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SOME NON-MEASURABLE SETS

ALICJA KIERUS

Abstract. This paper contains constructions of some non-measurable sets,
based on classical Vitali’s and Bernstein’s constructions (see for example [6]).
This constructions probably belong to mathematical folklore, but as far as
we know they are rather hard to be found in literature. It seems that the
constructed sets can be used as examples in some interesting situations.
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1. Basic notations and facts

We use standard set theoretic notation. By Q, R we denote, as usuall,
the sets of rationals and reals, respectively. We say that C is a Cantor set if
it is homeomorphic with the Cantor cube {0, 1}ω. Several times we will use
the well-known fact that any interval in R contains a Cantor set of positive
Lebesgue measure. By λ we denote Lebesgue measure on R. By λ∗ and λ∗
we denote outer and inner Lebesgue measures, respectively.

Hashimoto topology is a topology on R where any open set U is of the
form U = Q\N , where Q is open in natural topology and N is a nullset.

Let A ⊆ R be a measurable set. Put

Φ (A) =

{
x ∈ R : lim

h→∞

λ (E ∩ [x− h, x+ h])

2h
= 1

}
.

We say that a set A ⊆ R is open in density topology if A ⊆ Φ (A).
We say that an operator Ψ : L → P (R), where L is a sigma algebra of all

Lebesgue measurable sets, is a density operator if:
i) Ψ (∅) = ∅, Ψ (R) = R,
ii) ∀A,B∈L Ψ (A ∩B) = Ψ (A) ∩Ψ (B),
iii) ∀A,B∈L λ (A4B) = 0 =⇒ Ψ (A) = Ψ (B),
iv) ∀A∈L λ (A4Ψ (A)) = 0.

2. Some modification of the Bernstein set

The Bernstein set is non-measurable in every interval. It has also inner
measure zero and full outer measure in every subset. It is such called satu-
rated set. We will construct a set that is non-measurable in every interval,
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but with positive inner measure in every interval. Also its complement will
have the same property.

Lemma 1. There exist Borel pairwise disjoint sets A,B,C ⊆ R such that:(
∀(a,b)⊆R

)
(λ ((a, b) ∩A) > 0 ∧ λ ((a, b) ∩B) > 0) ∧ λ ((a, b) ∩ C) > 0.

Proof. Let {In : n ∈ ω} be an enumeration of open intervals with rational
endpoints. We will define inductively families {Cn : n ∈ ω}, {C ′n : n ∈ ω}
and {C ′′n : n ∈ ω} such that:

(1) Cn, C ′n and C ′′n are pairwise disjoint for any n ∈ ω.
(2) (∀n∈ω)

(
λ
(
In∩

⋃
s≤n

Cs

)
> 0∧λ

(
In∩

⋃
s≤n

C ′s

)
> 0∧λ

(
In∩

⋃
s≤n

C ′′s

)
> 0
)
,

(3) ∀n∈ω Cn, C ′n and C ′′n are Borel, nowhere dense sets.
Then A =

⋃
n∈ω

Cn, B =
⋃
n∈ω

C ′n and C =
⋃
n∈ω

C ′′n will satisfy the thesis.

Indeed, let (a, b) ⊆ R. Then there exist k ∈ ω such that Ik ⊆ (a, b). We
have by (2)

λ ((a, b) ∩A) ≥ λ (Ik ∩A) ≥ λ

(
Ik ∩

⋃
n≤k

Cn

)
> 0.

Analogically λ ((a, b) ∩B) > 0 and λ ((a, b) ∩ C) > 0.
Let C0 be a Cantor set such that C0 ⊆ I0 and λ (C0) > 0. Since Cantor

set is nowhere dense, there exists an interval (a0, b0) ⊆ I0\C0. Let C ′0 be
a Cantor set of positive Lebesgue measure such that C ′0 ⊆ (a0, b0). There
exists an interval (a′0, b

′
0) ⊆ (a0, b0) \C ′0. Let C ′′0 be a Cantor set such that

C ′′0 ⊆ (a′0, b
′
0), λ (C ′′0 ) > 0.

Let n ∈ ω. Assume that we have defined Ck, C ′k, C
′′
k for all k ≤ n. Since⋃

k≤nCk ∪
⋃
k≤nC

′
k ∪

⋃
k≤nC

′′
k is a nowhere dense set, as a finite sum of

nowhere dense sets, there exists an interval

(an+1, bn+1) ⊆ In+1\

( ⋃
k≤n

Ck ∪
⋃
k≤n

C ′k ∪
⋃
k≤n

C ′′k

)
.

