ON A GENERALIZED STURM-LIOUVILLE PROBLEM

GRZEGORZ ANDRZEJCZAK AND TADEUSZ POREDA

Abstract. Basic results of our paper are devoted to a generalized Sturm-Liouville problem for an equation of the form $-(p(t)y'(t))'+q(t)y(t)=F(t,y(\cdot))$ with conditions

$$\begin{cases} \alpha_1 y(a) + \alpha_2 y'(a) = 0 \\ \beta_1 y(b) + \beta_2 y'(b) = 0 \end{cases}$$

with conditions $\begin{cases} \alpha_1 y(a) + \alpha_2 y'(a) = 0 \\ \beta_1 y(b) + \beta_2 y'(b) = 0 \end{cases}$ where $\alpha_1^2 + \alpha_2^2, \beta_1^2 + \beta_2^2 > 0$, $p(t) \neq 0$ for $t \in [a,b]$, $q \in C([a,b])$ and F is a continuous transformation from $[a,b] \times C([a,b])$ to C([a,b]).

It is required that the Green's function associated with this problem be nonnegative.

2000 Mathematics Subject Classification: 35J65. Key words and phrases: Sturm-Liouville problem.

1. Introduction.

Let F be a continuous transformation from $[a, b] \times C([a, b])$ to C([a, b])with the supremum norm. The main problem considered in this paper is the existence of a solution of the generalized differential equation of the form

(1)
$$-(py')' + qy = F(\cdot, y) \quad \text{for } y \in C^2([a, b])$$

with boundary conditions

(2)
$$\begin{cases} \alpha_1 y(a) + \alpha_2 y'(a) = 0 \\ \beta_1 y(b) + \beta_2 y'(b) = 0 \end{cases}$$

where
$$\alpha_1^2 + \alpha_2^2, \beta_1^2 + \beta_2^2 > 0, p \in C^1([a, b]), p(t) \neq 0$$
 for $t \in [a, b], q \in C([a, b])$

The modification of the Sturm-Liouville problem we consider is motivated by results of Fijałkowski-Przeradzki [2] and Fijałkowski, Przeradzki and Stańczy [3] on nonlocal elliptic equations. In our considerations we apply the following classical result.

Theorem 1. ([1] p.41) Let P be a cone in a Banach space X, i.e. P is a closed convex set such that:

(i)
$$\lambda P \subset P \text{ for } \lambda \geq 0$$
,

(ii)
$$P \cap (-P) = \{0\},\$$

and this cone is normal, i.e. there exists a positive constant C such that $||v|| \leq C||w||$, for $v, w \in P$, $v \leq w$. Let, for $v, w \in X$, the relation $v \leq w$ denote that $w - v \in P$. Suppose that a mapping $T: P \to X$ is completely continuous and nondecreasing, i.e.

$$T(v) \leq T(w)$$
, for $v \leq w$.

If there exist points $v_1, v_2 \in P$, $v_1 \leq v_2$, for which $v_1 \leq T(v_1)$ and $T(v_2) \leq v_2$, then the mapping T has a fixed point $v_0 \in P$ such that $v_1 \leq v_0 \leq v_2$.

2. Main results

Before presentation of the main results concerning (1) we need the following lemma:

Lemma 1 (On a sublinear transformation). Let $T: C([a,b]) \to C([a,b])$ be a completely continuous and monotonic transformation such that

- $(1) T(0) \ge 0,$
- (2) $T(y) \leq \alpha + \beta v(y)$ for some $\alpha, \beta \in C([a,b]), \alpha, \beta \geq 0$, where v is a seminorm defined on C([a,b]) satisfying the condition
- (3) $v(\beta) < 1$.

Then there exists a function $y_0 \ge 0$ which is a fixed point of the transformation T.

