1.

Fig. 1. A plot of the ROC curve

I he area D(a) under the RO C curve is the index which evaluates the 
accuracy of a class o f discrim inant rules R (a 'X ,  c). A  large area indicates 
that the linear combination a X  discriminates well between the two populations 
being com pared.

1 he area D(a) under the ROC curve has a simple probabilistic inter­
pretation.



Theorem  1. T he area D(a) under the R O C  curve is equal to  the 
probability that the random  variable a 'Y  is stochastically larger than the 
random  variable a'X.

P (fl) - P ( a T > , ' X ) - o ( fl, s , a + ° ^ - - )lra)  ( , )

where

<5 =  fi2 ß i '

A proof of the theorem  is in K r z y ś k o  (1998) and it will be published 
elsewhere.

3. THE CLASSIFICATION RULE

A com parison o f the area under the different RO C curves m ay be used 
to determ ine which linear com bination a 'X  is best.

Hence, we want to  find the linear discrim inant function for which area 
under the corresponding R O C  curve is maximized. This m axim al area is 
the R O C  criterion, m easuring how well the vector o f characteristics d istin ­
guishes between the two populations.

Theorem 2. T he vector a which maximizes the area D(a) given by (1) 
has the form

a = ( Ľ l + Ľ 2y 1ô (2)

F o r a o f  the form (2) we have

0(а) = Ф((0'(11 + 1 2Г 10)1/2) (3)

A proo f o f the theorem  is in K r z y ś k o  [1998] and it will be published 
elsewhere.

Remark 1. Since S'(Z l +  Z 2V l S >  0 and Ф((0’(1.1 + 'Е2У 10 )112) >  1/2, 
we have



The area D(a) close to  1 indicates that the T characteristics distinguishes 
well between the populations n l and n 2, and D(a) close to 1/2 indicates 
th a t these two populations are not well separated.

Now we would like to  pass on to the second m ethod o f finding the 
optimal linear classification rule. We would like to find the linear classification 
procedure which maximizes the function

where is the density function of the random  variable a'X , g2 is the 
density function o f the random  variable a 'Y an d  p is the M a t  u s i t  a (1956) 
distance, or the M o r i s i t a  (1959) distance o r the K ullback distance 
( K u l l b a c k ,  L e i  b i e r ,  1951).

T he M atusita distance is defined as follows.
Let P j,  P 2 be distributions defined on the p-dim ensional Euclidean 

space R p and denote by f lt f 2 their densities with respect to the Lebesgue 
m easure in R p. T he M atusita distance has the following form

I f / i  and f 2 are square integrable with respect to the Lebesgue m easure 
in R p then the M orisita distance has the form

It is obvious that p 2( f 1, f 2) is closely related to  the usual distance

4. THE SECOND CIASSIFICATION RULE

P ie i, g 2)

P z i f i> f  2) —

W 1. / 2) =  Jkp f  i (x V 2(x)dx,

M fi )  =  A h  i =  1, 2.

T he K ullback distance has the form:

Р э ( /„  / 2) =  í Äp [/i(* )  dx.
J 2\X)



( J L Y1[ a 'Z 2a a T t a J

If  g v is the probability density o f a 'X  and g 2 is the probability density of 
a 'Y  then one can easily show that

к М .  Яг) =  ‘ + \ +  Z > ] -  ‘

Р Л . . « г) - 1

-  У ln [ И З Д  +  (a ' I 2a)] -  ln (2^/2),

Р Л ‘’ ^ > = l i n i a ł , a + a %

These three distances are invariant under scalar m ultiplication o f a.