If λ
(
In+1 ∩

⋃
k≤nCk

)
> 0, then we put Cn+1 = ∅. Otherwise, let Cn+1 be

a Cantor set such that Cn+1 ⊆ (an+1, bn+1) and λ (Cn+1) > 0. If λ
(
In+1 ∩⋃

k≤nC
′
k

)
> 0, then we put C ′n+1 = ∅. If λ

(
In+1 ∩

⋃
k≤nC

′
k

)
= 0, then

there exists an interval(
a′n+1, b

′
n+1

)
⊆ In+1\

( ⋃
k≤n+1

Ck ∪
⋃
k≤n

C ′k ∪
⋃
k≤n

C ′′k

)
.
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In this case we put C ′n+1as a Cantor set such that C ′n+1 ⊆
(
a′n+1, b

′
n+1

)
and λ

(
C ′n+1

)
> 0. If λ

(
In+1 ∩

⋃
k≤nC

′′
k

)
> 0, then we put C ′′n+1 = ∅. If

λ
(
In+1 ∩

⋃
k≤nC

′′
k

)
= 0, then there exists an interval

(
a′′n+1, b

′′
n+1

)
⊆ In+1\

( ⋃
k≤n+1

Ck ∪
⋃

k≤n+1

C ′k ∪
⋃
k≤n

C ′′k

)
.

Then we define C ′′n+1 as a Cantor set such that C ′′n+1 ⊆
(
a′′n+1, b

′′
n+1

)
and

λ
(
C ′′n+1

)
> 0. Then sets C0,C1,. . .,Cn+1, C ′0,C ′1,. . .,C ′n+1 and C ′′0 , C ′′1 ,. . .,C ′′n+1

obviously satisfy conditions (1)− (3). �

Proposition 1. There exists a non-measurable set E ⊆ R such that

λ∗ ((a, b) ∩ E) > 0, λ∗ ((a, b) ∩ R\E) > 0

and (a, b) ∩ E is non-measurable for all (a, b) ⊆ R.

Proof. Let A,B,C be like in lemma 1. Denote c = |R|. Let F = {Fξ : ξ < c}
be an enumeration of closed subsets of C in subspace topology such that
λC (F ) > 0 where λC (F ) = λ (F ∩ C). Let F ∈ F , then there exists
a closed set F ′ ⊆ R with F = F ′ ∩ C. Since C is a Borel set F is Borel.
Moreover, |F | = c since F is a Borel set of positive measure. We will define
by induction two disjoint sets {aξ : ξ < c} and {bξ : ξ < c} such that

F ∩ {aξ : ξ < c} 6= ∅ 6= F ∩ {bξ : ξ < c}

for all F ∈ F .
Let a0, b0 be two different elements of F0, and let a1, b1 be two different
elements of F1\ {a0, b0}. Assume that aα, bα are defined for all α < β < c.
Then

∣∣∣Fβ\⋃α<β {aα, bα}
∣∣∣ = c because

∣∣∣⋃α<β {aα, bα}
∣∣∣ < c. Hence we can

choose two different elements aβ , bβ ∈ Fβ\
⋃
α<β {aα, bα}.

Put E′ = {aξ : ξ < c}. Let F be a closed set, such that F ⊆ E′ ⊆ C.
Therefore F = F∩C is closed in C. Then λC (F ) = 0. Indeed, if λC (F ) > 0,
then by the construction there exists ξ < c such that bξ ∈ R\E′ ∩ F . It
follows, that F ∩ (R\E′) 6= ∅, so F * E′. We have λC (F ) = λ (F ∩ C) =
λ (F ) = 0. Hence

λ∗
(
E′
)

= sup {λ (F ) : F ⊂ E and F is closed} = 0.

It follows, that λ∗ (E′ ∩ (a, b)) = 0 for all (a, b) ⊆ R. We will show that
λ∗ (E′ ∩ (a, b)) > 0 for all (a, b) ⊆ R. It will follow that E′ is non-measurable
and that for all (a, b) ⊆ R set (a, b) ∩ E′ is non-measurable. Let (a, b) be
an open interval and G be an open set such that E′ ∩ (a, b) ⊆ G. Then
G′ = G ∩ (a, b) ∩ C is an open set in C. Then C\G′ is a closed in C
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subset of E′. It follows that λC (C\G′) = 0. Indeed, if λC (C\G′) > 0 then
R\G′ ∩ E 6= ∅. We have

λ (C) = λC (C) = λC
(
C\G′

)
+ λC

(
G′
)

= 0 + λC
(
G′
)
,

so λC (G′) = λ (C). Then

λ (G) ≥ λ (G ∩ (a, b) ∩ C) ≥ λ
(
G′
)

= λ
(
G′ ∩ C

)
= λC

(
G′
)

= λ (C) .

It follows that

λ∗
(
E′
)

= inf
{
λ (G) : E′ ⊆ G and G is open

}
≥ λ (C) .

Therefore E′ is non-measurable in every interval.
Put E = E′ ∪A. Then E ∩ (a, b) is non-measurable for any open interval,

as a disjoint union of Borel and non-measurable set. Let (a, b) ⊆ R. Then

λ∗ ((a, b) ∩ E) = λ∗
(
(a, b) ∩

(
A ∪ E′

))
≥ λ∗ ((a, b) ∩A) = λ ((a, b) ∩A) > 0.

It is obvious that B ⊆ R\E. Hence

λ∗ ((a, b) ∩ (R\E)) ≥ λ∗ ((a, b) ∩B) = λ ((a, b) ∩B) > 0.

