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BAYESIAN ANI) AKAIKE’S INFO RM ATIO N C R ITER IO N S  
FOR SO M E M ULTIVARIATE TESTS OF H OM OG ENEITY WITH  

A PPLIC A TIO N S IN M ULTISAM PLE C LU STER ING

A ttra c t. This paper studies the A lC  and B1C (Akaike’s and Bayesian Information 
Criterion) replacement for:

-  Box’s (1949) M  test o f the homogeneity of covariances,
-  Wilks’ (1932) Л criterion for testing the equality of mean vectors and
-  likelihood ratio test of the complete homogeneity as two of model -  selection 

criterions.
AIC and BIC are new procedures for comparing means and samples, and selecting 

the homogeneous groups from heterogenous ones in multi-sample data analysis problems.
f r om the Bayesian view-point, the approach to the model-selection problem is to 

specily the prior probability ol each model, prior distributions for all parameters in each 
model and compute the posterior probability of each model given the data. That model 
lor which the estimated posterior probability is the largest is chosen to be the best one.

A clustering technique is presented to generate all possible choices of clustering 
alternatives of groups and indentify the best clustering among the alternative clusterings.

Key words: Model selection, Akaike’s and Bayesian information criterions, multisample 
clustering.

L INTRODUCTION

Many practical situations require the presentation of multivariate data 
from several structured samples for comparative inference and the grouping 
of the heterogeneous samples into homogeneous sets of samples.

In statistical literature, the Multivariate Analysis of Variance (MANOVA) 
is a widely used model for comparing two or more multivariate samples.
I he formal analyses involved in MANOVA are not informative. The model
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considers the variabilities only in pairs of samples, and it ignores the 
variabilities in other groups. For this reason, in any problem where a set 
of parameters is to be partitioned into groups, it is reasonable to provide 
practically useful statisitcal procedures that would tell us which samples 
should be clustered together and which samples should not be cluster together.

A common problem in clustering techniques is the difficulty of deciding 
on the number of clusters present in a given data set. This problem has 
been noted by many authors such as B e a l e  (1969), M a r r i o t  (1971), 
С a l  in  s k i  and I l a r a b a s z  (1974), M a r o n n a  and J a c o v k i s  (1974), 
D u r a n  and O d e l l  (1974), II a r  t ig  a n (1977), M a t u s i t a and O h s u m i  
(1980), B o z d a g a n  (1988, 1990, 1994) proposed and estabilished AIC 
(1973) and he developed a new informational measure of complexity 
(ICOP) criterion as performance measure for choosing the number of 
clusters. M a d d  a la  (1992) discusses the implied critical F-values for the 
different classical model -  selection criteria (maximum R 2, Amemiya’s PC, 
Mallows’Cp, Hocking’s Sp and Akaike’s AIC), as well as the F-ratios 
presented by L e a m a r  (1978) based on his posterior adds criterion. 
A n d r e w s  (1994) discusses the large-sample correspondence between classical 
hypothesis tests and Bayesian posterior adds tests.

From the Bayesian viewpoint, the approach to the model-selection 
problem is to specify the prior probability of each model, prior distribution 
for all parameters in each model and compute the posterior probability of 
each model given the data. We choose this model for which the estimated 
posterior probability is the largest. Next, individual sample assigned to this 
cluster for which also, the estimated posterior probability is the largest.

To ilustrate two of the important virtues of model selection criterions, 
in this paper, we compute AIC and BIC replacement for three tests of 
multivariate homogeneity by varying p, the number of variables; К  -  the 
number of samples; and n -  the sample size.

We present the applications of the result obtained in this paper to 
multi-sample cluster analysis, the problem of clustering data matrices 
combinatorially without forcing an arbitrary choice among the clustering 
alternatives to achieve a parsimonious grouping of samples. The remainder 
of this paper is organised as follows.

