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Abstract

Halldén complete modal logics are defined semantically. They have a nice char-

acterization as they are determined by homogeneous Kripke frames.

1. Introduction

In this paper we continue research on modal logics which are Halldén com-
plete. In paper [8] a class of Halldén incomplete logics among Brouwerian
modal logics is described. The class has the cardinality of the continuum.
In the current paper we present some positive results in this field. The
method presented for showing Halldén completeness (and incompleteness)
is applicable to other modal logics as well.

Definition 1. A logic L is Halldén complete if

ϕ ∨ ψ ∈ L implies ϕ ∈ L or ψ ∈ L

for all ϕ and ψ containing no common variables.

Halldén complete logics are often called Halldén reasonable. It is proven
that the well known modal logics S4 and S5, KT and KTB, S4.3 are
Halldén complete (see [12], [10], [1]). On the other side, it is known that
the logics S1− S3 are Halldén incomplete [5].
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Some other results concerning Halldén completeness of modal logics are the
following:

• All normal extensions of S5 are Halldén complete [12].

• There is a continuum of Halldén complete logics in NEXT (S4) [3].

• There is a continuum of Halldén incomplete logics in
NEXT (KTB⊕�2p→ �3p) [8].

In this paper we give a semantic method of construction of Halldén com-
plete modal logics. Let K be some class of Kripke frames. Formally, the
logic determined by K is defined as follows:

L(K) := {α ∈ Form : F |= α for each F ∈ K} .

Note that the class K may consist of one Kripke frame only. Then we will
write L = L(F). Hereafter, by ‘frame’ we mean a Kripke frame. As is well
known, different classes of Kripke frames, determine different modal logics.

axioms condition for R in Kripke frames
K �(p→ q) → (�p→ �q) no condition
T �p→ p R reflexive
B p→ �♦p R symmetric
41 �p→ ��p R transitive

The smallest normal modal logic is denoted by K. For two normal modal
logics L and L′, L′ is a normal extension of L if L ⊂ L′. The class of
all normal extensions of L is denoted by NEXT (L). For a normal logic
L and a formula ϕ, the smallest normal extension of L containing also ϕ
is denoted by L ⊕ ϕ. Then one gets: KT := K ⊕ T , KTB := KT ⊕ B,
S4 := KT⊕ 41 and S5 := S4⊕B.

In the paper we will also consider special kind of normal extension of the
Brouwer logic KTB. We consider formulas

(4n) �np→ �n+1p, for n ≥ 1

(altn) := �p1 ∨�(p1 → p2) ∨ ... ∨�((p1 ∧ ... ∧ pn) → pn+1)), n ≥ 0,

and logics KTB.4n := KTB⊕ (4n) and KTB.altn := KTB⊕ (altn).
Axioms (4n) are called n-transitivity axioms. Respectively in frames, the
relation R is n-transitive if

(trann) ∀x,y (if xRn+1y then xRny)
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where the relation Rn is the n-step accessibility relation defined below:

xR0y iff x = y

xRn+1y iff ∃z (xRnz ∧ zRy)

Axioms (altn) with n ≥ 1 modally define the classes of frames in which
each point sees at most n points (possibly including itself).

Dealing with Kripke frames we need the notion of p-morphism.

Definition 2. Let F1 := 〈W1, R1〉 and F2 := 〈W2, R2〉 be Kripke frames.

A map f : W1 → W2 is a p-morphism from F1 to F2, if it satisfies the

following conditions:

(p1) f maps W1 onto W2,

(p2) for all x, y ∈W1, xR1y implies f(x)R2f(y),

(p3) for each x ∈W1 and for each a ∈W2, if f(x)R2a then

there exists y ∈W1 such that xR1y and f(y) = a.

It is said that the frame F1 is reducible to F2 or that the frame F2 is a

p-morphic reduct of F1.

Then we may compare the strength of logics. The following lemma is a
piece of logical folklore:

Lemma 1. Let F1, F2 be Kripke frames. If there exists a p-morphism from

F1 to F2 then L(F1) ⊆ L(F2).

Proof. See [4], p. 31–32.

Below, we recall some algebraic notions connected with modal logics.

Definition 3. An algebra A := 〈A,∩,∪,−, I, 0, 1〉 is a modal algebra if

〈A,∩,∪,−, 0, 1〉 is a Boolean algebra and the unary operator I satisfies the

conditions:

(1) I(1) = 1,
(2) I(a ∩ b) = I(a) ∩ I(b) for any a, b ∈ A.

