
A C T A  U N I V E R S I T A T I S '  L O D Z I E N S I S  
FOLIA OECONOMICA 123. 1992

Jacak Osiowa}ski*

CENTERED AND NONCENTERED VARIANCE INFLATION FACTORS 
FOR THE OLS ESTIMATOR OF A LINEAR FUNCTION 

AND FOR THE OLS PREDICTION ERROR**

I. INTRODUCTION

Let R denote the correlation matrix for regressors in the 
classical linear regression model. The diagonal elements r1-* of 
R'1 are called "variance inflation factors" (VIF's), since they 
indicate how many times larger the variances of the OLS estima
tors of regression coefficients are for given regressors than 
in tlte reference case of R = I (see e.g. J u d g e  et al., 
1980, p. 461-462; M a n s f i e l d  and H e l m s ,  1982, 
B e l s l e y  et al., 1980, p. 93).

In this paper we generalize the concept of VIF to the case of 
OLS estimation of any given linear function of regression coeffi
cients and to the case of OLS prediction. We consider separately 
VIF s based on the usual correlation matrix (*or centered regre
ssors in regression with an intercept) and noncentered VIF's 
(NVIF s) based on the noncentered correlation coefficients. 
Both types of measures give precise numbers indicating an in
crease (or decrease) of variance of the OLS estimator of a li
near function у  = c'0 for given с or of the OLS prediction er-
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ror f 3 5* - y* 3 x;b - (x*ß + uÉ) for given x„, but each of the 
two measures relates to the different reference point (zero cor
relation coefficients or zero noncentered correlation coeffi
cients} .

2. VIF'S RASED ON THE USUAL CORRELATION MATRIX

We consider the linear regression model

У * Xß + u, E(u) = 0, E(uu') = o2l ,n
where X = v[eZ] is n x к nonrandom of rank к (X > 2) and with a 
vector of ones (e) as its first column (that is, ß^ is an inter
cept). Let

z * [*2 ... Xĵ J * - Z 6 (

2 = 2 -  ef* * (In - i ее )Z.
n , 0 . 5

S = Diag(s,, ..., sk ), Si = [£ (xa  - x^) J

R я s‘1Ž'Ífs"1;

that is ž is a vector of arithmetic means of к - 1 nonstochastic 
regressors (columns of Z), Ž is a matrix of deviations from means 
and R is a correlation matrix (in a purely descriptive sense, 
because Z is nonrandom).

Since (XX) 1 can be presented in the following form:

■ -1 "J+rťž'ž)*1* -г a  2)"1
a  z r 1 _

i + ž s ‘1R'1s'1ž -ž’S*1R'1S-1

_ -S'1R_1S'1Z S_1R"1S'1 _ (1)
we can express variances of OLS estimators and predictors in 
terms of z, S, R. Precisely, if g = c'b = c'(X'X)-1X'y is the OLS 
estimator of у = c'ß (c t 0) and у, - xjb is tho OLS predictor 
of у* = + Uf, where E(u,) = 0, E(u2) = o2, E(u,u) = 0, then 
the partition of с and x* conformably with X = [eZ]:



c  * Cc i C 'Z V  • x * B  [1 *i)'

enables us to write the variance of g and the variance of the 
prediction error f « i, • y, in the following forms

V(g) = a2c'(X'X)'1c * * (cE - C j ž ) lS'l(cg -'CjfłJ,

V(f) » o2[l + x;(X'X)-1x,] * o2[l + i + (г, - t)'s’1R"1s"1(z1l-žfl.
Now, if we take as a point of reference a hypothetical set of 
uncorrelated explanatory variables with the same values of 5t̂ , 
s^ (1 = 2, ..., k), we can define the following variance infla-- 
tion factors:

J c f  + ( c  -  c 1* i , s ‘ 1R’1s " l «c_ -  c . z )
VIF(g) = B-i----- i---- i---------- -----5---- J— #

n°l + {cz " clił S 4  ’ clž>

I ♦ i  ♦ (z, - I ł -S -W 1!.. - г)
VIF(f) = ----------------------5-------------,

1 ♦ * ♦ ( * *  - ŻJ 's'^u, - Ž)

they measure how many times larger the variance will be for the 
given regressors than for uncorrelated ones. In the case of esti
mating the 1-th regression (slope) coefficient 0^ (i = 2, k) 
we have g = b^ and VIF(g) reduces to the i-th diagonal element 
of R’1!

