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DETECTING SHARP CONTOURS OF IMAGES

Abstract. The theory of wavelets introduced by Daubechies is a developing branch 
o f mathematics with a wide range of potential applications. This paper presents a survey 
o f some methods o f detecting sharp cusps of unknown function developed by Wang with 
examples of their application to detecting sharp contours o f images. A simple original 
algorithm to detect sharp contours of two dimensional images is also proposed and its 
application is presented. Visual examination allows to state that the results are comparable 
with the Wang’s method.
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I. INTRODUCTION

We say a function /  has an a-cusp at x0 if there exists a positive 
constant К  such that as h tends to zero from left or right,

\ f(x0 + h) - R x 0) \> K \h \ *

For the case a =  0, /  has a jum p at x0. We will consider only sharp cusps 
detection so we restrict ourselves to the case 0 < a < l .

We can observe /  from the white noise model

Y[dx) =f(x)dx + zW{dx), xe[0, 1] (1)

where W  is a standard Wiener process, т is a noise level parameter, and 
/  is an unknown function which may have jumps or cusps. An equivalent 
way to observe f  is the following nonparametric regression model:

Уi = f ( x )  + (Tzi i = l ,  n
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with x, =  i/n, the independent standard normal errors z() a > 0. The regression 
process is defined by {Yn(x): x e [0 , 1]}, where x0 =  0, У„(0) =  0 and 
Уп(х д =  У1 +  ••• +  Vi for i =  n with interpolation by a Wiener process 
lor these x which satisfy xJ^ x < x , +  i. Then У, is a white noise process 
with t  =  a / j n ( D o n o h o ,  J o h n s t o n e ,  (1995)).

The problem is to detect sharp cusps and jumps of function / .

П. ONE DIMENSIONAL CASE

Wavelets were introduced by D a u b e c h i e s  (1990). Wavelet in this 
sense consists of two functions: the scaling functions and the primary 
wavelet. The scaling function <p(x) is solution of the following difference 
equation

<P(x) = Z cM 2 x  -  k) (2)
k e Z

with the normalizing condition

f(p(x)dx = 1
R

The primary wavelet (p(x) is defined by

<P(x) =  Z  ( -  l)*ct+ i<p(2x +  k) (3)
k e Z

1 he coefficients ck are called the filter coefficients and it is the careful 
choice of them that ensures the desired properties of wavelets. The condition

Zc* = 2 
к

ensures the existence of unique solution to (2) in Ü(R).  A wavelet system 
is the infinite collection of translated and scaled versions o f <p and 
Ф defined by

<Pj.k(x) = 2ilz(p(2J -  к) j, k e Z  

• /^ (х )  =  2 "V (2 J - k )  j, k e Z



An additional condition on the filter coefficients i.e.

£c*c*+ 2i =  2 if / =  0 ( 0 i f / * 0 )  
к

with some regularity conditions implies that the family of functions ф is 
an orthonormal basis of L2(R). It seems important to observe that it is 
possible to construct finite length sequences of filter coefficients that result 
in compactly supported functions q> and ф. The simplest example of 
a wavelet system is the Haar system, given by c0 =  =  1 and all other 
coefficients equal to zero, but if we want to analyse a very irregular 
function this system is not sufficient. If ф is a Daubechies wavelet then 
we define function

Ф.(х) = (lA/n)i/r(x/s)

The wavelet transformation of function /  is defined as 

7T(s, x ) =  \ф£х -  u)f(u)du

For wavelets with compact support, the value of 7f(s, x) depends upon 
the value of /  in a neighbourhood of x of size proportional to the scale 
s. At small scales, Tf(s, x) provides localised information such as local 
regularity on f (x ) .  The local regularity is often measured with the help of 
Lipschitz condition.

A function f ( x )  is said to be Lipschitz a at x0 if there exists a positive 
constant К  such that, as h tends to zero,

\f(x0 + h ) - f ( x 0) \ ^ K \ h \ •

From the mathematical point of view the global and local Lipschitz 
regularity can characterised by the asymptotic decay of wavelet transfor­
m ation at small scales. For example, if /  is differentiable at x, TJ{s, x) 
has the order sv2 as s tends to zero, and if /  has an a-cusp at x, the 
maximum of 7J(s, x) over a neighbourhood of x of size proportional to 
.<? converges to zero at a rate no faster than sa+1/2 as s tends to zero. We 
define the wavelet transformations of the white noise H[dx) and Y in the 
following way

TW(s, x) = — u)W{du)

TY[s, x)  =  -  u)Y(du) =  Tf(s, x)  +  xTW{s, x)



At a given scale s, TW(s, x)is a stationary Gaussian process with zero 
mean and covariance function

From the above formulas it follows that, at a very fine scale s, TY(s, x ) 
is dominated by xTW[s, x), while, at a coarse scale s, 7f(s, x) dominates 
TY[s, x). The local information on /(x )  is provided by Tf(s, x) at fine 
scales, so the wavelet transformation at finer scales can detect local changes 
more precisely. The idea is to choose fine scales sx such that, at those 
x where /(x )  is differentiable, the orders of Tf(sx, x) and zTW[st, x) arc 
balanced. If function /  has sharp cusps, for nearby x, TW[s„ x) will be 
dominated by 7f(st, x) and hence significantly larger than the others. 
Therefore, we can detect sharp cusps by checking the values of TY[sx, x).

