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Abstract: Allegories are enriched categories generalizing a category of sets and binary
relations. Accordingly, relational products in an allegory can be viewed as a generalization
of Cartesian products. There are several definitions of relational products currently in the
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1. Introduction

Relation algebra ([1,2]) allows one to formulate first order logic (and set theory) in a quantifier-free,
purely algebraic (equational) way. It has found numerous applications in mathematics and computer
science (see, e.g., [3–8]). In particular, it is a foundation for relational databases [9]. A relation algebra
without some additional structures is equivalent in expressivity to three variable fragment of first order
logic [1]. A crucial ingredient that allows one to express with relation algebra all of the first order
logic is the existence of Cartesian products. These can be defined equationally, as so-called relational
products, within the relation algebra. In fact, the existence of relational products is strongly related to
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the representability of abstract relation algebras, i.e., the possibility of their realization as subalgebras of
the algebra of actual binary relations.

Allegories are enriched categories generalizing a category of sets and binary relations. Accordingly,
relational products in an allegory can be viewed as a more abstract version of Cartesian products.
Recently allegories were used as a mathematical framework to model databases in [10,11]. There, the
authors had to assume the existence of appropriate relational products in order to make the formalism
applicable in other than most trivial cases, in particular, relational products allow one to define n-ary
relations using binary ones.

There is a well-established definition of a binary relational product valid both for abstract relation
algebras (see e.g., [3,7,12,13]) and allegories (see e.g., [14] or Definition 9 in Section 2 of this paper). In
the case of the allegory of sets and binary relations, this definition characterizes, up to an isomorphism,
the usual Cartesian products. For general allegories, one proves easily [14] that the relational product is
a categorical product for the subcategory of maps of the given allegory, that is a subcategory consisting
of those arrows (generalized relations) that behave like total functions. It should be noted that, unlike
the categorical definition of the product, which involves both universal and existential quantification (for
all maps, such that . . . there exists a unique map, such that . . . ), the definition of a relational product
involves no quantification—it is just equations, in terms of constant arrows and projection arrows, which
projection arrows must satisfy. Moreover, the unique factorization, the existence of which the categorical
definition asserts, is given explicitly by a simple algebraic formula in terms of projection arrows and the
maps to be factorized through the product. Unfortunately, this definition of a relational product is too
strong to be considered an algebraic characterization of categorical product; there are examples (see
e.g., [15]) of allegories in which a categorical product in the subcategory of maps does not satisfy all of
the standard axioms of a relational product. In [15] and [16], a weakening (see also Definition 10 in this
paper) of the standard relational product was investigated, which still provides a categorical product in
the subcategory of maps.

It is surprisingly difficult to generalize the definition of a binary relational product to an n-ary one for
an arbitrary n. The most obvious one does not yield a categorical product in the subcategory of maps.
A non-inductive definition (i.e., one that did not rely on the iteration of binary products) of the n-ary
relational product was given in [17]. The paper (concerned with abstract relational algebra rather than
with allegories) does not contain the proof that the n-ary relational product yields the n-ary categorical
product for functions, though the author proves that the n-ary relational products of the same objects
must be isomorphic.

In this paper, we define and investigate the weakening of an n-ary relational product from [17], which
for n “ 2 is equivalent to the binary relational product defined in [15]. We prove that a weak n-ary
relational product yields an n-ary categorical product in the subcategory of maps. Furthermore, we
generalize to the case of weak n-ary relational products some of the results proven in [15] for weak
binary relational products. Finally, we show that by composing the weak n-ary products, we again get
weak n-ary products.
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2. Preliminaries

We assume that the reader is familiar with basic category theory, and an excellent introduction can be
found in [18]. We recall some basic categorical definitions in order to fix the clean, but somewhat
idiosyncratic, notation we use. The bulk of the preliminaries is taken by introductory material on
allegories, which are not widely known and for which [14] is the basic textbook.

Note that we consciously utilize the term “set” where “class” might be more appropriate in order not
to clutter the presentation with the set-theoretical considerations.