The best known class of modal algebras is the class of topological Boolean
algebras. They characterize the logic S4 and its normal extensions. In the
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topological Boolean algebras ( S4-algebras) the operator I has to fulfill
additionally the conditions
(3) I(a) ≤ a

(4) I(I(a)) = I(a)
for any a ∈ A and behaves as the interior operator. The order ≤ is defined
in the standard way: a ≤ b iff a ∩ b = a.

Definition 4. A modal algebra A := 〈A,∩,∪,−, I, 0, 1〉 is called a KTB-

algebra if the unary operator I satisfies the condition (3) for any a ∈ A as

well as:

(5) a ≤ I(−I(−a)).

Similarly, if the operator I satisfies the conditions (1), (2) and (3) then the
algebra is called KT -algebra, whereas in the case of fulfilling (1), (2), (5)
the appropriate algebra is KB-algebra.

Let A := 〈A, ∩, ∪, −, I, 0, 1〉 be a modal algebra. A non-empty set ∇ ⊆ A

is a filter in A if the following conditions hold:

(i) If a, b ∈ ∇ then a ∩ b ∈ ∇,
(ii) If a ≤ b and a ∈ ∇ then b ∈ ∇.

A filter ∇ is an open filter in A if additionally it holds:

(iii) If a ∈ ∇ then I(a) ∈ ∇.

Definition 5. A modal algebra is called simple if it does not contain any

proper open filter.

For finite Kripke frames and finite modal algebras there is a nice duality
between them. For a finite modal algebra A we define the dual frame
A∗ := 〈W∗, R∗〉 where W∗ is the set of atoms of algebra A and R∗ is a
binary relation defined for any x, y ∈W∗ as follows:

xR∗y iff ∀z∈A (x ≤ I(z) ⇒ y ≤ z).

It is known that both A and A∗ validate the same formulas. Conversely,
for each finite Kripke frame F := 〈W,R〉 we define its dual algebra F∗ :=
〈2W ,∩,∪,−, I, ∅,W 〉 where for any X ⊆W

I(X) = {x ∈W : ∀y(xRy ⇒ y ∈ X)}.
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Similarly, both the frame F and its dual algebra F∗ validate the same modal
formulas. For more details see [4]. Moreover, for finite cases we have

(F∗)∗ ∼= F and (A∗)
∗ ∼= A.

For infinite case there is only the isomorphism (A∗)
∗ ∼= A.

For some special Kripke frames Lemma 1 may be strengthened to an equiv-
alence.

Lemma 2. Let F1, F2 be finite and connected Kripke frames such that their

dual algebras are simple. Then L(F1) ⊆ L(F2) iff there exists a p-morphism

from F1 to F2.

Proof. It is proven by Jónsson’s lemma, the congruence extension prop-
erty of modal algebras, finiteness and simplicity of the dual algebra for F1.
For details, see for example [13] or [7].

Another tool for dealing with frames are characteristic formulas. They were
first introduced for intuitionistic logic (and Heyting algebras) by Jankov
[6], but later they were adopted to modal logics as well. Then, by the
theory of duality, characteristic formulas are also used for Kripke frames.
For each finite frame F := 〈W,R〉 we define its diagram ∆F as follows:

• for each element a ∈W we fix a distinct propositional variable pa.

• ∆F := {pa → ♦pb : aRb} ∪ {pa → ¬♦pb : ¬(aRb)} ∪ {pa → ¬pb :
a 6= b} ∪

{
∨

x∈W px
}

The characteristic formula for the frame F is defined δF :=
∧

∆F. If
card(W ) = n then we define for any x ∈W :

κx := �nδF ∧ px.

For finite frames with card(W ) = n it holds:

the formula κx is satisfiable at x. (1.1)

2. Logics determined by homogeneous frames

Our key tool to recognize Halldén complete modal logics will be a theorem
due to van Benthem and Humberstone from [1]. In the paper the authors
consider many classes of frames in respect to determining Halldén complete
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logics. Among the investigated classes the class of homogeneous frames is
also studied.

Definition 6. A Kripke frame F := 〈W,R〉 is homogeneous if for any

x, y ∈W there exists an automorphism f of 〈W,R〉 with f(x) = y.

As a conclusion of more general theorem (Theorem 1 from [1]) the following
lemma is written.