Proof. We can notice that for $w_1 = 0$ we have $T(w_1) \ge w_1$. We are looking for a $w_2 = c(\beta + \varepsilon), c, \varepsilon \in \mathbb{R}^+$, such that $T(w_2) \le w_2$. By the assumptions

$$T(w_2) \le \alpha + \beta v(c(\beta + \varepsilon)),$$

hence $T(w_2) \leq \alpha + c\beta(\upsilon(\beta) + \varepsilon \upsilon(1))$.

On account of (1) it is not difficult to choose $\varepsilon_0 > 0$ such that $v(\beta) < 1 - \varepsilon_0 v(1)$. Then for that ε_0 the inequality $T(w_2) \le \alpha + c\beta$ holds. Then we can take a constant c_0 big enough to satisfy the inequality $\alpha \le c_0 \varepsilon_0$. Thus for $w_2 = c_0(\beta + \varepsilon_0)$ we have $T(w_2) \le w_2$.

We denote by $C^+([a,b])$ the set of all non-negative functions in C([a,b]). Clearly T is completely continuous and monotonic on $C^+([a,b])$. Moreover $T(w_1) \geq w_1$ and $T(w_2) \leq w_2$ for $w_1 = 0$ and $w_2 = c_0(\beta + \varepsilon_0)$, so the assumptions of Theorem 1 are fulfiled. Hence there exists a function $y_0 \in C^+([a,b])$ such that $w_1 \leq y_0 \leq w_2$ and $T(y_0) = y_0$.

Theorem 2. Let a continuous function $F: [a,b] \times C([a,b]) \to C([a,b])$ satisfy the conditions:

- (i) $0 \le F(\cdot, y_1) \le F(\cdot, y_2)$ for $0 \le y_1 \le y_2, y_1, y_2 \in C([a, b])$,
- (ii) $F(\cdot,y) \leq f + h \cdot v(y)$ for some nonnegative functions $f,h \in L^1([a,b])$, where v is a seminorm on C([a,b]).

If the Green's function G associated with problem (1-2) is nonnegative and $\upsilon(\int_a^b G(\cdot,t)h(t)dt) < 1$, then there exists a C^2 -solution to (1-2). The solution is nonnegative.

Proof. Let us consider an operator $T \colon C([a,b]) \to C([a,b])$ of the form:

$$T(y)(s) = \int_{a}^{b} G(s,t) \cdot F(t,y)dt \quad \text{for } y \in C([a,b]), s \in [a,b].$$

We observe that any fixed point of T is a solution of (1-2). By properties of the function G and the assumptions about the function F, the transformation T is completely continuous. Furthermore

$$T(y) \le \int_{a}^{b} G(\cdot, t) f(t) dt + v(y) \int_{a}^{b} G(\cdot, t) h(t) dt.$$

Using the notation $\alpha = \int_a^b G(\cdot,t) f(t) dt$ and $\beta = \int_a^b G(\cdot,t) h(t) dt$, we can see that T satisfies the assumptions of the lemma on a sublinear transformation. Consequently, there exists a fixed point of T, which gives the existence of a solution to problem (1-2).

Theorem 3. If the transformation F discribed in the assumptions of Theorem 2 is of the form F(t,y) = f(t) + h(t)v(y), and v is an additive seminorm on $C^+([a,b])$ such that

$$\upsilon\left(\int_{a}^{b} G(\cdot,t)f(t)dt\right) \neq 0,$$

then the condition (*) is also necessary for existence of the solution y_0 to problem (1-2). For any such solution $v(y_0) \neq 0$.

Proof. Under the above assumptions any solution y_0 to problem (1-2) satisfies the equation

$$y_0(x) = \int_a^b G(x,t) \cdot F(t,y_0) dt \text{ for } x \in [a,b].$$

In view of the form of F and properties of the seminorm v, we have

$$\upsilon(y_0) = \upsilon\left(\int_a^b G(\cdot, t)f(t)dt\right) + \upsilon\left(\int_a^b G(\cdot, t)h(t)dt\right)\upsilon(y_0).$$

Hence

$$\upsilon(y_0)\left(1-\upsilon\left(\int\limits_a^b G(\cdot,t)h(t)dt\right)\right)=\upsilon\left(\int\limits_a^b G(\cdot,t)f(t)dt\right).$$

Since $\upsilon(\int_a^b G(\cdot,t)f(t)dt) > 0$ and $\upsilon(y_0) \ge 0$, it follows from the above equality that $\upsilon(\int_a^b G(\cdot,t)h(t)dt) < 1$ and $\upsilon(y_0) > 0$.