In Section 2, we discuss three linked multisample models and as an 
alternative to conventional tests procedure we derive AIC and BIC for the 
test of homogeneity of covariance model, MANOVA model and complete 
homogeneity model. In Section 3, we give the AIC and BIC -  replacements 
for m ultivariate classical tests of homogeneity. In Section 4 we shall 
propose Multi-Sample Cluster Analysis (MSCA) as an alternative to con­
ventional Multiple Comparison Procedure (MCP).



II. AIC’S ANI) BIC PROCEDURES FOR MULTIVARIATE M ODELS

II I. AKAI KE AND BAYESIAN CRITERIONS

Throughout this section we shall suppose that we have independent data 
matrices У,, У2, ..., YK, where the rows of У, (nt x p) are independent and 
identically distributed N p(p„ Z(), / = 1 , 2 ,  ..., K. In terms of the parameters
0 =  (pu pK, Z „  ...,1х), the models we are going to consider are as follows:

1) 0. =  ( ß l , Ц 2 ,  . . . ,  Z t , . . . ,  ZK)
v------ y----------- * '----- -V------'

(varying mean vectors and varying covariances)

with m = Kp + Kp(p + l)/2  parameters, where К  is the number of samples 
and, p is the number of variables.

2) v4(2. 0 .. =  (jiy, •••> И& •••> E)
v---------------------- > V-------- -̂-------- 1

(varying mean vectors and common covariances) 

with m =  Kp + p(p +  l)/2 parameters.

3) Л ъ\ 0 .. .  = (ß ,  ц, p, Z, ..., Z, Z)
^------- v ------■> 4________ ________ IV' y

(common mean vectors and common covariances)

with m =  p + p(p +  1 )/2 parameters. The three models which we considered 
above, are the most common models which are linked in their parameters, 
and thus, are related to one another. If we denote П., to be the unrestricted 
parameter space of 0., П .. to be the conditional parameter space of 0 .. 
and Q ... to be the restricted parameter space of 0 ... ,  then the relationship 
between these three models in terms of their parameter spaces can be writen 
as Í Í . . .  <= П .. а  П..

In this section we shall derive the forms of AIC and BIC for testing 
the equality of covariance materices and means for the above models. 

First, we recall the definition of AIC:

Definition 2.1
Let (Mj\ j e J )  be a set of competing models indexed by j  = 1, 2, ..., J. 

Then, the criterion

AIC(j) =  -  2 In L[(6(j)] +  2m(j) (1)



which is minimized to choose a model Mj  over the set of models is called 
Akaike’s. Information Criterion (AIC) (see A k a i k e  (1973) and S a k a m o t o  
(1986)).

In (1) L[0(j)] is the likelihood function of observations, I)(j) is the 
maximum likelihood estimate of the parameter vector 0 under the model 
Mj  and m ( j ) is the number of independent parameters estimated when M .  
is the model.

The AIC statistic is an estimator of the risk of the model under the 
maximum likelihood estimations. That model, which optimizes the criterion, 
is chosen to be the best model.

Now, we define Bayesian Model -  Selection Criterion (BIC): Assume 
the each possible alternative models Mj, j =  1, 2, J  is generated by the 
densities

with different numbers of parameters Oj. Suppose that a prior has been 
specified for ech model Mj  and parameters 0}, j  = 1, 2, ..., J. Let these 
priors be denoted respectively by П(Му) and II(0j) and the likelihood 
function by Pj(Y/0j). Then the posterior probability associated with model 
Mj  is given by

brom  (2) we see that the posterior is equal to the priot probability IT(Mj) 
of the j -th model being the true one. Г1 (Mj) times the averaged likelihood 
with the prior П(07).

For example the prior probability associated with the model M j  can be 
Г1(Му.) =  p(wj), where

denotes a dichotomous random variable and £  П(М ) =  1.
j= i

The amount and kind of prior information to be employed in an 
analysis will depend on what we know and what we judge appropriate to 
incorporate into the analysis. We recognize that there are situations in 
which we know very little and thus want procedures for comparing models 
with the use of little prior information. When we have prior information, 
say from analyses of part samples of data, and wish to incorporate it in 
our comparison of models.