Lemma 3. If a modal logic L is determined by one Kripke frame, which is

homogeneous, then L is Halldén complete.

Proof. It is a simplification of the proof of Theorem 1 from [1]. Let
L = L(F) and F := 〈W,R〉. Let ϕ∨ψ be some variable disjoint disjunction,
such that L 6⊢ ϕ and L 6⊢ ψ. Then there is a valuation v1 on F and a
point x ∈ W such that (F, x) 6|=v1 ϕ and a valuation v2 on F and a point
y ∈ W such that (F, y) 6|=v2 ψ. But since the frame F is homogeneous,
then there is an automorphism f such that f(y) = x. The new valuation
for all variables pi of the formula ψ are defined: v∗(pi, f(x)) = v2(pi, x) for
all x ∈ W . There is no conflict with the valuation v1 since ϕ and ψ have
disjoint variables. We extend valuation v∗ on the set of variables qi of ϕ:
v∗(qi, x) = v2(qi, x). Then we get (F, x) 6|=v∗ ϕ ∨ ψ.

The above theorem may be strengthened to an equivalence for some special
class of frames. We shall return to this problem in the next section.

Defining Halldén complete logics, we are however bounded by another the-
orem due to Lemmon [11]. For non-normal modal logics, the theorem is
an equivalence. For normal extensions it has the form of implication only.
Following Lemmon we say, that two logics L1, L2 ∈ NEXT (L) are incom-
parable, if L1 6⊂ L2 and L2 6⊂ L1.

Theorem 1. Let L1, L2 ∈ NEXT (L) be two incomparable logics. Then

the logic L0 = L1 ∩ L2 is Halldén incomplete.

Proof: We quote the proof from [11]. Let L0 = L1 ∩ L2 and there exist
ϕ and ψ such that ϕ ∈ L1 but ϕ 6∈ L2 and ψ ∈ L2 but ψ 6∈ L1. We
may assume that ϕ is written in variables pi, i = 1, ...n whereas ψ in
qi, i = 1, ...m. Since ϕ 6∈ L2 then ϕ 6∈ L0 and ψ 6∈ L1 then ψ 6∈ L0.
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Obviously ϕ ∨ ψ ∈ L1 and ϕ ∨ ψ ∈ L2. Then ϕ ∨ ψ ∈ L0.

From the above theorems, one may conclude that there is a very simple se-
mantic way of identifying Halldén complete (and incomplete) logics. Each
homogeneous frame determines a Halldén complete logic, whereas the class
of two frames which are mutually irreducible determines a Halldén incom-
plete one.

Below, we characterize special families of finite, homogeneous frames for
the well-known modal logics. Our interest is limited to finite and connected
frames only.

Definition 7. A frame F := 〈W,R〉 is connected if for any x, y ∈W there

are x1, x2, ..., xn ∈W such that xRx1 and x1Rx2 and ... and xnRy.

We also define set R(x) of neighboring points for x ∈W :

R(x) = {y ∈W : xRy}.

Lemma 4. Let F := 〈W,R〉 be a finite, connected and homogeneous frame.

Then

1. for any x, y ∈W, cardR(x) = cardR(y),

2. if exists an x ∈W such that xRx, then yRy for all y ∈W.

Proof: Since F := 〈W,R〉 is a homogeneous frame, then for every auto-
morphism f if xRy then f(x)Rf(y). So, cardR(x) = cardR(f(x)). If xRx
for some x ∈W then f(x)Rf(x). It means that if there is a reflexive point
in a frame, then all points must be reflexive.

Very small homogeneous frames F := 〈W,R〉 are simple to describe. Let
W = {x}. Then we have two possibilities: xRx or ¬xRx. A reflexive point
is denoted by ◦, an irreflexive one by •. Then we get L(◦) = Triv and
L(•) = V er. Obviously these two logics are Halldén complete.

Let W = {x, y}, x 6= y. Similarly as before there are possible only two
cases:

1. R is symmetric and reflexive – then we have the frame ◦—◦,

2. R is symmetric and irreflexive •—•.

The situation that xRy and ¬yRx is not allowed, because then the frame
would not be homogeneous.
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Let W = {x1, x2, x3}, xi 6= xj for i 6= j, i, j = 1, 2, 3. Suppose x1Rx2 and
x2Rx3 but ¬x3Rx1. Then the frame is not homogeneous since we cannot
map the point x1 onto x2, Indeed, if f(x1) = x2 then also f(x2) = x3.
Function f is onto, then it must hold f(x3) = x1. But then we get x2Rx3
and ¬f(x2)Rf(x3). The simple example shows that finite homogeneous
frames do not have last points, so they are, somehow, circular. Formally,
we define:

Definition 8. A circular frame CK
n := 〈Wn, Rn〉, n ≥ 3 is defined as

follows:

Wn := {x1, x2, ..., xn},

Rn ⊇ {(xi, xi+1), i = 1, 2, ..., n− 1} ∪ {(xn, x1)}.