2.1. Categories and Graphs

A graph G consists of a set of vertices ObjrG s, a set of arrows ArrrG s and a pair of maps
ÐÝ
p¨q,
ÝÑ
p¨q :

ArrrG s ÝÑ ObjrG s, called the source and target, respectively. We denote by ArrG pA,Bq the set of
arrows with source A and target B, where A,B P ObjrG s.

A category C is a graph with associative arrow composition f ;g P ArrC p
ÐÝf ,ÝÑg q defined

whenever ÝÑf “ ÐÝg (note the diagrammatic order) and identity map id : ObjrC s Ñ ArrrC s, such that
idpÐÝf q; f “ f ; idpÝÑf q “ f for all f P ArrrC s. We write idA :“ idpAq. When using single letter arrow
names, we will often omit the semicolon composition operator abbreviating f g :“ f ;g.

We will often declare the composability of arrows using diagrams, e.g.,

‚
f // ‚

g //

h
// ‚ :” p

ÝÑf “ÐÝg q^pÝÑf “
ÐÝ
h q^pÝÑg “

ÝÑ
h q

Note that unlike in [14], the diagrams are not considered commutative by default.

A categorical n-ary product is a family of arrows tπiuiPt1,...,nu with a common source, such that
for any other family of arrows t fiuiPt1,...,nu with a common source and such that ÝÑfi “

ÝÑ
πi for all

i P t1, . . . ,nu, there exists a unique arrow h, such that fi “ hπi for all i P t1, . . . ,nu.

2.2. Allegories

An allegory [14] A is a category enriched with intersection and reciprocation operators, respectively,
for all A,B P ObjrA s:

¨[ ¨ : ArrA pA,BqˆArrA pA,Bq Ñ ArrA pA,Bq,

p¨q
˝ : ArrA pA,Bq Ñ ArrA pB,Aq

We require these operators to satisfy the following conditions: Intersections make each hom-set a

meet-semilattice (see, e.g., [19]), where we denote the associated partial order by Ď, i.e., R Ď S :”
R[S “ R, for all R,S P ArrA p

ÐÝR ,
ÝÑR q. In addition, ¨[ ¨ and p¨q˝ are to satisfy:

R˝˝ “ R, (1a)

pRSq˝ “ S˝R˝, (1b)

pR[Sq˝ “ R˝[S˝, (1c)

RpS[T qĎ RS[RT (1d)

RS[T Ď pR[T S˝qS (1e)
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For all R,S,T P ArrrA s, such that the above formulas are well defined. Applying the reciprocation
to both sides of the Equation (1d) (right semi-distributivity) and (1e) (right modular identity), using the
Equations (1a)–(1c) and redefining symbols yields easily the following right versions:

pS[T qR Ď SR[T R (1f) RS[T Ď RpS[R˝T q (1g)

Allegories generalize the allegory R of sets (objects) and binary relations (arrows). Because of this,
we may refer to arrows in any allegory as “relations”. In R, we write aRb iff pa,bq P R. The identity in
R is id : A ÞÑ tpa,aq|a P Au, and the intersection is the set intersection, i.e., R[S :“ RXS, reciprocation
is defined by aR˝b :” bRa and composition of relations R,S P ArrrRs such that ÝÑR “ÐÝS is defined by:

apRSqc :” Db P ÝÑR . aRb^bSc (2)

We distinguish the following classes of arrows in allegory:

• If idÐÝR Ď RR˝, then R is called total;
• If R˝R Ď idÝÑR , then R is called functional;
• If R is functional and total, it is called a map. A set of all maps in an allegory A is denoted by

MaprA s;
• If RR˝ Ď idÐÝR , then R is called injective;
• If idÝÑR Ď R˝R, then R is called surjective;
• IfÐÝR “ÝÑR “C and R Ď idC, then R is called coreflexive.

If R PArrrA s is an isomorphism in an allegory A , then both R and R˝ are maps, and R´1 “ R˝. Note
that idA for all A P ObjrA s is a map, and the composition of maps is a map. For any A,B P ObjrA s, we
denote by JA,B the top element of ArrA pA,Bq, if it exists. In R, we have JAB :“ AˆB.

An arrow T is called symmetric if T ˝ “ T . Some symmetric arrows might admit splittings:

Definition 1. An arrow R is called a splitting of a symmetric arrow T if and only if RR˝“ idÐÝR , R˝R“ T .