PÁY/Ot,  p2(Y I0 2), pj(YIOj)

p(Mj l  Y) =  П(М j)\U(0j)Pj(YI 0j)d0j (2)

0 i f  Mj is false

1 if Mj is true

j



We argue, however, that this framework may not be appropriate in the 
important case where the models are nested. Thus, if M t is a particular 
case of Mj, and M i is of smaller dimesion that Mj, that this strictly positive 
probability П(М,) has been assigned to a set of zero Lebesque measure 
under the larger model M j, which is assumed to be appropriate.

Thus a comparison of the posterior probabilities will provide a basis 
for choosing the best model among all models M Jt j  = 1, 2, ..., J. The 
Bayes solution consists of selecting the model that is a posterior most 
probable. Via Bayes formula that is equivalent to choosing the j, that 
maximises

BIC(j)  = In P(Mj/Y)  (3)

where In denotes the natural logarithm. The above formula is a Bayesian 
model -  selection criterion called BIC.

MODEL ЛГ,
11.2. AIC FOR THE TEST OF HOM OGENEITY OF COVARIANCES M ODEL

Let Yit i = 1, 2,  к he a. random sample of observations from the i-th 
population £()• The basic null and the alternative hypotheses are
given by

H 0: =  £2 == ••• =  Z*

versus HÓ- the К  population covariances are not all equal.
Now, we derive the form of Akaike’s Information Criterion (AIC) to 

test the hypothesis that the covariance matrices of these populations are 
equal. The likelihood function of all the sample observations is given by

L ( 0 . ) = p ( Y „  YK/ 0 . )  = f \ p ( Y , / 0 .) (4)
i=  1

The log likelihood function, 1(0.), is the natural logarithm of L(0.)  and 
is defined by

1(0.) = \nL(0. )  = Yj \np(Yi /0 . )  (5)
i = l

where

p ( Y J 0 . )  = ( 2 n r np/2|2:ir ,"/2 (6)



exp {  ”  2 +  ~

The log likelihood function is

t (°-) =  -  ( y )  In 2П - 1 1  n, In I Z,| -  \  tr ( j t * r 1S,)

where S, = £ ( ^ , -Т ;) '(У „ -

(7)

The maximum likelihood estimators (M LE’s) of fit and E, are

/}, =  Y, and Ž, =  —> i = l ,  К  (8)
n i

Substituting the M LE’s into (2.8) simplifying, the maximised log likelihood 
becomes

№ ) =  - ^ 1 п 2 П - |  Д И|1 п \ п Г % \ - ^  (9)

Since

A I C  = - 2 1  (Ô.) + 2m (10)

where m — Kp + Kp(p  + l)/2 is the number of parameters, the AIC becomes

К
AIC(fi„ Z t) =  £ n ,  In \ п Г % \  +  пр(1п2П +  1)

i= i

+  2[Kp -f- Kp (p +  l)/2 (11)

II.3. BIC FOR THE TEST OF HOMOGENEITY 
OF COVARIANCES M ODEL

Denote BIC (ßt, Z,) =  BIC (varying ц and varying X).
Now, we derive the form of Bayes’ Information Criterion (BIC) to test 

the hypothesis that the covariance matrices Z l5 ..., X* are equal.
So that, consider К  normal populations with different mean vectors ц., 

and different covariance matrices Z i; i =  1, ..., K.



As regards prior for the parameters fi, and we employ the
1 x p p x p

following natural conjugate forms for i =  1, K.
The joint prior becomes

piUi, I ,)  =  (12)

where

P( Pi I S i ) ~ N p(0, Е Д ) (13)
1xp pxp

In (13) we have assumed a proper normal prior for the elements of /*„ 
given Z,, with prior mean vector zero and covariance matrix Е Д , where 
bj is an arbitrary positive scalar obtained by enrichment from and

~  W -\ V {, p, v,), I ,  >  0, V >  0 and v, >  p + 1 (14)