Additionally we define:

• A circular reflexive and/or symmetric frame is the circular frame

whose relation Rn is also reflexive and/or symmetric. Such frames

are denoted as CKTB
n , CKT

n or CKB
n , respectively.

Below, in Fig. 1 diagrams of four distinct circular frames Cn are presented.
One may notice that

Observation 1. Each circular frame is homogeneous.

3. Halldén completeness in NEXT (KTB)

In this section we study homogeneous reflexive and symmetric Kripke
frames. We shall prove a stronger version of Lemma 3 for homogeneous
KTB-frames. We shall take advantage of characteristic formulas. Let us
notice that in a connected KTB-frame each point x may be treated as a
root. It means that any other point y is Rn accessible from x for some
n ≥ 0. Moreover, in finite, connected and homogeneous KTB-frame F, the
formula κx is satisfiable at any y ∈W .

For inhomogeneous frames, however, we get:

Lemma 5. Let F := 〈W,R〉 be a KTB-Kripke frame, which is finite, con-

nected and inhomogeneous. Suppose that cardR(x) 6= cardR(y) for some

x, y ∈W . Then the formula κx is not satisfiable at y.
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Fig. 1. The diagrams of different circular frames with n points.

Proof: Let F := 〈W,R〉 be a KTB- frame, which is finite, connected
and inhomogeneous. Then there exists two points x, y ∈ W such that
for any function f : W → W being a bijection such that f(x) = y, f is
not a homomorphism. Hence, for example, there exists a point x1 ∈ W

such that xRx1 but ¬yRf(x1). Then the formula δF contains the sub-
formulas px → ♦px1

and py → ¬♦pf(x1). If we want the formula κx to
be satisfiable at y then we have to accept y |= px. We want to follow the
previous valuation (taken from the characteristic formula), but then we
have a problem. Since ¬yRf(x1) then the sub-formula px → ♦px1

will be
false at y and the whole formula κx will be falsified at y as well. The same
situation will hold for any other valuation. We conclude that κx is not
satisfiable at the point y. A similar proof will be provided if f(x) = y and
¬xRx1 but yRf(x1).
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Theorem 2. Let F := 〈W,R〉 be KTB-Kripke frame, which is finite and

connected. Logic L(F) is Halldén complete iff the frame F is homogeneous.

Proof. The reverse implication is proven in the proof of Lemma 3. Then
we have to prove the simple implication, only. Suppose that the frame F is
not homogeneous. Let cardW = n and let x, y ∈W be such points that for
any bijection f : W → W such that f(x) = y, it is not a homomorphism.
Let us consider the negation of κx and κy appropriately.

ϕ(p) := �nδF → ¬px and ψ(q) := �nδF → ¬qy

Writing ϕ(p) we mean that the formula ϕ is written in variables p’s, ap-
propriately ψ in q’s. From (1.1) we get:

x 6|= ϕ(p), (3.1)

y 6|= ψ(q). (3.2)

Then ϕ(p) 6∈ L(F) and ψ(p) 6∈ L(F).
From Lemma 5 we conclude that

y |= ϕ(p), and x |= ψ(q). (3.3)

Hence

x |= ϕ(p) ∨ ψ(q) and y |= ϕ(p) ∨ ψ(q). (3.4)

Let z ∈ W , z 6= x and z 6= y. If there is an automorphism g such that
g(x) = z then there is a valuation such that z 6|= ϕ(p). But then z |= ψ(q)
(it follows from the existence of g that there is no automorphism mapping
y to z). Hence

z |= ϕ(p) ∨ ψ(q). (3.5)

Similarly we prove (3.5) if there is an automorphism h mapping y to z.
Now, suppose that there is no automorphism mapping x to z nor y to z.
Then at z both the formulas ϕ(p) and ψ(q) are true for any valuation.
Hence again (3.5) is true.
From (3.4)-(3.5) we get that the disjunction ϕ(p)∨ψ(q) is valid in F. Then
ϕ(p) ∨ ψ(q) ∈ L(F) what involves the Halldén incompleteness of the logic
L(F).