We will make frequent use of the following results (cf. [14]):

Lemma 2. RpS[T q “RS[RT for all ‚ R // ‚
S //

T
// ‚ , such that R is functional. Similarly, pS[T qR“

SR[T R for all ‚
S //

T
// ‚

R // ‚ , such that R˝ is functional.

Lemma 3. Define DompRq :“ idÐÝR [RR˝. Then, DompR[Sq “ idÐÝR [RS˝ for all ‚
R //

S
// ‚ .

Lemma 4. Suppose that A is coreflexive. Then, A “ A˝ (A is symmetric). Moreover, if B is another
coreflexive arrow, such that ÐÝA “

ÐÝB and ÝÑA “
ÝÑB , then AB “ A[B. In particular, this implies that

AB“ BA, AB is again coreflexive (as A[B obviously is) and that A is idempotent (i.e., AA“ A). Finally,
A (and, hence, A˝) is functional, as A˝A“ AA“ A Ď idÐÝA .
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Lemma 5. The ordering restricted to maps is discrete, that is f Ď g” f “ g for all f ,g PMaprA s.

Lemma 6. ([15]) Suppose that
‚ S

**‚
R 44

T
// ‚ and that S is functional. Then, RS[T “ pR[T S˝qS.

2.3. Distributive and Division Allegories

A distributive allegory is an allegory A in which for all hom-sets ArrA pA,Bq, there exists a bottom
element KAB P ArrA pA,Bq and a binary operation ¨\ ¨ : ArrA pA,BqˆArrA pA,Bq Ñ ArrA pA,Bq, which
together with ¨ [ ¨ makes ArrA pA,Bq a distributive lattice with ¨ [ ¨ as the infimum and ¨ \ ¨ as the
supremum. In addition, we require that ¨\ ¨ and KAB satisfy:

RKÝÑR B “ KÐÝR B, RpS\T q “ RS\RT

for all R,S,T P ArrrA s, such that the above formulae are type-correct.
A division allegory is a distributive allegory with a partial binary operation ¨z¨ (called a left division),

defined if and only if both arguments have the same sources, and satisfying for all
‚ S

**‚
T

//
R 44

‚

ÐÝÝ
RzT “ÝÑR ,

ÝÝÑ
RzT “ÝÑT , S Ď RzT ” RS Ď T

Note that R is a division allegory with the union defined as set union, i.e., R\ S :“ RY S, bottom
KAB “H and a left division defined by:

RzT :“ tpx,yq P ÝÑR ˆÝÑT | @z PÐÝR . pz,xq P Rñ pz,yq P Tu

2.4. A Functional Part of a Relation

The notion of a functional part unppRq of a relation R was introduced in [3] and was later generalized
to division allegories in [15]. Let A be a division allegory, and let R PArrrA s. Then, the functional part
of R [3,15] is defined by:

unppRq :“ R[pR˝zidÐÝR q (3)

Note that in R, we have, for any R P ArrrRs:

unppRq “ tpx,yq P R | @z P ÝÑR . px,zq P Rñ z“ yu

which, together with the following lemma, justifies interpreting unppRq as the functional part of R.

Lemma 7. ([3,15]) For any R P ArrrA s, where A is a division allegory, we have that unppRq is
functional, and moreover, R is functional if and only if R“ unppRq.

The following result, which (slightly differently phrased) was proven in [15], shows that, given
relevant splittings, we can associate a map to any relation.
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Lemma 8. Let A be a division allegory, and let R PArrrA s. Let also A be a coreflexive arrow, such that
A Ď unppRqunppRq˝. Suppose that A has a splitting s, i.e., s˝s“A, ss˝“ idÐÝs . Then s;unppRq PMaprA s.

Proof. We provide the proof for completeness. Note first that s is functional as s˝s “ A Ď idÝÑs .
Furthermore, unppRq is functional by Lemma 7. Hence, s;unppRq must be functional, as well, being
a composition of functional arrows. The arrow s;unppRq is also total as:

s;unppRq;unppRq˝;s˝ Ě sAs˝ tas unppRq;unppRq˝ Ě Au

“ ss˝ss˝ tas A“ s˝su

“ idÐÝs tas ss˝ “ idÐÝs u

2.5. Relational Products

Here is a standard definition of a relational binary product in an allegory. Note that it is necessary to
assume the existence of the top relation between objects that are supposed to be the components of the
relational product.