Z, will be said to have an inverted Wishart distribution with scale matrix 
Vt, dimension p, and v; degrees of freedom. Substituting from (13) and (14) 
into (12) shows that the joint natural conjugate prior distribution for /i, 
and Ľ} is given by the Normal -  inverted Wishart distribution as

P(M„ £,) =  П |£ Г 112( ' " P ^ e x p j / -  W  j (J5)

The likelihood function of all the sample observations is given by 

P( У I P i  2|)oc П I Z f  4 1 exp^- ^  t r Z f 1 j  £  [S t + n,( Y , -  р -Д У  \ -  л ] |

(16)

The joint posterior density for ц19 'Li is found by multiplying (15) and (16):

l-ж I . I ? (vi + (Л|~ l)p—1) Í 1 I }
р(^2,/У)асП|Е, I CXP j 2 Г ч (17)

where

A i=  £ [ n +  Vt +  Si +  n ^ Y , -  f i iY ( Y í -  / í , ) ]
i = l L J

Integrating (17) with respect to and X;, and assuming that there is 
no reason to believe more in one model than the other, we would take

П (М Х) =  П (М 2) =  П(М 3) =  *, then BIC becomes:
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B I C ( \ )  =  BI C( m,  ! , )  =  I n P ( M J Y ) (18)

where

and

d, = «,(!+*>)

MODEL
11.4. AIC FOR THE TEST OF HOM OGENEITY OF MEANS

Consider in this case again К  normal populations with different mean 
vectors nt, i = l ,  ..., К , but each population is assumed to have the same 
covariance matrix E.

In terms of testing the significant of the equality of the mean vectors 
of К  samples, the MANOVA hypotheses are:

H°0°: Hi =  / i 2 =  — =  Hk 8*v c n  =  I 2 =  ... =  L* =  X

versus: H°°: Nost all /i”s are equal.

To derive Akaike’s Information Criterion (AIC) in this case, we use the 
log likelihood function given in (7). Since each population is assumed to 
have the same covariance matrix E, the log likelihood function becomes

Substituting the M LE’s into (19) and simplifying, the maximised log 
likelihood becomes

1(0..)= -

(20)

The maximum likelihood estimators of and Z are

£i =  У í and l  = n i = l ,  ..., К



Since

AIC  = -  21(6) + 2m 

where m = Kp + p(p +  1 )/2, then AIC becomes

AIC(Hi, X) =  ир(1п2П) -)- nln nt I S t
i=i

+ np +  2 [Kp + p ( p -f 1 )/2] (22)

11.5. BIC FOR THE TEST OF HOM OGENEITY OF MEANS

Denote В1С(ц„ X) =  BIC  (varying ц  and common X).
In this case, we derive the information criteria in a similar fashion as 

in Section II.3 by assuming the same covariance matrix X in the likelihood 
function and the same type of prior distributions for /í, and X. Thus, the 
joint prior density function of the parameters n t and X is

i «i (u+"p~p~ i) /  1\ f
Р(Щ> 2 ) =  |X I exp Í -  -  J  rrX" ‘ j  £  (щЪ^'ф, +  V) (23)

where X > 0 ,  0 and u > p + l .

Then the joint posterior density for and X is

р(^,Х /У )ос|Х - j!  2(ľ + я + ир-р-1)

■ e x p  ( _  2 )  ^ 1 1  { . £ ,  + v ‘ + s ‘ + ” ‘ ( y ' _  ~  ^ ] }

After integrating with respect to and X we obtain

BIC(2) = BIC(fit, X) =  ln P (M 2/Y )

where

Р(М 2/У) =  з I [ j V + S t H n i - d r W Y t y

(24)

(25)

(26)



MODEL
II 6. AIC FOR THE TEST OF COMPLETE HOM OGENEITY MODEL

The null hypothesis to test of complete homogeneity is

//ö': ßi = p 2 = ... = pk and E , =  E 2 =  ... =  z k

versus: //i": Not all К  mean vectors and covariance matrices arc equal.
To derive Akaike’s Information Criterion for model M 3, we set all p^s 

equal to p and all the E,’s equal to £  and obtain the log likelihood 
function which is given by