Corollary 1. Let $f, g, h \in L^1([a,b])$ be nonnegative functions. For any differential- integral problem

(3)
$$-(py')' + qy = f + h||g \cdot y||_{L^1} \text{ for } y \in C([a,b])$$

with boundary conditions (2) and nonnegative Green's function G let us denote $\alpha = \int_a^b G(\cdot,t) f(t) dt$, $\beta = \int_a^b G(\cdot,t) h(t) dt$. The problem has a solution if and only if one of the following conditions:

- (i) $g \cdot \alpha = 0$ a.e., or
- (ii) $||g \cdot \beta||_{L^1} < 1$

holds.

Proof. Observe that the function α is the solution to the differential-only part of the problem.

Theorem 4. Let the function F in (1) satisfy the following conditions:

- (i) $0 \le F(\cdot, y_1) \le F(\cdot, y_2)$ if only $0 \le y_1 \le y_2$ for $y_1, y_2 \in C([a, b])$, and
- (ii) $F(\cdot,y) \leq f + \int_a^b A(\cdot,s)y(s)ds$, for some functions $A \in C([a,b] \times [a,b]), f \in C^+([a,b])$ and $y \in C([a,b])$.

Let $\Gamma(A)(u,s) = \int_a^b G(u,t)A(t,s)dt$ for $u,s \in [a,b]$. If either

(a) there exist p > 1 and q such that $\frac{1}{p} + \frac{1}{q} = 1$ and

$$\int_{a}^{b} ||\Gamma(A)(u,\cdot)du||_{L^{p}}^{q} < 1,$$

(b)
$$\max_{u \in [a,b]} ||\Gamma(A)(u,\cdot)||_{L^1} < 1,$$

then problem (1-2) has a nonnegative solution in $C^2([a,b])$.

Proof. Let an operator $T: C([a,b]) \to C([a,b])$ be defined in the following way:

$$T(y)(u) = \int_{a}^{b} G(u,t)F(t,y)dt.$$

Then

$$T(y)(u) \le \int_a^b G(s,t)f(t)dt + \int_a^b \left(\int_a^b G(u,t)A(t,s)dt\right)y(s)ds \text{ for } u \in [a,b],$$

and thus for $p \ge 1$ and suitable q

$$T(y)(u) \le \int_{a}^{b} G(s,t)f(t)dt + ||\Gamma(A)(u,\cdot)||_{L^{p}}||y||_{L^{q}}.$$

The transformation T satisfies the assumptions of Lemma on sublinear transformation. Therefore it has a fixed point in $C^+([a,b])$, and so problem (1-2) has a solution in $C^2([a,b])$.

References

- [1] D.Guo and V.Lakshmikantham, Nonlinear Problems in Abstract Cones, Acad. Press, Orlando, 1988.
- [2] P.Fijałkowski and B.Przeradzki, On a radial positive solution to a nonlocal elliptic equation, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center 21 (2003), pp. 293-300.
- [3] P.Fijałkowski, B.Przeradzki and R.Stańczy, A nonlocal elliptic equation in a bounded domain, Banach Center Publications. 66 (2004), pp. 127-133.

GRZEGORZ ANDRZEJCZAK Institute of Mathematics, Technical University of Łódź Wólczańska 215, 93-005 Łódź, Poland E-mail: grzegorz.andrzejczak@p.lodz.pl

TADEUSZ POREDA Institute of Mathematics, Technical University of Łódź Wólczańska 215, 93-005 Łódź, Poland E-mail: tadeusz.poreda@p.lodz.pl