Definition 9. ([14]) Let A be an allegory. A pair of arrows ‚ C
π1oo π2 // ‚ is called a relational

product if and only if it satisfies the following conditions:

π
˝
1 π1 “ idÝÑ

π1
, π

˝
2 π2 “ idÝÑ

π2
, (4a)

π1π
˝
1 [π2π

˝
2 “ idC, (4b)

π
˝
1 π2 “ JÝÑπ1

ÝÑ
π2

(4c)

The following is the weakening of the above definition formulated in [15]:

Definition 10. ([15]) Let A be an allegory. A pair of arrows ‚ C
π1oo π2 // ‚ is called a weak

relational product if and only if it satisfies the following conditions:

π
˝
1 π1 Ď idÝÑ

π1
, π

˝
2 π2 Ď idÝÑ

π2
, (5a)

π1π
˝
1 [π2π

˝
2 “ idC, (5b)

f ˝1 f2 Ď π
˝
1 π2 for all

‚f1
uu

f2
))

‚ C
π1
oo

π2
// ‚ such that f1, f2 PMaprA s (5c)

In [15], it was proven that a weak relational product is a categorical product in the subcategory of
maps. Additionally, it is immediate.
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3. Weak n-Ary Relational Products

The following is a generalization of the characterization of binary relational products to the
characterization of n-ary products.

Definition 11. ([17]) Let I “ t1, . . . ,nu. A finite family of arrows tπiuiPI Ď ArrrA s with a common
source C, that is, such that ÐÝπi “ C for all i P I, is called an n-ary relational product if and only if it
satisfies the following conditions:

@i . π
˝
i πi “ idÝÑ

πi
, (6a)

ę

i

πiπ
˝
i “ idC, (6b)

@k P I .

¨

˝

ę

iPIztku

πiπ
˝
i

˛

‚πk “ JÐÝπk
ÝÑ
πk

(6c)

Before we present the weakening of the above definition, we need the following piece of notation.
Let π :“ tπiuiPI be a finite family of arrows in an allegory A with a common source. We denote:

Fπ :“
 

t fiuiPI |
`

@i P I. fi PMaprA s^ÝÑfi “
ÝÑ
πi
˘

^
`

@i, j P I.ÐÝfi “
ÐÝf j
˘(

(7)

The following is the weakening of Definition 11:

Definition 12. Let I “ t1, . . . ,nu. A finite family of arrows tπiuiPI Ď ArrrA s with a common source C,
that is, such that ÐÝπi “C for all i P I, is called a weak n-ary relational product if and only if it satisfies
the following conditions:

@i . π
˝
i πi Ď idÝÑ

πi
, (8a)

@t fiuiPI PFπ , i P I . f ˝i fi Ď π
˝
i πi, (8b)

ę

iPI

πiπ
˝
i “ idC, (8c)

@J Ĺ I,k P IzJ,t fiuiPI PFπ .

˜

ę

iPJ

πiπ
˝
i

¸

πk Ě

˜

ę

iPJ

πi f ˝i

¸

fk (8d)

An immediate corollary of Equations (8a) and (8c) is that arrows πi for all i are maps. Another
immediate corollary is that an n-ary relational product is also a weak n-ary relational product. The
following result shows that any categorical product in MaprA s satisfies most of the Conditions (8):

Lemma 13. (cf. [15]). Let tπiuiPI be an n-ary categorical product in MaprA s. Then, tπiuiPI satisfies
Conditions (8a), (8b), (8d) and the “Ě” part of (8c).