If a tabular logic is determined by a finite class of finite and mutually
irreducible KTB-frames (having more than one frame) then by Theorem
1 it is not Halldén complete. From Theorem 2 we conclude:
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Corollary 1. A Kripke complete and tabular logic from NEXT (KTB),
which is Halldén complete must be determined by one homogeneous Kripke

frame.

3.1. Logics determined by circular reflexive and symmetric frames

Initially we confine ourselves to the circular reflexive and symmetric frames
CKTB
n , n ≥ 3. The class of possible p-morphisms between such frames is

easy to describe.

Lemma 6. Let CKTB
kn := 〈Wkn, R〉, Wkn := {x1, . . . , xkn}, k ≥ 2 and

CKTB
n := 〈Wn, R

′〉, Wn := {x′1, . . . , x
′

n} be two circular frames. Then the

following function:

f(xj) = x′i iff i = j[mod(n)]; for any i ≤ n , j ≤ kn

is a p-morphism from CKTB
kn to CKTB

n .

Proof. Function f is onto. Let xjRxj+1. Obviously, f(xj)R
′f(xj+1) since

f(xj) = x′
j[mod(n)], f(xj+1) = x′

j+1[mod(n)] and x′
j[mod(n)]R

′x′
j+1[mod(n)].

Now, we check the condition (p3) of p-morphism. Let f(xj)R
′xi. If f(xj) =

xi then the thesis is trivial. Let f(xj) 6= xi and suppose f(xj) = xi+1 (it
could be also f(xj) = xi−1, but it is analogous). Then we take the point
xj−1 if j > 2 (or xkn if j = 1). We get xjRxj−1 and f(xj−1) = x′i (or
x1Rxkn and f(xkn) = x′1, appropriately).

On the other hand it holds.

Lemma 7. Let m > n ≥ 3 and suppose that there is a p-morphism from

CKTB
m to CKTB

n . Then m is divisible by n.

Proof. It is similar to the proof of Lemma 20 from [13] or Thm. 6.4 from
[7] for wheel frames. The clue of the proof is that it is impossible to glue
two neighboring points and map them onto a point from the smaller circle,
since then the condition (p3) of p-morphism does not hold.

Before we take advantage of Lemma 2 we shall prove:

Lemma 8. Let CKTB
n := 〈W,R〉, n ≥ 3 be given. Then its dual (CKTB

n )∗ :=
〈2W ,∩,∪,−, I, ∅,W 〉 is simple.
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Proof. We show that for any proper subset X ⊂ W , X 6= I(X). That
will mean that there are no open elements (and filters) in (CKTB

n )∗. Let us
remind the definition of the interior operation:

I(X) = {x ∈W : ∀y(xRy ⇒ y ∈ X)}.

If X := {x1} then I(X) = ∅. If X := {x1, x2} then again I(X) = ∅ because
each of them sees other point. Let X := {x1, x2, x3} and x2 sees itself, x1
and x3 and no other point. Let cardW > 3 and suppose that x3Rx4. Then
x3 6∈ I(X). Hence I(X) 6= X. If cardW = 3 then I(X) = X, but then
the filter generated by X is not proper. The analogous situation holds for
larger sets X ⊂ W . Eventually, only in two cases we get X = I(X) for
X := ∅ or X :=W .

One may conclude from Lemmas 8 and 2 that

Corollary 2. For any prime numbers i 6= j such that i, j ≥ 3 we get

L(CKTB
i ) 6⊆ L(CKTB

j ) and L(CKTB
j ) 6⊆ L(CKTB

i ).

Further, from Lemma 3 one may easily conclude:

Corollary 3. Each logic determined by one circular (reflexive and sym-

metric) Kripke frame is Halldén complete. Moreover, logics determined by

one circular (reflexive and symmetric) Kripke frame having prime number

of points form an anti-chain.

One may notice that the formula (alt3) is valid in any circular reflexive and
symmetric Kripke frame. Then, if fact, we may conclude:

Corollary 4. There are countably many Halldén complete logics in

NEXT (KTB.alt3).

Moreover we obtain:

Corollary 5. All tabular and Halldén complete logics in

NEXT (KTB.alt3) are determined by the circular frames: {CKTB
n , n ≥ 3}

or by the frames: ◦ − −◦ or ◦.