Theorem 3. ( K r z y ś k o ,  W o ł y ń s k i ,  1997). T he vector a which m axi­
mizes these three distances has the form

a = ( Ľ l +  0 Z 2y ' ô  (4)

where

» - * $ « - 1 . 2 . 3  (5,

are such tha t the m atrices 2^ +  OEj are nonsingular and

tn (a )  =  +  ty  ’ £1г(а) =  + - = ;— » a 2 j ta a Z 2a

_ ( a 'ö ) 2 _  2

1 [fl'dx  +  а д 2 ď ( I l + Z 2)a

Í2i(o) =  v42 - B 2(fl'Z1fl) ^ ( а ' Х ^ ) - 1, í22(a) =  Л2 - В 2(аТ2а) * +  (aT 2a)“ \

(a'<5)2 /  - - \ -1
[aX lT + I , ) ^ 2 "  [fl'(E l +  Za)fl1" 1’ * 2 =  ( (fl'Z i a)2 +  ( a T 2 a ) J  ’

A 2 —

h i  (a) =  A 3 -  (a ' I j f l ) -1, t 32(a) =  B 3 -  ( a T ^ ) “ 1,



_  (a'ó) 2 +  a"L2a _  (aö)2 +  a ' l l a 
(a T jf l)2 * -  ( a T 2a)2 *

It is clear tha t the equation (4) is an  implicit equation in a. H ence an 
iterative procedure m ust be employed to solve for a.

Since and Z 2 arc positive definite matrices by assum ption, there 
always exists a non-singular m atrix  P  such that I j  =  P ’ P, I 2 =  P ’AP,  
where Л =  diag(A j, Ap) and A'is(l = 1, p) arc the characteristic roots 
o f  E j i r 1.

Then
ď Z lfl =  ß'ß, a 'Z2a = ß ’A ß , a!t5 =  ß \

where

ß = Pa and <5 =  P'r],

Now, ß  can be written as

ß = Pa =  P (Z , +  0Z2) ” M =  P(p'P + OP'AP) ~ l0 =  (1 +  0A)~  У  

T hus equation (5) reduces to

0 = Ф,(0), i =  1, 2, 3 (6)
where

A  = _  ( A ) 2 _  2
1 [ß'(l +  A)ß]2 ß'(I  +  A)ß

^2(б) = [fj (ß'ß) 2 ~ (Ä2ß'ß) ~' ] 0 + 1 -  J  WW) * + lAi(ß 'W ]

(ß 'v)2 /  í  - 4
л  =  [ f ? v + A j p \ 2 ~ ( ß v + A ) ß )  ♦ ß 2 =  { (ß,ß) + ( ß ' m 2

Фз = (0) = A 2(ß'Aß)0 -  B ,(ß 'A ß) + (ß 'A ß ) (ß 'ß )~ \

A _ ( ß ’r})2 + ß 'Aß _ (ß 'r j )2 + ß'ß  

(ß'ß)2 ’ 3 (ß’A ß )2

I he convergence o f the iteration process follows from the following theorem.



Theorem 4. ( V i l e n k i n  1979, p. 69). Let the function 0 =  ф(0) he the 
m apping o f the interval [a, b] into itself and suppose in this interval the 
inequality \il/'(0)\<q, where q <  1, holds. Then for any point ()0 o f  the 
interval [a, />] the sequence of points 0o, 0 u . . . ,0 n, where 0n+i =  
converges to the root o f the equation 0 =  ф(0).

Roughly speaking this theorem  says that the process of successive 
approxim ations enables us to find those roots 0 o f the equation 0 =  ф(0) 
for which the inequality \ф'(0)\ <  1 is satisfied.

In our case one can easily check on which interval or intervals o f the 
real line the condition \ф'(0)\ < 1 is satisfied.

5. ADMISSIBILITY OF PROCEDURES

Each classification procedure is characterized in term s o f the two 
probabilities o f m isclassification. T he probability  o f m isclassifying an 
observation when it comes from the first population is

/с  — a'fil
P(n2M  = l - F l( c ) =  1 - Ф  -----1

\ ( a T i a ) 2

and the probability o f misclassifying an observation when it comes from 
the second population is

/ c - a > 21
Р Ы п 2) = Р 2( с ) = Ф  -  i

\ № a ) 2

It is desired to m ake these probabilities small. One classification procedure 
is better than another if each probability o f misclassification o f the form er 
is no t greater than  the corresponding one o f the latter and at least one is 
less. A procedure is admissible if there is no other procedure which is better. 