VIF(bi) - rU ,

that is, to the variance inflation factor in its form appearing in 
the literature (see e.g. J u d g e  et al., 1980, p. 461-462, 
M a n s f i e l d  and H e l m s ,  1982, B e l s l e y  et 
al., 1980, p. 93). It is well known that riA > 1  (i = 2, ..., k) 
and the lower bound (r^ = 1) is achieved when the i-th regressor 
is uncorrelated with the others (see F a r r a r  and G l a 
u b e r ,  1967); that means that correlation between regressors 
always leads to an increase of variances of the OLS estimators 
of individual regression (slope) coefficients. Let us stress here 
that in the general case of the OLS estimation of a linear func
tion of ß or in the case of the prediction error, a decrease of



variance is also possible and .that VIF(>) gives a precise measure 
of the decrease or increase of variance which is caused by the 
presence of intercorrelations between regressors. Indeed, VIF(•) 
can be presented as a ratio

a“? + a'R_1a a^ + a'QA"lQ a  
ViF(.) = -Ä---------  - -o----- ----—

a* + a 'a a‘ + a'fiQ a

vhere Л * DiagtX^, ..., X^) is a matrix of eigenvalues of R and 
Q is an orthogonal matrix of eigenvectors of R, so

* -l >VIF( •) = I «5=0 a ’Q(A -I. . )Q a - 0.
< <

Since Xj, X^ are positive numbers summing up to tr(R) *
- k - 1 ,  then for R i- some of these eigenvalues must be
greater than 1 and some must be less than 1 and the quadratic 

form a'Q(A 1 - a is not positive or negative semi defi
nite. This means that VIF(•) can take values greater, equal, or 
less than 1, which depends on a, that is on S_1(c2 - c^z) in the

case of estimation or on S-l(z, -ž) in the case Qf prediction. 
The range of values which can be taken by VIF(•) - for a given 

2R and different aQ , a - is easy to establish, since for every a:

'max4 a < *'0A-10 a < X ^ a ' a ,  
where Xmax and X^^^ are the maximum and minimum eigenvalues of 
R, respectively. So we have

VIF(.) „ > -V a x ao + CxĹl , X-1 , 1
a + a a a + a a  max ^-1о о

(since 1 í Xmax < tr(R ) = к - I) and

*1 * XlLa a x‘* a* +■ >'}„a'a VIF(-) < ---— --- < -ЖП_2----Eili--- _ X-1 < +ш
a + a a  ал + a a  nUno o

(Since 0 < * < 1).



3. VIF'S BASED ON NONCENTERED CORRELATION COEFFICIENTS

We consider again the linear regression model

у ® Xß + u, E(u) » 0, E(uu') - o2In,

where X is n x к nonrandom of rank к (к > 2), but not necessarily 
with a column of ones (the model may or may not have an inter
cept). Let W denote a diagonal matrix containing the lengths of 
the columns of X on its diagonal:

x2 ..... A  x2 ),W » Diagť/E x‘ , .... / Г  x.. ) 
t-1 t-1

then XW 1 is a matrix of standardized, but not centered, values 
of regressors (the length of each column is 1) and

Rn * (XW_1)'(XW‘1) 
is a k x к matrix of noncentered correlation coefficients between 
regressors. Let us consider again the OLS estimator g » c'b of 
у  * c'ß (c i- 0) and the prediction error f = ý. - y„ of the OLS 
predictor ý, = x;b. We can write their variances as:

V (g ) * o2c ' (X'X)*lc *

V(f) *= o2[l + x;(X X)_1X,] = 02(1 + X;W'1R‘1W*1X„).