Two logics, determined by different circular frames with prime number of
points, are mutually incomparable. Thus, their intersection determines
logic which is Halldén incomplete (see Theorem 1). Then we get:



On Halldén Completeness of Modal Logics... 123

Corollary 6. There are countably many Halldén-incomplete logics in

NEXT (KTB.alt3).

Remark 1. Since we have defined an anti-chain of Halldén complete logics

in NEXT (KTB.alt3) then it might seem to be possible to define a con-

tinuum of logics by taking their infinite intersections. But the whole family

NEXT (KTB.alt3) is countably infinite only, hence as well the family of

Halldén incomplete logics, see [2].

3.2. Halldén completeness in NEXT (KTB.altn) for n ≥ 4

Among homogeneous Kripke frames one may distinguish other than the
circular ones. There are plenty of examples of such frames. Let us still
consider reflexive and symmetric circular frames. After some modification
of their definition, we may obtain homogeneous frames with established
degree of branching.

Since the axioms (altn) are valid in the frames whose points see at most n
other points (including itself) then we have the following inclusion:

... ⊂ KTB.altn ⊂ KTB.altn−1 ⊂ ... ⊂ KTB.alt2 ⊂ KTB.alt1 = Triv.

Below, we modify the reflexive and symmetric circular Kripke frames as
follows:

Definition 9. A double circular reflexive and symmetric frame DC
KTB
2n :=

〈W2n, R2n〉, n ≥ 3 is defined as follows:

W2n := {x1, x2, ..., xn} ∪ {x′1, x
′

2, ..., x
′

n},

R2n := {(xi, xj) : |i− j| ≤ 1, i, j = 1, ..., n} ∪ {(x1, xn)} ∪ {(xn, x1)} ∪

{(x′i, x
′

j) : |i− j| ≤ 1, i, j = 1, ..., n} ∪ {(x′1, x
′

n)} ∪ {(x′n, x
′

1)} ∪

{(xi, x
′

i) : i = 1, ..., n} ∪ {(x′i, xi) : i = 1, ..., n}.

As an example the diagram of DC
KTB
16 is presented in Fig. 2.

The logics determined by frames DC
KTB
2n , n ≥ 3 belong to the family

NEXT (KTB.alt4), which contains the family NEXT (KTB.alt3). For
them we may repeat the reasoning from Section 3.1. The class of
p-morphisms are similar to the one described in Lemmas 6 and 7. We



124 Zofia Kostrzycka

❝

❝

❝

❝❝

❝

❝

❝

❅
❅
❅

!
!

!❅
❅

❅

!
!
!

❅
❅
❅
❅

!
!

!
!

!❅
❅

❅
❅

!
!

!
!!

❝

❝

❝

❝❝

❝

❝

❝

✡
✡✡

✧✧✧

❵❵❵

❉
❉❉

✁
✁
✁

✑
✑✑

❜❜❜

▲
▲▲ x8

x1

x2

x3
x4

x5

x7

x6

x′8

x′1

x′2

x′3x′4

x′5

x′7

x′6

Fig. 2. The diagram of reflexive, symmetric double circular frame DC
KTB
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may also prove that the dual algebra (DC
KTB
2n )∗ for n ≥ 3 is simple, what

involves that the homogeneous frames DC
KTB
2n with n-prime, determine

logics that form an anti-chain. Then we get:

Corollary 7. There are countably many Halldén complete logics in

NEXT (KTB.alt4) \NEXT (KTB.alt3).

By Lemmon theorem we also obtain:

Corollary 8. There are countably many Halldén-incomplete logics in

NEXT (KTB.alt4) \NEXT (KTB.alt3).

Remark 2. The cardinality of the whole family NEXT (KTB.alt4) is

that of the continuum (see [9]). We have defined an anti-chain of Halldén

complete logics in NEXT (KTB.alt4) and it seems to be possible to define

a continuum of logics by taking their infinite intersections. However each

double circular frame DC
KTB
2n is reducible to the circular one CKTB

n (the

suitable p-morphism glues the points xi and x′i for i = 1, 2, ..., n). Then



On Halldén Completeness of Modal Logics... 125

we conclude again that the class of logics determined by double circular

frames is countably infinite only. Hence the class of Halldén incomplete

logics defined by us is also countably infinite.

The idea presented above of constructing of double circular frames from
circular ones may be generalized. Actually, the double circular frame is
isomorphic to a direct product of circular frame and two element cluster.
We recall the definition.