Let us consider the following example of applying this approach to 
testing the null hypotheses I I0: f  is differentiable; against I I /  has sharp 
cusps. The test statistics is given by the maximum of \TY[sx, x)| over 
xe[0 , 1]. Critical values C, v i.e. values defined by

If we want to apply this test in practice we have to find the discrete 
version of wavelet transformations, because we can observe >{x) only at 
n discrete values. The discrete version of the continuous wavelet transformation 
is some orthogonal matrix W ( D a u b e c h i e s  (1994)). The value w =  nll2wjtk 
approximates the critical values of the test’s statistic for appropriately 
defined j and к (compare D o n o h o ,  J o h n s t o n e  (1994)). An example of 
application of this test is presented in Fig. 1 where we try to detect one 
jump and one sharp cusp of function / .

*I(x <  0.26) — 2 |x  — 0.26|3/5I(x >  0.26) +  I ( x ^  0.78), £; ~ N (0 , a2), a = 0.2,

FĄTWis, х)7Ж *, x)} =  JiA,(x -  и)ф,(У -  u)du

where у is the test’s size, are given by the formula

Ct,y = T ,/2 |lo g s t | |2 | lo g s t | +  l o g jji/ ф ) j 2du J /(2 T c )^ -lo g { -lo g (l - y ) /2 } |

n =  1024; (a) true curve, (b) critical values w.
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Fig. 1. D ata simulated from model y( = / ( j /n) +  e„ f ( x )  =  2 -  2 |x - 0 .2 6 |1/5*

III. TWO DIMENSIONAL CASE

In two dimensional case unknown function f ( x ,  y), for (jc, y)e[0 , I]2, 
is observed from the following model

*1.11 = f ( x i 1> У‘г) + £i,ii *1. h  =  1, П = 21 (4)

where x tl = i1/n, у1г = i2/n and £ilia are independent, identically distributed 
normal errors with mean zero and variance a2. The function f ( x ,  y) 
has sharp cusps along some curves in unit square (0, l)2 and we want 
to find them.

We define cusps in two dimensions in the following way: we say 
that /  has a sharp cusps along a continuous curve 0 in (0, l ) 2, if for 
each (x, y)eO  there exists a ßoe[0,2iz) such that for ß e (ß0 -  ö, ß0 +  ô), 
as /i—*• 0,

[f(x + hc osß ,y  + h s i n ) - f ( x ,  y ) \ ^ K \ h \ a

where К  and S are positive constants which depend only on 0 and / .
If (p and ф are one dimensional Daubechies wavelets then we define 

three two dimensional wavelets as follows;
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¥/M (x, y) = <p(x cos ß — у sin ß) ф(х sin ß  +  y cos ß)

V/vJ(x, y) = cp(x cos ß  -  у  sin ß) <p(x sin ß +  у cos ß)

4/ i - \x ,  y) = (p(x cos ß - y  sin ß) Il/(x sin ß + у cos ß),

where h, v, d denote “ horizontal” , “ vertical” and “ diagonal” and 
ße(Q,n/4)  is an orientation-turning parameter. Scale is introduced to the 
wavelets in the similar way as in the one dimensional case i.e. we define 
function

4/y, ß(x, y) = s ~ i 4/y,ß(x/s, y/s) for y = h, v, d

The wavelet transformation of / (x , y) is defined as

T f ( s , x , y ) =  max { |7* 'Я * .* ,У )1 , \ T ^ f ( s , x , y ) \ ,  | Г  >011,
0 < ß « я/41 J

where

T yJf(s ,  x, y) = - и ,  у -  и) f  (и, v)dudv

Similarly to the one dimensional case, at fine scales s, Tf(s, x, y) 
provides local information on f ( x ,  y) , such as Lipschitz regularity. We say 
that f ( x ,  y) is Lipschitz a at (x0, y0) if there exists a positive constant 
К  such that for all ß and at h —>0,

{f(x +  h cos ß, y + h sin ß) - f ( x ,  y) \ <  K \ h |a

Similarly as in the one sample case global and local Lipschitz regularities 
can be characterised by the asymptotic decay of wavelet transformation at 
small scales. For example, if /  is differentiable, then Tf(s, x, y) is of order 
s2, if /  has a sharp cusps along some curve then the minimum of Tf(s, x, y) 
along this curve converges to zero at a rate no faster than .s“+1 as s tends 
to zero.