1(0 . . . )=  - n£ ( 2 n ) - n2 \ n \ X \ - l2 t r ( Z ~ l T ) - n2 t r [ Z - l( Y - f i y ( Y - Ą  (27)

where T  is a total sum square matris.
The M LE’s of p and E are

p = Y  and ±  = n ~ l T

Substituting these back into (25), we have the maximum log likelihood

1 ф ...)=  — 1п(2П) — ^In \n~i T\  — Tl?  (28)

Thus, using the equation of AIC in (10) again, where m =  p +  p(p +  J)/2 
the AIC becomes

AlC(m, £) =  np 1п(2П) +  n In |n_ 1T | + np + 2[p + p(p + l)/2] (29)

II 7. BIC FOR THE TEST OF COMPLETE HOM OGENEITY M ODEL

Denote BIC(fi ,T)  = BIC  (common p. and common E).
To derive the inform ation criteria under the assum ption that all 

Pi, i =  1, ..., к are equal to p and the E, are equal to E, we assume the 
same type of prior distributions for p and E as before. So that, the joint 
posterior density for p and E is the following:



K ^ Z /ľ J o c lZ
. j i 2(в + и + яр-р-1)

CXP (~  Í )  í r 2 " '1 +  XK + , ^ [S' +  " ‘( Y' “  ^ ' (У‘ -  ^)]} (30)

where h and V  arc hyperparameters positive defined for the Normal
-  inverted Wishart joint prior distribution.

After some work we obtain

p(J r3/Y)  = B I C ^ , Z )

where dl =  n ,(l +  b).

1
K V +  'Z[Sl + (nl - d i l Yt Yl]dl 

i=i

2 (v + n + np)
(31)

III. AIC AND BIC -  REPLACEMENTS FOR CLASSICAL TESTS OF HOM OGENEITY

In Section II we derived the exact formulas for AIC and BIC for each 
of the multivariate models. In this section, we use the formulas of AIC 
and BIC replacements for multivariate classical test of homogeneity.

Proposition 3.1
We reject H 0 if

AAIC(H°0, H \) = AIC(nt, Z) -  AlC(jiit Z) >  0

о  nln n - ' i s ,
i=i

-  Y ni ln l” i LSil > p ( p +  0 ( K - J)
j = i

or

ABIC(H0, H i) =  BIC(fib Z) -  BlC(Hi, Zi) < 0 

where B/C(/j,, Ef) is given in (18), and B/C(/i,, E) is given in (25).

Proposition 3.2
We reject Я 0' if

AAIC(H0, H i )  = AICQi, Z) -  AIC(Pb Z) >  0

n ln |n  1T’| — л1п
i = l

> 2 p ( K - \ )

(32)

(33)

(34)



or

ABIC(H0, H i)  =  BIC(ii, I )  -  BIC(ßt, I )  <  О 

where В1С(ц,1.) is given in (31).

Proposition 3.3
We reject H0" if

AAIC(H0 , Hi") =  AIC(p,  E) -  AIC(fit, E,) >  0
к

o n l n | n  1Г | — £ n l n | n ,  l St\ >p(p + 3 )(K — 1) (36)

or

ABIC(H0 , H i”) =  BIC(p,  I )  -  BlCifi,, I ,)  <  0 (37)

Using AIC and BIC procedures we avoid any restrictions on p and 
К  and we do not need to assume any level of significance a. In large 
sample (as the sample size goes to infinity) BIC formula for a given prior 
corresponds to classical hypothesis tests for some significance level a. Thus 
the choice of significance level for classical tests is seen to be analogous 
to the choice of prior for Bayesian criterion and vice versa.

I he aim of cluster analysis is to put the К  samples into k homogeneous 
groups, where k is unknown and varying, and k ^ K .

be a data matrix of К  samples, where Y( represents the observations on

p dependent variables from i-th sample, i=  1, ..., K, and n =  ^  nt.