If we take as a point of reference a hypothetical set of orthogo
nal regressors with.the same lengths, we can define the following 
variance inflation factors (which we will can "noncentered" and 
denote NVIF):

c ( X X ) ‘1c c W ' 1R'1w'1c
NVIF(g) = ----- -----  = ------ 2----- ,

c W -2c c'W с

1 + x;(X'X)-1x, 1 + »;w‘lR ^ V lx*
NVIF(f) = ------------------ * ------!---- ” ;

i + x;w*2xÉ i x;w'2x,

they measure how many times larger the variance will be for given 
regressors than for orthogonal ones (with the same lengths). In 
the case of estimating (i = 1, ..., к) we have g = bi and
NVIF(g) reduces to the i-th diagonal element of R*1 :N



NVIF(bi) = r“ .

Along the same lines of reasoning as in the previous section, it 
can be shown that generally NVIF(g) and NVIF(f) can take values 
greater than, equal . to, or less than 1. The range of possible 
values of NVIF(■) - for a gi\/en matrix RN and different vectors 
с or x* - is determined by the eigenvalues of R^. If dj > ... > 
) d^ denote the eigenvalues of R̂ j, then

0 < drpin 3 dk < l> 1 < dmax * dl < k' di “ tr(V  x
and we have

r < dmax < NVIF(*> < dmin < +“ *

Let us note that NVIF(•) is defined for a larger class of 
linear regression models than VIF(>), since the latter applies 
only for models with an intercept.

4. A COMPARISON BETWEEN VIF(-) AND NVIFÍ•)

In order to make such a comparison possible, we must restrict 
our considerations to the linear model with an intercept. In the 
case of VIF(•), the hypothetical reference X matrix consists of a 
column of n ones (e) and mutually uncorrelated regressors with

- - - 1 2  -1 2  means x2, ..., x^ and variances n s2, ..., n s^, which imply
the same squared lengths of columns as for the actual regressors,

2 2 2 2 namely: s2 + nx2, ..., s^ + пХ({. In the case of NVIF( •), the
hypothetical reference X matrix consists of к orthogonal re
gressors, whose lengths are the same as those of the columns of 
the actual X matrix. Since there are infinitely many such refe
rence matrices and in (hypothetical) construction one column is 
chosen arbitrarily (only its length is fixed), we can restrict 
ourselves to reference matrices with the first column e. Then the 
remaining k - 1  columns of the reference X matrix are uncorrela



ted and with zero arithmetic means1; fixed lengths and zero means 
imply that these k - 1  columns have maximum possible variances. 
When the k - 1  columns of our actual design matrix (except for 
the first column, e) have zero means, then the reference patterns 
for VIF(•) and NVIF(•) coincide, since fixing lengths is (under 
assumption ž = 0) equivalent to fixing variances of regressors; 
of course, VIF(•) and NVIF{•) coincide in this case.

In order to compare the role of both types of variance infla
tion factors in the case of collinearity, let us remember that 
there are two kinds of (linear) near dependencies between co
lumns of X * [e Z]s

1) dependencies involving e and only one column of Z, that is 
small variation of a given regressor (see S i 1 v e y, 1969, 
B e l s l e y  et al., 1980, p. 90, 170);

2) dependencies involving at least two columns of Z (they 
make R "almost singular").

By construction, VIF(-) can measure this increase (decrease) 
of variance which is caused by dependencies of the second type 
only. On the contrary, NVIF(-) measures an increase (decrease) 
of variance caused by both types of dependencies. Thus NVIF(*), 
based on noncenterod data, can bo a tool for exploring some par
ticular consequences of collinearity. The role of VIF(*), a 
measure based on centered data, is much more restricted; in the 
case of collinearity with prevailing dependencies of the first
kind (small variation), VIF(•) is misleading as a measure of2
the consequences of collinearity , in order to avoid misinterpre
tations of VIF s arid NVIF s, we should stress that these simple 
measures add nothing to the explanation of the general statisti
cal consequences of collinearity, as presented by S i 1 v e у 
(1969) (see also J u d g e  et al., 1980, p. 455-458), nor do 
they substitute the full procedure of detecting collinearity, as

Those conditions, that is: z * 0 and R “ 1^ ^, are necessary and suffi
cient to make .X X diagonal (see (1)).