If we have data from model (4) we define two processes Z„(x, y), 
Wn(x,y)  for (x, y )e[0 , l]2 with the following formulas: Z„(0, 0) =  ^„(0,0) =  0 
and

Z„(x,y) = n~2 X  £
Í !  <  П Х  i 2 <  n y



The wavelet transformations of Z„ and W„ are defined as

where

T ' pW„(s, x, у) =  JiFJ "(x  - u ,  y -  u)W„(du, dv) =
n n

= n 2 Z  I  V \ \ x -  i jn ,  y -  i2/n)£Ml

and

0< |!< n /4

where

V ^ Z ^ s ,  x, y) =  J Ч*, \ х  -  u, y -  u)Z„(du, dv)

These transformations are connected with the following formula ( Wa n g ,

T hPWn(s ,x , y )  is a normal random variable with mean 0 and variance of 
order 1 In and Tf (s ,x ,y )  is of order s2 if /  is differentiable and .^ + 1 if 
/  has a sharp cusp at (x , y ). Therefore (5) implies that at a very fine scale 
.v, TZ„(s,x ,y )  is dominated by TW„(s,x,y)  and at a coarse scale s, 
Tf(s, x, y) dominates TZ„{s, x, y). We use the values of T Z n(s, x,  y) which 
exceed suitably defined threshold values C„ only by sharp cusp curves to 
detect these curves.

By 0  we denote the class of smooth candidate curves that contains the 
true sharp cusps curves 0U ...0q. All curves in 0  along which the minima 
of TZ„(s,x,y)  exceed threshold C„ we denote by {0}, i.e.

and we estimate by {0}. We measure the distance between two
closed subsets A, f lc [ 0 ,  l]2 in the sense of the HausdorfT distance i.e.

(1998)):

(х.у)бв

L ( A , B ) =  max d(x ,y ,A )



If we apply this distance to measure the distance between the sets 
and {0} then we can find the convergence rate for the distance

this distance L^(J{i?}, IJ  0,^. Figure 2 presents an example of applying this

method to detecting sharp contours of two dimensional woman’s portrait.

IV. NEW ALGORITHM PROPOSAL

The methods developed by Wang are mathematically elegant but they 
are relatively complicated and are not satisfactory if we pay attention to 
the speed of establishing sharp contours of images. In this part we present 
a simple algorithm which can be used to detect sharp contours of two 
dimensional images.

Suppose that we have a 800 by 600 pixels image. We have to convert 
the computer code of this image (it is either a bitmap or vector graphics 
or other form) to a table each entry of which presents the saturation of 
one of three basic colours, red, green and blue. Thus we have three, 800 
rows by 600 columns tables, each for one colour. Moving along row n we 
mark the point in which there is a sharp change between this point and 
the next one in the same row. The same procedure is repeated for the row 
n + 1. Then we connect the change point in row n with the change point 
in row n -ł- 1 if there is a sharp change in the same column, the previous
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Fig. 2. Sharp contours of a two dimensional image of a woman’s photograph



Fig. 3. Two dimensional photograph and its sharp contours established via
the new algorithm

one or the next one. I he crucial problem is to avoid the theoretical 
complications connected with detecting sharp changes and to define sharp- 
change in a simpler way. One of the ways is to say that sharp change 
occurs when all three absolute values of the differences between the 
saturations of three basic colours of two compared points exceed certain 
limit (e.g. 10 for the saturation scale from 0 to 256). Another way, which 
turned out to be more successful in practice, is to say that sharp change 
occurs when the smallest of the three differences in saturations exceeds 
a ~  ß, the middle of the three differences exceeds a and the highest of the



three differences exceeds a +  ß ,  where a is a positive parameter of change 
(e.g. 10) and ß  ranges from 0 to a.

The example of applying this approach to detect sharp contours is 
presented in Fig. 3. Visually we can see that the results are comparable 
with what is presented in Fig. 2 because sharp contours are correct and 
are clearly visible and the volume of memory needed for storing this picture 
is a small fraction of the original volume.
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WYKRYWANIE OSTRYCH KONTURÓW OBRAZÓW

(Streszczenie)

Teoria falek wprowadzonych przez Daubechies jest rozwijającą się częścią matematyki, 
stosowaną w wielu dziedzinach. W artykule tym przedstawiony jest przegląd metod wykrywania 
„szpiców” nieznanej funkcji opracowanych przez Wanga. Metody wykrywania szpiców i skoków 
w przypadku jednowymiarowym są zilustrowane przykładem zastosowania do funkcji rzeczywistej 
jednej zmiennej, która ma jeden szpic oraz jeden skok (por. rys. 1). W przypadku dwu­
wymiarowym metody są zilustrowane przykładem zastosowania do wykrywania ostrych 
konturów obrazu przedstawiającego fotografię kobiety (por. rys. 2). Część 4 artykułu jest 
wkładem własnym autora. Zaproponowany jest algorytm rozpoznawania ostrych konturów 
obrazów, którego zaletą jest prostota oraz szybkość działania. Algorytm jest zastosowany do 
ustalenia ostrych konturów  fotografii przedstawiającej martwą naturę. W zrokowa ocena 
efektów algorytmu pozwala na stwierdzenie, że wyniki są porównywalne z wynikami uzyskanymi 
przez Wanga za pomocą metod opartych na skomplikowanym aparacie matematycznym oraz 
wolno działających.