Definition 10. The direct product of frames F1 := 〈W1, R1〉 and F2 :=
〈W2, R2〉 is the frame F1 × F2 := 〈W1 ×W2, R1 ⊗ R2〉, where symbol ‘×’

denotes Cartesian product, and

(x1, x2)R1 ⊗R2(y1, y2) iff x1R1y1 and x2R2y2,

for any x1, y1 ∈W1 and x2, y2 ∈W2.

An n-element Kripke frame F := 〈W,R〉 is an n-element cluster if for any
x, y ∈ W we have xRy. Such an n-element cluster is denoted Cln. Of
course, each cluster is also an homogeneous Kripke frame. From the above
definition we notice that DC

KTB
n

∼= CKTB
n × Cl2. Following the above idea

we will consider the following direct products:

CKTB
n × Clk, n ≥ 3 and k ∈ N.

Observation 2. Each direct product CKTB
n ×Clk is a homogeneous frame

and each point of this frame sees exactly k + 2 points (including itself).

The logics determined by the frames CKTB
n × Clk, n ≥ 3 k ∈ N belong

to the family NEXT (KTB.altk+2). We generalize Corollaries 7 and 8 as
follows:

Corollary 9. There are countably many Halldén complete logics in

NEXT (KTB.altm) \NEXT (KTB.altm−1) for any m ≥ 4.

Corollary 10. There are countably many Halldén-incomplete logics in

NEXT (KTB.altm) \NEXT (KTB.altm−1) for any m ≥ 4.

3.3. Halldén completeness in NEXT (KTB.4n)

The Brouwer logic is called a non-transitive logic since it is determined
by the class of reflexive and symmetric frames, which are allowed to be
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non-transitive. But also its n-transitive normal extensions are studied.
Obviously, KTB.41 = S5 and the following inclusions hold:

KTB ⊂ ... ⊂ KTB.4n+1 ⊂ KTB.4n ⊂ ... ⊂ KTB.42 ⊂ KTB.41.

The logic S5 is determined by Kripke frames which are clusters. For any
n > 1 the cluster Cln is reducible to Cln−1. Each cluster is a homogeneous
frame and determines a normal extension of S5. Then it is quite clear
that S5 has countably many normal extensions all of which are Halldén
complete (see Introduction). Then we may study weaker logics. We start
with the logic KTB.42.

We modify reflexive and symmetric circular frames by adding connections
between some points. The new frame we call a circular-asteroid frame.

Definition 11. A circular-asteroid reflexive and symmetric frame CAn :=
〈Wn, Rn〉, n ≥ 5 is defined as follows:

Wn := {x1, x2, ..., xn},

Rn := {(xi, xj) : |i− j| ≤ 1, i, j = 1, 2, ..., n}∪{(x1, xn)}∪{(xn, x1)}∪

{(xi, xj) : 3 ≤ |i− j| ≤ n− 3, i, j = 1, 2, ..., n}.
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Fig. 3. The diagram of reflexive, symmetric circular-asteroid frame
CA

KTB
8
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Each point xi, i ≤ n of such a frame sees almost all other points with the
exception of xi+2[modn] and symmetrically xn+i−2[modn]. Then reflexive,
symmetric circular-asteroid frame is not a cluster, but it is KTB42-frame.
Obviously, circular-asteroid, reflexive and symmetric frames are homoge-
neous. Although in these frames there are more connections than in the
circular ones, surprisingly the class of possible p-morphisms is the same.
First, let us notice that the analogues of Lemmas 6 and 7 hold. Also,
the dual algebra (CAKTB

n )∗ is simple. Then it is possible to construct an
anti-chain of logics in NEXT (KTB.42) which are Halldén complete. The
logics, as before, will be determined by suitable frames with prime numbers
of points. Then we get:

Corollary 11. There are countably many Halldén complete logics in

NEXT (KTB.42) \NEXT (S5).

We may compare the above result with the negative one from [8]. The
result from [8] was obtained by using wheel-frames. Our positive result
from Corollary 11 is a partial solution of Problem 1 from this paper.

The class of the Halldén incomplete logics described in [8] has the cardi-
nality of the continuum. Similarly as for wheel-frames (see [13]), we may
prove that

Lemma 9. The class of logics determined by circular-asteroid, reflexive and

symmetric frames has cardinality continuum.

