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I. STATISTICAL MODELS

Mirostaw Krzykko*, Waldemar Wotynski**

CLASSIFICATION INTO TYVO POPULATIONS FOR TIME
DEPENDENI OBSERVATIONS

Abstract. Optimal classification rules based on linear functions which maximize the
area under the relative operating characteristic curve or which maximize the chosen
probabilistic distance between two populations are studied here. We obtain an expression
for the optimal linear discriminant function and show that the resulting procedure
belongs to the Anderson-Bahadur admissible class. The asymptotic form of the discriminant
function is also studied.

1. INTRODUCTION

A number of practical problems in the analysis of data reduce to
classifying a realization of a stationary normal stochastic process as
belonging to one or the other of two categories. Schumway (1982) has
provided an extensive list of references and applications of discriminant
analysis for time series. Applications listed there include discriminating
between presumed earthquakes and underground nuclear explosions, the
detection of a signal imbedded in a noise series, discriminating between
different classes of brain wave recordings, and discriminating between
various speakers or speech patterns on the basis of recorded speech data.

The admissible procedures for classification provided by the Neyman-
-Pearson theory as well as the Bayes’ rule are based on the likelihood ratio.
In the case of unequal covariance matrices this likelihood ratio depends
on a quadratic function of observations. Unfortunately, the distribution of
the quadratic discriminant function is very complicated. It involves the
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linear combination of non-central chi-square random variables so that
computing error rates resulting from its use seems difficult. Hence, following
Anderson and Bahadur (1962) we will consider a linear discriminant
function.

2. THE RELATIVE OPERATING CHARACTERISTIC (ROC) CURVE
AND ITS PROPERTIES

Let the T-dimensional time series X = (X(0), A™D), JrICT-1))" be
a realization of a stationary stochastic process from the population n, and
let Y= 0), y~), Y (T- 1)) be an independent realization of a stationary

stochastic process from the population n2. Suppose that X Nj(pi, ZX)
and Y~ Nr(/i2, 1 2), where \ix= 0i(0), ~ (1), ntf-1)} u2= (~200), ur(\),
and the covariance matrices = (ct™s - 1))> and
s2= (ffz(lIs~ *D), s, t=10, I..... T- 1 are positive definite.

The parametres are assumed to be known. The phrase “X is stationary
with mean /i and covariance matrix | ” means that “(X —(i) is stationary
with zero mean and covariance matrix E”.

For each aeRT, af 0, and each ceR let R(a'X, c) denote the discriminant
role that assigns the time series X to the population nl if a'X ~ ¢ and to
the population n2 if a'X > c.

We have

a'X~N(a'fii, aTje), a'Y~N(a'n2, aX?2a).

Let

and

where @ is the distribution function of a N(0, 1) randon variable.

Each discriminant rule is characterized in terms of the two probabilities
of misclassification or in terms of the two conditional probabilities of the
correct classification.

The probability of misclassifying an observation when it comes from
the first population is



P(n2K) = P(a'X>c¢) = 1- P(a'X<c)= 1- FxCc)

and the probability of misclassifying an observation when it comes from
the second population is

P(ni\n2) —P(a'Y” c) = F2(c).

The corresponding conditional probabilities of the correct classification are
equal to

P(niK ) = P(a'X$§ c) = F~c)
and
P(n2\n2) = P(a'Y>¢c) = 1- F2(c).

lhe probability P(7rl|a 1) is called the specificity of the discriminant rule
and the probability P(n2\n2) is called the sensitivity of the discriminant rule.
In the parametric representation, the curve of the form

x = Fj(c), y=1- F2(c), - 00<c< 00

is called the Relative Operating Characteristic (ROC) curve of the class
rules R(a'X, ). A plot of the ROC curve is given in Fig. 1

Fig. 1. A plot of the ROC curve

Ilhe area D(a) under the ROC curve is the index which evaluates the
accuracy of a class of discriminant rules R(a'X, c). A large area indicates
that the linear combination aX discriminates well between the two populations
being compared.

1he area D(a) under the ROC curve has a simple probabilistic inter-
pretation.



Theorem 1. The area D(a) under the ROC curve is equal to the
probability that the random variable a'Y is stochastically larger than the
random variable a'X.