IV. M ULTI-SAM PLE CLUSTER ANALYSIS

Let

Y = :
Yk

(38)

к



First, we should know the total number of clusters of samples.
B o z d o g a n  (1986) generated all possible clustering alternatives of 

groups on the computer using efficient combinatorial algorithms and 
complete enumerations technique. The total number of ways of clustering 
alternatives К  samples into fc-sample clusters where k ^ K  (к is known in 
advance) such that none of the /с-sample clusters is empty, is given by

S(K, к) =  1 Д  ( -  l ) 'Q ( f c  -  i)K (39)

If к is not specified a prior and it is unknown, then the total number of 
clustering alternatives is given by

I  S(K, к) (40)
i=i

S(K, k) is writcn in terms of the recursive formula

S(K, k) = k S ( K - l ,  k) + S ( K - \ ,  k - l )  (41)

with S( 1, 1) =  1 and S(l,  к) = 0 for к Ф 1 and S(K,  2) =  2*“ 1 -  1.
If we identify the best fitting model using BIC or AIC criterion we 

should determine the number of clustering alternatives and next we should 
choose the best alternative clustering. If we want to answer the question: 
„which clustering alternative do we choose?” we should compute the AIC 
for all clustering alternatives and we should choose this clustering alternative 
for that the minimum AIC occurred.

From Bayesian point of view, we should calculate the posterior probability 
of each alternative clustering. The best one is assigned to this cluster for 
which the estimated posterior probability is the largest.

V. CONCLUSIONS

To apply a new approach using AIC or BIC procedures we should:
(i) Identify the best fitting parametric model.

(ii) Curry out multisample cluster analysis (MSCA) under the best 
fitting model.

(iii) Determine the relevant variables between the samples by using the 
subset selection procedure.



From the results presented in this paper:
-  We can determine whether we should use equal or varying covariance 

matrices in the analysis of a data set.
-  By subset selection of variables across the samples, we can reduce 

the dimensionality of data set.
-  We do not need to assume any arbitrary level of significance a.
-  Qualitatively both Bayesian and Akaike’s procedures give a mathematical 

formulation of the principle of parsimony in model building.
-  Quantitatively, Bayesian procedure leans more than Akaike’s towards 

lower-dimensional models.
As the sample size goes to infinity, BIC formula for a given prior 

corresponds to classical hypothesis tests for some significance level a.
For large numbers of observations the procedures differ markedly 

from each other.
-  There is no single criterion, which will play the role of a panacea in 

model selection problems.
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Teresa H. Jelenkowska

KRYTERIUM BAYESOWSKIE I KRYTERIUM AKAIKE 
DLA TESTÓW  HOM OGENICZNOŚCI W M ODELU LINIOWYM

(Streszczenie)

W pracy zostały przedstawione dwa kryteria dotyczące selekcji modeli, mianowicie 
kryterium Akaike: AIC (Akaike’s Information Criterion) i kryterium bayesowskie: BIC 
(Bayesian Information Criterion). Obydwa te kryteria zostały zilustrowane na przykładzie 
trzech wielowymiarowych modeli liniowych: modelu w którym zakłada się zróżnicowanie 
pomiędzy średnimi i macierzami kowariancji badanych cech, modelu J i lt który jest heterogeniczny 
ze względu na wektory średnich i homogeniczny ze względu na macierze kowariancji oraz 
modelu J Í 3, który jest w pełni homogeniczny, tzn. nie występuje zróżnicowanie ani ze względu 
na średnie ani macierze kowariancji.

Dla każdego z tych modeli zostały wyprowadzone explicite funkcje określające obydwa 
kryteria selekcji modeli: AIC i BIC. Powyższe kryteria służą do wybrania modelu, który 
najlepiej opisuje nasze dane eksperymentalne w miejsce tradycyjnie stosowanych testów 
badających homogeniczność średnich, jak i macierzy kowariancji w wielowymiarowych modelach 
liniowych. Zarówno kryterium BIC, jak i AIC są jednymi z najbardziej nowoczesnych procedur 
stosowanych w problemie selekcji modeli.