�

The sets constructed in lemma 1 and in proposition 1 are examples of
sets which have an empty interior in the Hashimoto ([2]) topology and non-
empty interior in every interval (a, b) in density topology ([8]). Indeed, let
A,B be sets constructed in lemma 1, and let (a, b) be any interval. Then
λ ((a, b) ∩B) > 0 and (a, b)∩A∩B = ∅. Therefore A has empty interior in
the Hashimoto topology. A has non-empty interior in every interval (a, b) in
density topology, because for every interval holds λ ((a, b) ∩A) > 0.

Each of the sets constructed in lemma 1 is also an example proving that

ψ (A) = {x ∈ R : ∀h>0 λ ((x− h, x+ h) ∩A) > 0}

is not a density operator. Indeed, let A,B be sets constructed in lemma
1. Then ψ (A) = R, because for every x ∈ R and every h > 0 we have
λ ((x− h, x+ h) ∩A) > 0. But λ (ψ (A)4A) = λ (ψ (A) \A) ≥ λ (B\A) =
λ (B) > 0.

3. Some modification of the Vitali set

It is known, that for every set, which has a positive measure or is of second
category with a Baire property, we have:

(*) 0 ∈ int (A−A)
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This is the Steinhaus or Picard theorem respectively ([7], [5]). Many gener-
alizations of these theorems are known (see f.e. [1], [3], [4]). Often instead
of (∗) authors write:

(**) int (A−A) 6= ∅.
Let 〈A, I〉 be an algebra A with an ideal I ⊂ A, (X,+, τ) a topological

group. We say that 〈A, I, τ〉 has the classical Steinhaus property if

∀A∈A\I 0 ∈ int (A−A) .

We say that 〈A, I, τ〉 has the week classical Steinhaus property if

∀A∈A\I int (A−A) 6= ∅.
The set constructed below shows that without any additional assump-

tions, the properties (∗) and (∗∗) are not equivalent. Indeed, let A be the
set constructed below and A = {R, ∅, A,R\A}, I = {∅}, τ = natural topol-
ogy. Then 〈A, I, τ〉 has the weak classical Steinhaus property and A does
not have the classical Steinhaus property.

Theorem 1. There exists set A ⊆ R such that Int (A−A) 6= ∅ and 0 /∈
Int (A−A).

Proof. Let V be a Vitali non-measurable set constructed in [0, 1] such that
0 ∈ V . Let {an}∞n=1 be an enumeration of all rational numbers in [−1, 1].
We will construct a sequence {Vn}∞n=0 of translated Vitali sets such that
A =

⋃∞
n=0 Vn will satisfy the thesis.

Let V0 = V and

Vn =

{
V + 2n when n is even
V + 2n+ an+1

2
when n is odd

for n ≥ 1.
We will show that (A−A) ∩ (−1, 1) ⊆ (R\Q) ∪ {0}. It will follow that
0 /∈ Int (A−A). Let x ∈ (A−A) ∩ (−1, 1). Then x = v′1 − v′2 for some
v′1, v

′
2 ∈ A. It is easy to verify that v′1 ∈ Vn, and either v′2 ∈ Vn+1, or

v′2 ∈ Vn−1, for some n ∈ ω. In any other case, |v′1 − v′2| > 1 which contradicts
the choice of x.

Assume v′1 ∈ Vn, v′2 ∈ Vn+1 and n is an even number. Let v′1 = v1 + 2n
and v′2 = v2 + 2(n+ 1) + an+2

2
for some v1, v2 ∈ V . Then

v′1 − v′2 = v1 + 2n− (v2 + 2n+ 2 + an+2
2

) = v1 − v2 − 2− an+2
2
≤

≤ v1 − v2 − 2 + 1 = v1 − v2 − 1.

Since x ∈ (−1,−1), so v1 − v2 > 0. It implies that v1 − v2 ∈ R\Q. Hence
x ∈ R\Q. Proofs of remaining cases are similar.



8 ALICJA KIERUS

Now we will show that [2, 3] ⊆ A−A. Let v′ ∈ Vn where n is odd. Then
v′ = v + 2n+ an+1

2
for some v ∈ V . Since 0 ∈ V so 2 (n− 1) ∈ Vn−1. Then

v′ − 2 (n− 1) ∈ A−A, and

v′ − 2 (n− 1) = v + 2n+ an+1
2
− 2n+ 2 = v + an+1

2
+ 2.

It follows that v+an+1
2

+2 ∈ A−A for all v ∈ V . Hence V +an+1
2

+2 ⊆ A−A.
Similarly V + an + 2 ⊆ A−A for all n ∈ ω. It implies that

∞⋃
n=1

(V + an + 2) ⊆ A−A

and
∞⋃
n=1

(V + an + 2) = 2 +
∞⋃
n=1

(V + an) = 2 +
⋃

q∈Q∩[−1,1]

(V + q) ⊇ 2 + [0, 1] .

Therefore [2, 3] ⊆ A−A, and (2, 3) = Int ([2, 3]) ⊆ Int (A−A). �

Problem 1. We do not know whether there exists a Borel set with this prop-
erty.
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