Pfl)-P (aT>,'X)-0(fl,s,a+° "™ --)lra) (,)

where
$= fi2 Ri'

A proof of the theorem is in Krzysko (1998) and it will be published
elsewhere.

3. THE CLASSIFICATION RULE

A comparison of the area under the different ROC curves may be used
to determine which linear combination a'X is best.

Hence, we want to find the linear discriminant function for which area
under the corresponding ROC curve is maximized. This maximal area is
the ROC criterion, measuring how well the vector of characteristics distin-
guishes between the two populations.

Theorem 2. The vector a which maximizes the area D(a) given by (1)
has the form

a=(Ll1+L2y 16 )

For a of the form (2) we have

0(a) = ®((0'(11+ 12r 10)1/2) 3)

A proof of the theorem is in Krzy$sko [1998] and it will be published
elsewhere.

Remark 1. Since S'(ZI+Z2V IS>0 and &((0°(1.1+ 'E2Y 10)112)> 1/2,
we have



The area D(a) close to 1 indicates that the T characteristics distinguishes
well between the populations nl and n2, and D(a) close to 1/2 indicates
that these two populations are not well separated.

4. THE SECOND CIASSIFICATION RULE

Now we would like to pass on to the second method of finding the
optimal linear classification rule. We would like to find the linear classification
procedure which maximizes the function

Piei, g2

where is the density function of the random variable a'X, g2 is the
density function of the random variable a'Yand p is the M atusit a (1956)
distance, or the Morisita (1959) distance or the Kullback distance
(Kullback, Lei bier, 1951).

The Matusita distance is defined as follows.

Let Pj, P2 be distributions defined on the p-dimensional Euclidean
space Rp and denote by f It f 2 their densities with respect to the Lebesgue
measure in Rp. The Matusita distance has the following form

If/i and f 2 are square integrable with respect to the Lebesgue measure
in Rp then the Morisita distance has the form

Pzifi>f2 —

W 1./2) = JKpfi(xV2(x)dx,
Mfi) = Ah i= 1 2.

It is obvious that p2(f1, f2) is closely related to the usual distance

The Kullback distance has the form:

Pa(l, /2 = iBp[li(*) 2% dx.



If gv is the probability density of a'X and g2 is the probability density of
a'Y then one can easily show that

KM . 4dr)= +\ +7Z>1-°

PN ..«r)-1

- YIn[W 340 +(a'l2a)]- In(27/2),

o (J L 1
Pn~>=1liniat,a+a% [a'Z2a aTtajl
These three distances are invariant under scalar multiplication of a.

Theorem 3. (Krzy$ko, Wotynski, 1997). The vector a which maxi-
mizes these three distances has the form

a=(LI+0Z2"'6 (4)

where

» -*$«-1.2.3 (5,

are such that the matrices 2 + OEj are nonsingular and

tn(a) = + ayjta £lr(a) = +_a2§i>>

_(a'6)2 _ 2
1 [fldx+a g 2 d(lIl+Z2a

i2i(0) = vi2- B 2fI'Z1fl) ~(a*X~)-1, i22(a) = N12-B 2(aT2a) *+ (aT2a)"\

(a'<5)2 / - -\-1
_[aXIT+ 1)y~2" [fI'(El + za)fl1"1” *2= ((fI'Zia)2 + (aT2a)J ~

hi(a) = A3- (a'ljfl)-1, t32(a) = B3- (aT”™)“1,



_(a'6)2+ a"L2a _ (ad)2+ a'lla
(aTjfh2 =* - (aT2a)2 *

It is clear that the equation (4) is an implicit equation in a. Hence an
iterative procedure must be employed to solve for a.
Since and Z2 arc positive definite matrices by assumption, there

always exists a non-singular matrix P such that Ij = P P, | 2= P’AP,
where /1 = diag(Aj, Ap) and A'is(l = 1, p) arc the characteristic roots

of E jirl
Then
dzIfl = B'R, a'Z2a = RB’AR, alt5= R\

where

B=Pa and <%= Pr],
Now, B can be written as
R=Pa=P(Z, +0Z2”"M= P(p'P + OP'AP)~10 = (1 + 0A)~ Y
Thus equation (5) reduces to