Proof: The logics L(CAKTB
n ) and L(CAKTB

m ), m,n ≥ 5 - prime and m 6=
n are incomparable. Let A and B be distinct sets of prime numbers. We
show that

L({CAKTB
n , n ∈ A}) 6= L({CAKTB

n , n ∈ B}).

Let n1 ∈ A and n1 6∈ B. By Rautenberg’s theorem we know that each
finite frame splits the lattice NEXT (KTB.42) (see [14]). The splitting
pair is the following (L(CAKTB

n ),KTB.4.2 ⊕ ¬κCAKTB

n

). The negation of

the characteristic formula κCAKTB

n1

it valid in all frames CAKTB
n , n ∈ B, but

is not in CA
KTB
n1

. Then we may distinguish the two logics L({CAKTB
n , n ∈

A}) and L({CAKTB
n , n ∈ B}) from each other.
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Then we get a similar result to the one from [8]:

Corollary 12. There are uncountably many Halldén-incomplete logics in

NEXT (KTB.42)\NEXT (S5), which are determined by circular-asteroid,

reflexive and symmetric frames.

Remark 3. The circular-asteroid frames may be modified by removing the

connections between xi and xi+3 and symmetrically xi and xn+i−3. Then

we get homogeneous frames with the largest diameter 3. Such frames in-

dexed with prime numbers will determine as before an anti-chain of logics

in NEXT (KTB.43)\NEXT (KTB.42). Analogously, we define circular-

asteroid frames with a larger diameter for any n ≥ 4.

4. Logics determined by other circular Kripke frames

In this section we briefly describe Halldén complete logics determined by
the class of circular Kripke frames which are irreflexive and antisymmetric
{CK

n , n ≥ 3}, or irreflexive and symmetric {CKB
n , n ≥ 3}, or reflexive and

antisymmetric {CKT
n , n ≥ 3}. The classes of existing p-morphisms for each

kind of circular frames are very similar to the one from previous section.
Analogous lemmas to 6, 7 and 8 hold. Also one may conclude similarly to
Corollary 4 that

Corollary 13. There are countably many Halldén complete logics in the

families:

• NEXT (K) \ (NEXT (KT) ∪NEXT (KB))

• NEXT (KB) \NEXT (KTB)

• NEXT (KT) \NEXT (KTB)

Similarly as in Corollary 6 we also obtain:

Corollary 14. There are countably many Halldén-incomplete logics in

the families:

• NEXT (K) \ (NEXT (KT) ∪NEXT (KB))

• NEXT (KT) \NEXT (KTB)

• NEXT (KB) \NEXT (KTB)
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5. Problems and questions

In paper [1] its authors give several theorems about Halldén completeness
of modal logics which are determined by special Kripke frames. All the
theorems are, however, only implications and the authors regret this fact.
Hence our Theorem 2 for KTB-frames is important in this area of research.
Since it was possible to get a theorem in a shape of equivalence for some
class of some special frames (not only homogeneous, but also reflexive and
symmetric) we propose to study less general classes of Kripke frames than
in the mentioned paper. For example, one may study classes of frames
closed under p-morphic fusions (but only transitive), or classes closed un-
der direct products. Strong theorems in the form of equivalence characte-
rizing Halldén-completeness will be very useful for studying logics with in-
terpolation. We briefly recall here that the logics which have only one Post
complete extension and are not Halldén-complete do not have interpola-
tion as Schumm [15] showed. Although this result concerns non-normal
extensions of modal logics, we think that it may be helpful also in the case
of normal ones. Hence our Theorem 2 is a starting point for recognizing
logics with interpolation in NEXT (KTB).

Further, let us notice, that our method of defining Halldén-complete nor-
mal modal logics serves to yield only ℵ0 such logics. Hence the following
question seems to be natural:

Question 1. Is it possible to construct an uncountable family of Halldén

complete logics in NEXT (KTB.altn) for n ≥ 4 or in NEXT (KTB.4n),
n ≥ 2 or in NEXT (K)\(NEXT (KT)∪NEXT (KB)) or in NEXT (KT)\
NEXT (KTB) or in NEXT (KB)\NEXT (KTB) or in NEXT (KTB)?

A positive answer to the question is connected with defining the so-called
conservative formulas, see [4], p.468. In our opinion, in the case of logic
KTB it is very difficult to find such formulas.

Acknowledgment. The author would like to thank Yutaka Miyazaki for
fruitful discussion on Halldén completeness of modal logics.
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