2
The probiera of centering the data In the context of collinearity is 

considered in detail by B e l s l e y  (1986); he writes about using" R 
(p. 118): "the dala correlation matrix (...] will typically produce mislea
ding diagnostic information".



presented by B e l s l e y  et al. (1980), Chap. 3. The reason 
for Introducing VIF's and NVIF s is the need for precise numbers 
indicating the influence of departures from certain "reference 
patterns" (ideal designs) on "the estimation of a particular pa
rameter of interest у * c'ß or on a particular prediction with 
fixed x#. Of course, MVIF(•) can be especially useful in the 
case of collinearity, but rather in indicating some specific con- - 
sequences of existing dependencies than in detection of their 
existence and shape.

In order to compare the values of NVIF(•) and VIF(•) directly, 
let us wr^te the rations of these measures in the following 
forms s

NVIF(f) .. 1-2

As it was noticed earlier, if x2 = ... 3 x^ 3 0, then MVIF(•) 3 
* VIF(•). Now let us assume that ý 0 for at least one i 
(i 3 2..... k).

1. If c, * 0 (that is, when a linear function under consi
deration does not involve an intercept ЭA), then we obtain

k. 2 -2 
NVIF(g) * ci si

vifi”  " \ c f e f  ♦
i-2 1 1 1

the equality holds only when c^ = 0 for all i such that ^  / 0.
2. If Cĵ  i 0 and c2 = ... = c^ 3 0, that is when we are in

terested in the intercept alone, we have
NVlFlc.b ) к , ,
TTr r ,  : = 1 + n T. Sj xf > 1.VIF(c^b^) j„2 1 1



3. If for all i = 2, . к we have in the case of
estimation or x#i = xA in the case of prediction, then

NVIF(•) < VIF(•) * 1.
In other cases the comparison of NVIF(•) and VIF(•) is not as 
straightforward as above and - generally - NVIF(•) can be greater 
than, equal to, or less than VIF(•); see values of these mea
sures for bx + b2, xj,b and f in an example found in the next 
section.

%

S. AN EXAMPLE

Let us illustrate the generalized definitions of variance in
flation factors by the regression equation taken from T h e i 1 
(1971), Chap. 3, which refers to the consumption of textiles in 
the Netherlands (1923-1939):

уt = 1.374 ♦ 1.143 xt2 - 0.829 xu ,
(0.306) (0.156) (0.036)

where yf, xfc2, xt3 denote decimal logarithms of the volume cf 
textile consumption per capita, real income per capita, and the 
relative price of textiles, respectively; the estimated equation 
shows the OLS estimates with standard errors in parentheses. In 
this example!

n = 17, x2 * 2.012, s2 = 0.089, x3 = 1.873, Sj = 0.385, 

r23 = 0.222, rN12 = 0.99994, rN U  = 0.99876, rN23 = 0.99882,

where r23 is the usual (centered) correlation coefficient and
ru ,. are the noncentered correlation coefficients. Let us focus Ni)
here not only on the OLS estimators of individual parameters 81,
02, ßj, but also on the OLS estimators of ß2 + ß^, ß^ ♦ &2*2 + 
+ ßjXj, ßĵ + ß2, and on the OLS predictor corresponding to 

x; = [1 2.02119 1.81291],

used by T h e i 1 (1971), p. 135. Applying definitions of
VIF(•) and NVIF(•) we obtains

VIFlbj) = 0.956, NVIF(b1) = 8685,
VIF(b2) = 1.052, NVIF(b2) * 9135,
VIF(bj) = 1.052, NVIF(b3) = 425,



VIF(b2 + b3) = 0.950, NVIF(b2 + b3) • 4036,
VIF(b^ + x2b2 + R3b3) - 1, NVIF(bj + b2x2 + x3b3) » 0.33362, 
VIF(b1 + b2) - 0.883, NVIF(b^ + bj) * 1842,
VIF(xib) = 1.093, NVIF(x;b) = 0.589,
VIF(f) = 1.008, NVIF(f) я 0.939.