0=,0), i= 1, 2, 3 (6)

where

A =_ (A)2 _ 2
1 [R'(I+ A)R]2 B'(1+ AR
"0 =[f] ®R) 2~@E2rR)~10+1-3 Ww) *HAi(B'W]

(B'v)2 / i -4
n o= [f2v+Ajp\2~ (Bv+A)B) &R2= {(BB)+ (R 'm 2

®3 = (0) = A2(R'AB)0 - B,(B'AR) + (RB'AR)(R'R)~\

A (B2+ B'AR C(R'rj)2+ R'R
(R'R)2  * 3 (R'AR)2

I he convergence of the iteration process follows from the following theorem.



Theorem 4. (Vilenkin 1979, p. 69). Let the function 0= ¢(0) he the
mapping of the interval [a b] into itself and suppose in this interval the
inequality \il/'(0)\<q, where g< 1, holds. Then for any point ()0 of the
interval [a, A the sequence of points 0o, Ou ...,0n, where On+i =
converges to the root of the equation 0 = ¢(0).

Roughly speaking this theorem says that the process of successive
approximations enables us to find those roots 0 of the equation 0 = ¢(0)
for which the inequality \'(0)\ < 1 is satisfied.

In our case one can easily check on which interval or intervals of the
real line the condition \'(0)\ < 1 is satisfied.

5. ADMISSIBILITY OF PROCEDURES

Each classification procedure is characterized in terms of the two
probabilities of misclassification. The probability of misclassifying an
observation when it comes from the first population is

PN2M = I-F I(c)= 1-® - 1
\(aTia)2

and the probability of misclassifying an observation when it comes from
the second population is

/c-a>2
Pbln2 =P2(c)= - i
\Ne a)2

It is desired to make these probabilities small. One classification procedure
is better than another if each probability of misclassification of the former
is not greater than the corresponding one of the latter and at least one is
less. A procedure is admissible if there is no other procedure which is better.

The following theorem is true.

Theorem 5. (Krzys$ko, Wotynski, 1997). The linear classification
procedure defined by (4) and

c=aBl+alla=a —0(a'Z2a)

for any 0 such that E, + OE2 * positive definite is admissible within the
class of linear procedures.



This result follows from the Anderson-Bahadur’s theorem on admissible
class of linear procedures (Anderson, Bahadur, 1962).

Remark 2. The linear discriminant procedure for which the area under
the corresponding ROC curve is maximized is admissible. In our case 0 = 1
and the matrix Zi + Z2 is positive definite.

Remark 3. If = Z2= £, then for Matusita, Morisita and Kullback
distances 0= 1 and

a'X-C=1(vi- ,2T- _ 1(~ _~ 1

Hence all these distances and the ROC curve give the same well-known
Fisher linear discriminant function.

Remark 4. The two probabilities of misclassification resulting from
the use of the linear admissible classification procedures have the following
form

P(n2\nx) = 1-® (7a'ag, = 1- ®{0"a'T.2a).
Remark 5. We have

a= (E!+ 0L2)~10
or
(Ej + 0Z2)a = S,
or
a'(Ei + 0b2)a = a'd

If Z1+ OZ2>0 then the discriminant procedure is admissible. The matrix
Xj + 012 is positive definite if a'(Et + 0X2)a >0 for all a®0. Hence
alb®d0 for all ad0 or a'uyt dalu2 or ¢ u2. This means that every
admissible linear discriminant rule makes some use of the fact that

AR

6. THE ASYMPTOTIC FORMS OF THE LINEAR DISCRIMINANT FUNCTIONS

We now consider a spectral approximation to the linear discriminant
functions under the following assumptions:



1. In the population 7* the stationary process Z(t) has covariance function

with hj(X)(j = 1, 2) assumed to be continuous, positive [—sa, n] absolutely
integrable spectral densities.

We note that for every admissible linear classification procedure the
matrix Xi --0£2 is positive definite. For stationary process, this implies that
the spectral density

B O = K(X)+ dh2(A
is strictly positive for Ae[—3a, 1].