The following theorem  is true.

Theorem 5. ( K r z y ś k o ,  W o ł y ń s k i ,  1997). The linear classification 
procedure defined by (4) and

с = a'ßl +  a,I , l a = а! — 0(a 'Z 2a)

for any 0 such that E , +  0E2 *s positive definite is admissible within the 
class o f linear procedures.



This result follows from the A nderson-B ahadur’s theorem  on admissible 
class o f linear procedures ( A n d e r s o n ,  B a h a d u r ,  1962).

Remark 2. The linear discrim inant procedure for which the area under 
the corresponding RO C curve is maximized is admissible. In our case 0 =  1 
and the m atrix Z i +  Z 2 is positive definite.

Remark 3. If  =  Z 2 =  £ , then for M atusita, M orisita and K ullback 
distances 0 =  1 and

a ' X - C = 1- ( v i -  „ 2) T  - _  1  ( ^  _  ^  1

Hence all these distances and the RO C curve give the same well-known 
F isher linear discrim inant function.

Remark 4. The two probabilities o f misclassification resulting from 
the use of the linear admissible classification procedures have the following 
form

P(n2\nx) =  1 - Ф ( 7 а ' а д ,  =  1 -  Ф{0^а'Т.2а).

Remark 5. We have

a =  ( E ! +  0Ľ2) ~ l ô
or

(£ j +  0Z2)a =  S,
or

a '(£ i  +  0Ъ2)а =  a' ô

If Z 1 +  OZ2 > 0  then the discrim inant procedure is admissible. T he m atrix  
Xj +  012 is positive definite if a'(Et + 0X2)a > 0 for all а Ф 0. Hence 
a!b Ф 0 for all а Ф 0 or а'цt Ф а!ц2 or ф ц 2. This m eans that every 
adm issible linear d iscrim inan t ru le  m akes som e use o f the  fact th a t 

^  /̂ 2-

6. THE ASYMPTOTIC FORMS OF THE LINEAR DISCRIMINANT FUNCTIONS

We now consider a spectral approxim ation to  the linear discrim inant 
functions under the following assumptions:



1. In the population 7̂  the stationary process Z(t) has covariance function

: / m w

with hj(X)(j =  1, 2) assumed to be continuous, positive [ —я, n] absolutely 
integrable spectral densities.

We note tha t for every admissible linear classification procedure the 
m atrix  Xi -I- 0 £ 2 is positive definite. F o r stationary process, this implies that 
the spectral density

В Д  =  K(X) +  dh2( A)

is strictly positive for A e [ —я, я].
2. T he covariance sequence (a} (t)) satisfies

I  И 1+'М 0 1 < ®
r= -  00

for 7 = 1 , 2 and for some ß, 0 <  ß < 1.
3. T he sequence o f m ean differences

s ( 0  =  /*2( 0 - /^ ( 0

satisfies

^  sup | (5(f) | <  00
t

and

(ii) r - 1 - 1.1
Р т ( * )  =  Г 1 I  <5( f + | T | ) á ( í )

t=o

has a limit given by

р(т) =  lim p T(t )  =  1 f  eUt dM(X),
r -00

where M(A) is a m onotone nondecreasing function uniquely defined by the 
conditions M ( — я) =  0 and continuity from the right.

U nder the assum ptions stated above we have the following theorem .

Theorem 6. ( K r z y ś k o ,  W o ł y ń s k i ,  1997). If  he(A) =  /^(A) +  0h2 (A)>  0 
for A e[ — я, я], then



lim T ~ lP i ( 0 i ,  g2) = ^G (0),

lim T ~ 1'Р г(ви  92) = ^G (0),

lim T ~ lР з (9 и  g2) =  2 Я (°)-

where

I he optim al vector a in the sense o f  maximizing the M atusita distance 
asym ptotically or M orisita distance asym ptotically has the form  (4) where
0 is the value for which the function G(0) has a global m axim um .