Proof. Condition (8a) and the “Ě” part of Condition (8c) are satisfied, because all πi’s are maps, hence,
respectively, functional and total. Let now t fiuiPI PFπ . Because tπiuiPI is a categorical n-ary product, it
follows that there exists a (unique) map h PMaprA s, such that fi “ hπi for all i P I. Hence, for all i P I:

f ˝i fi “ π
˝
i h˝hπi

Ď π
˝
i πi th is functionalu
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which proves Condition (8b). Similarly, we prove Condition (8d). Let J Ĺ I, and let k P IzJ. Then:

˜

ę

iPJ

πi f ˝i

¸

fk “

˜

ę

iPJ

πiπ
˝
i h˝

¸

hπk

“

˜

ę

iPJ

πiπ
˝
i

¸

h˝hπk tby Lemma 2u

Ď

˜

ę

iPJ

πiπ
˝
i

¸

πk th is functionalu

Both the binary weak relational product and n-ary relational product are axiomatized using three
axioms, two of which correspond to the properties (8a) and (8c) of a weak n-ary relational product. It is
therefore interesting to check if the remaining properties (8b) and (8d) are really independent or if one of
them implies the other in the presence of other axioms. The following two examples prove that neither
implication holds:

Example 14. Consider the allegory R of binary relations, and let A P ObjrRs be any set that is neither
empty nor a singleton. It is immediate that the three maps π1,π2,π3 :“ idA satisfy the Conditions (8a),
(8b) and (8c) (for I :“ t1,2,3u). They fail, however, to satisfy Condition (8d). Indeed, let f1, f2, f3 :
AˆA Ñ A, where f1 and f2 are both projections on the first component of a Cartesian product AˆA
and f3 is the projection on the second component. Then, we have that

´

Ű

iPt1,2uπiπ
˝
i

¯

π3 “ idA, and
´

Ű

iPt1,2uπi f ˝i
¯

f3 “ f ˝2 f3 “ JA. However, as A is neither empty nor singleton, we must have idA Ă JA,
contradicting Condition (8d).

Example 15. Consider the allegory A , with two distinct objects, A and B, and with:

ArrA pA,Aq :“ tidAu, ArrA pA,Bq :“ tπu, ArrA pB,Aq :“ tπ˝u, ArrpB,Bq :“ tidB,π
˝
πu,

where π satisfies:
ππ

˝
“ idA, π

˝
π Ă idB

This allegory can be realized in R by setting, e.g.,

A :“ t0u, B :“ t0,1u, π :“ tp0,0qu

Let now I :“ t1,2,3u, and let π1,π2,π3 :“ π . It is immediate that both Equations (8a) and (8c) are
satisfied by the πi’s. To check the remaining two axioms of n-ary weak relational product, first note
that Fπ contains only two families of maps t fiuiPt1,2,3u: one obtained by setting f1, f2, f3 :“ idB; the
other one by setting f1, f2, f3 :“ π . Both families satisfy property (8d); however, setting f1, f2, f3 :“ idB

provides a counterexample to Equation (8b).
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The following two lemmas are crucial for proving the main result of this paper:

Lemma 16. Let I :“t1, . . . ,nu, and let tπiuiPI ĎArrrA s be a weak n-ary relational product. Let t fiuiPI P

Fπ . Define hJ :“
Ű

iPJ fiπ
˝
i , for all H‰ J Ď I. Then, for all H‰ J Ĺ I and k P IzJ, the totality of hJ

implies that hJπk f ˝k Ě idÐÝhJ
.

Proof. LetH‰ J Ĺ I and k P JzI. Assume that hJ is total. Then:

hJπk f ˝k “

˜

ę

iPJ

fiπ
˝
i

¸

πk f ˝k tdefinition of hku

Ě

˜

ę

iPJ

fiπ
˝
i πiπ

˝
i

¸

πk f ˝k tby Equation (8a)u

Ě

˜

ę

iPJ

hJπiπ
˝
i

¸

πk f ˝k tAs hJ Ď fiπ
˝
i for all i P Ju

Ě hJ

˜

ę

iPJ

πiπ
˝
i

¸

πk f ˝k tby Equation (1d)u

Ě hJh˝J fk f ˝k tby Equation (8d) as h˝J fk “

˜

ę

iPJ

πi f ˝i

¸

fku

Ě idÐÝfk tbecause hJ and fk are totalu

Lemma 17. Let I :“ t1, . . . ,nu, and let tπiuiPI Ď ArrrA s be a weak n-ary relational product. Let
t fiuiPI PFπ . Then, hJ :“

Ű

iPJ fiπ
˝
i is total for allH‰ J Ď I.