In this example, correlation between regressors (measured by r23) 
is very small and its influence on variances is aiso small or 
even negligible. The range of possible values of VIF(•) is narrow:

C x  -  T ľ r i r  -  ° -819 < =

But in spite of lack of correlation, there is a substantial de
parture from orthogonality, "caused“ by small variation of xfc2̂ * 
This lack of orthogonality gives such large values of NVIF(•) for 
b2, bj, b2 + b3, and bA + b2, but on the other hand it has some 
positive influence on the variances of b^ + x2b-> + *3b3, x^b and 
f. Since the eigenvalues of R^ are as follows:

dx я 2.99835, d2 « 0.001592, d3 ■ 0.0000568, 
the range of possible values of NVIF(*) is very wide:

dmÍx = °-33352 < MVIF(-) < d;Jn » 17612.

This example illustrates again the known fact that the consequen
ces of nonorthogonality for the estimation of various parameters 
and for various predictions can be completely different. The ad
vantage of (generalized) variance inflation factors defined here 
is that they associate a number with any particular case, and 
therefore they allow to make quantitative (and not only quali
tative) statements about the influences of correlation or non
orthogonality on particular estimators and predictors.

The procedure of detecting collinearity, proposed by B e l s l e y  et 
al.()980), indicates here a strong dependency which involves only xt, and 

2 Condition indexes of XW (r̂ ) and variance-decomposition proportions 
are as follows:

V(bj) v(b2) V(b3)
Hj “ 1 0.0000 0.0000 0.0003

- 43.4 0.0130 0.0106 0.9851
rVj - 230 0.9870 0.9894 0.0146
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Jлеек Oslvwalski

WSPÓŁCZYNNIKI ZWIĘKSZENIA WARIANCJI D U  ESTYMATORA MNK FUNKCJI LINIOWEJ
I D U  BŁĘDU PREDYKCJI

Niech R oznacza macierz współczynników korelacji między zmiennymi objaśnia
jącymi klasycznego modelu regresji liniowej 

у * Хв +• u .
Elementy przekątniowe macierzy R nazywane są "współczynnikami zwiększenia 
wariancji" (ang. variance Inflation factors, VIF s), poniewai informują ile 
razy większe są wariancje estymatorów MNK parametrów regresji 1Г, przy danej 
macierzy X, niż w idealnym przypadku R * I.

W artykule uogólniamy pojęcie współczynnika zwiększenia wariancji (VIF) 
na przypadek estymacji MNK dowolnej ustalonej funkcji liniowej parametrów mo
delu oraz na przypadek predykcji za pomocą predyktora MNK. Rozważamy osobno 
współczynniki zwiększenia wariancji oparte na zwykłej macierzy korelacyjnej 
(tj. na scentrowanych wartościach zmiennych objaśniających w przypadku regresji 
z wyraża« wolnym) i ntescentrcwane współczynniki zwiększenia wariancji, opar
te na niescentrowanych współczynnikach korelacji.



Oba rodzaj* mierników dostarczają dokładnych liczb wskazujących wzrost 
(lub spadek) wariancji estymatora MNK funkcji liniowej **c'ß dla danego с 
lub błądu predykcji f • y( " У* “ **b - (х^в + u*) dla danego x*, ale każdy z 
tych dwóch mierników (VIF i híVIK) odwołuje się do innego punktu odniesienia 
(zerowe współczynniki korelacji lub zerowe niescentrowane współczynniki kore* 
lacj i).