2. The covariance sequence (a} (t)) satisfies

| Ni+'M 01<®
r=-®

for 7= 1, 2 and for some B, O0<R < 1
3. The sequence of mean differences

s(0 = #2(0 - /(0

satisfies
A sup |(5(f) | < oo
t
and
(ii) r-1-1
PT(*) = 1 | 6(f+|T|)é(|')
t=o0

has a limit given by

p(t) = limpT(t) = 1 f eU dM(X),
r-00

where M(A) is a monotone nondecreasing function uniquely defined by the
conditions M(—s) = 0 and continuity from the right.
Under the assumptions stated above we have the following theorem.

Theorem 6. (Krzy$ko, Wotynski, 1997). If he(A) = /*(A) + 0h2(A)> 0
for Ae[ —s1, 4], then



lim T~Ipj(0i, g2) = ~G(0),
lim T~ipren 92) = 2G(0),

lim T~lps(on g2 = 24 (-

where

Ihe optimal vector a in the sense of maximizing the Matusita distance
asymptotically or Morisita distance asymptotically has the form (4) where
0 is the value for which the function G(0) has a global maximum.

I he optimal vector a in the sense of maximizing the Kullback distance

rRI’I’ ticall haﬁ the form (4) where 0 is the value for which the function
H\v) has a global maximum:

The following theorem characterizes the value of 0 for which the
functions G(0) and H(0) have a global maximum.

Theorem 7. (Krzys$ko, Wotyriski, 1997). The functions G(0) and
(0 defined in (7) and (8) have a global maximum at 0=1.
brom the Theorem 7, the asymptotically optimal vector a is given by
a®@= (Z1+E2-M.
The vector a which maximizes the area under the ROC curve has the

same form.

7. AN ILLUSTRATIVE EXAMPLE

Let X(t) - n{t) = Z(t) where E(X(t)) =n(t) and let {Z(t), 0} be
a stationary normal process with £(Z(t)) = 0 which satisfies the assumption
1) 'ake En(X(t)) = cos(7t/2)i and EmM(X(t)) = 0. Then S(t) = cos(n/2)t and



IimT-" 1 "L+ |TPKO = ~ f_aiIM (A),
M-mo r=0

where M(fA) is a step function having jumps at + (n/2) of height n/2. Hence

the assumption 3) is satisfied.
Let {e(t)} be a normal process with £(c(f)) = 0 and

ro, k= 1,2,...,
Cov(e(i), e(i+ lc)) =

Let now {Z(i), i > 0} be the second order autoregressive AR(2) process i.e.
Z (i) satisfies

Z(t) = B,Z(t- 1)+ B2Z(t-2) + e(t).

The AR(2) process is always invertible. The stationary condition of the
AR(2) process is given by the following inequalities

Rz + Ri <1
R2~Bi< I
-\< R 2<)\.

The autocovariances of the AR(2) process are

— 1 K= 0,
ak) = i+ Rzd-Btf-R 1"
Ria(k-1) +B2a(k-2), ki 1

Then it is easy to check that (er(/c))“=0 satisfies the assumption 2).
Let

tcj :Z(t) = 0.6Z(t- 1)+ 0.3Z(t- 2) + e(t),
n2:Z(t) = 0.8Z(i- 1) + 0.3Z(i-2) + e(t).
The solution of the implicit equation (6) for the Morisita distance and the

value of the area under the ROC curve for these processes and
T= 10, 11.....25, are given in Tab. 1



Table 1

The solutions 0 of the equation (6) and the values
of the area under the ROC curve for Morisita
distance and AR(2) processes

T 0 D(a)

10 0.786808 0.965627
1 0.778806 0.973469
12 0.817571 0.977832
13 0.808964 0.982712
14 0.839575 0.985532
15 0.844328 0.988685
16 0.857253 0.990494
17 0.852721 0.992534
18 0.871248 0.993716
19 0.867817 0.995051
20 0.882811 0.995826
21 0.879934 0.996705
22 0.892438 0.997217
23 0.890074 0.997799
24 0.900613 0.998139
25 0.898603 0.998525

It is clear from Tab. 1 that approximating the solution of (6) by 0=1,
becomes increasingly accurate as T becomes larger. The Morisita distance
gives the best results. From this Table we see also that if T is increasing
then D(a)—*L
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