I he optim al vector a in the sense o f maximizing the K ullback distance

r ľ ľ ľ PLt0tÍCally has the form  (4) where 0 is the value for which the function 
H \v)  has a global maxim um.

T he following theorem  characterizes the value o f  0 for which the 
functions G(0) and H(0) have a global maximum.

Theorem 7. ( K r z y ś k o ,  W o ł y ń s k i ,  1997). The functions G(0) and 
( 0  defined in (7) and (8) have a global m axim um  at 0 = 1 .  

b rom  the Theorem  7, the asym ptotically optim al vector a is given by

The vector a which maximizes the area under the R O C  curve has the

Let X (t)  -  n{t) =  Z(t)  where E (X (t))  = n(t) and let {Z(t), 0} be 
a stationary  norm al process with £ (Z (t))  =  0 which satisfies the assum ption 
1) Гаке En (X ( t) )  =  cos(7t/2)i and E n̂ (X(t))  =  0. Then S(t) = cos(n/2)t and

a G0 =  (Z 1 + E 2)-M .

same form.

7. AN ILLUSTRATIVE EXAMPLE



lim T - '  I  '"<5(1 +  |т |Ж О  =  ~  f_ яЛ М ( А ) ,
Г - oo r = 0

where М(Я) is a step function having jum ps at ±  (л/2) o f height n/2. Hence 
the assum ption 3) is satisfied.

Let {e(t)} be a norm al process with £(c(f)) =  0 and

Г0, k =  1 , 2 , . . . ,
Cov(e(í), e(i +  /c)) = •!

Let now {Z(í), í >  0} be the second order autoregressive A R(2) process i.e. 
Z (i) satisfies

Z(t)  = ß ,Z ( t  -  1) +  ß 2Z (t  - 2 )  + e(t).

T he AR(2) process is always invertible. The stationary condition o f  the 
A R (2) process is given by the following inequalities

ßz +  ß i  < 1. 

ß 2 ~ ß i < l  

- \ < ß 2 < \ .

The autocovariances o f the AR(2) process are

a(k) =
_  1

i + ß z d - ß t f - ß l '
к =  0,

ß i a ( k - l )  + ß 2a ( k - 2 ) ,  k ž  1.

Then it is easy to check tha t (er(/c))“=0 satisfies the assum ption 2). 
Let

tcj : Z (t) =  0.6Z (t -  1) +  0.3Z(t -  2) +  e(t), 

n 2 :Z ( t ) =  0 .8 Z ( i -  l)  +  0 .3 Z ( i - 2 )  +  e(t).

T he solution of the implicit equation (6) for the M orisita distance and the 
value o f the area under the  R O C  curve fo r these processes and 
T =  10, 11.......25, are given in Tab. 1.



T a b l e  1

The solutions 0 of the equation (6) and the values 
of the area under the ROC curve for Morisita 

distance and AR(2) processes

T 0 D(a)

10 0.786808 0.965627
11 0.778806 0.973469
12 0.817571 0.977832
13 0.808964 0.982712
14 0.839575 0.985532
15 0.844328 0.988685
16 0.857253 0.990494
17 0.852721 0.992534
18 0.871248 0.993716
19 0.867817 0.995051
20 0.882811 0.995826
21 0.879934 0.996705
22 0.892438 0.997217
23 0.890074 0.997799
24 0.900613 0.998139
25 0.898603 0.998525

It is clear from Tab. 1 th a t approxim ating the solution o f (6) by 0 = 1 ,  
becomes increasingly accurate as T  becomes larger. T he M orisita distance 
gives the best results. F rom  this Table we see also tha t if T  is increasing 
then D (a)—*-1.
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