Proof. We prove the lemma using induction on J. For the base case, note that for all i P I:

htiuh
˝
tiu “ fiπ

˝
i πi f ˝i tdefinition of htiuu

Ě fi f ˝i fi f ˝i tby Condition (8b)u

Ě idÐÝf1 tas fi is totalu

Suppose now that we have proven for some H‰ J Ĺ I that hJ is total. Note that DompRq “ idÐÝR is
equivalent with R being total. We have:

DomphJYtkuq “Dom

¨

˝

ę

iPJYtku

fiπ
˝
i

˛

‚ tdefinition of hJYtkuu

“DomphJ[ fkπ
˝
k q tdefinition of hJu

“ idÐÝfk [hJπk f ˝k tby Lemma 3u

“ idÐÝfk tBy Lemma 16 and inductive assumption that hJ is total.u
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The following result, which is the main result of this paper, shows that an n-ary weak relational
product is in fact a categorical product for maps.

Theorem 18. Suppose that tπiuiPI Ď ArrrA s is a weak n-ary relational product. Let an arrow h P

ArrrA s and family of maps t fiuiPI Ď MaprA s be such that for all i P I, we have ‚

fi
++

h
11

‚
‚

πi

<< .

Then:

h“
ę

i

fiπ
˝
i ” h PMaprA s^

`

@i . hπi “ fi
˘

Note that the diagram in the assumption of the theorem above implicitly implies that all of the maps
fi have a common source.

Proof. (Theorem 18) First, assume that h PMaprA s and hπi “ fi for all i P I. Then:

h“ h
ę

i

πiπ
˝
i tby Equation (8c)u

“
ę

i

hπiπ
˝
i tby Lemma 2 as h PMaprA su

“
ę

i

fiπ
˝
i tas @i . hπi “ fiu

Assume now that h“
Ű

i fiπ
˝
i . Then:

The arrow h is functional, that is h˝h Ď idÝÑh . Indeed, for all k P I:

h˝h“

˜

ę

i

fiπ
˝
i

¸˝˜
ę

j

f jπ
˝
j

¸

tdefinition of hu

Ď πk f ˝k fkπ
˝
k tmonotonicity of composition and p¨q˝u

Ď πkπ
˝
k t fk is functionalu

Hence:

h˝h Ď
ę

i

πiπ
˝
i tas @i . h˝h Ď πiπ

˝
i u

“ idÝÑh tby Equation (8c)u

The arrow h is total, that is hh˝ Ě idÐÝh . Indeed, this is stated in Lemma 17.
Equality hπi “ fi holds for all i. Indeed,

hπi “

˜

ę

k

fkπ
˝
k

¸

πi tsubstitute definition of hu

Ď fiπ
˝
i πi tmeet propertyu

Ď fi tby Equation (8a)u
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On the other hand, we have already proven that h is a map, and so, both hπi and fi are maps; hence,
by Lemma 5, hπi Ď fi implies hπi “ fi.

Let us also note that our definition of a weak n-ary relational product is a generalization of a weak
binary relational product, i.e., a pair of arrows πi, i “ 1,2 with a common source in an allegory A is
a weak binary relational product (Definition 10) if and only if it is a weak two-ary relational product
(Definition 12). Indeed, by Theorem 18 and ([15], Theorem 2), a pair of arrows satisfying conditions
of either of these two definitions is a categorical product for maps. Then, by Lemma 13 and ([15],
Lemma 5) a categorical product satisfies all of the conditions of Definitions 10 and 12 apart from the
“Ď” part of Equations (5b) and (8c), which in this case, are identical anyway.

An example given in [15] shows that there are indeed allegories A for which a categorical product
in MaprA s does not satisfy the “Ď” part of Equation (8c); hence, one needs to assume something more
about A to ensure that n-ary categorical products in MaprA s satisfy all Conditions (8). The following
result is a generalization of ([15], Lemma 6) to the case of weak n-ary relational products.

Lemma 19. Suppose that tπiuiPI , I “ t1, . . . ,nu is an n-ary categorical product in MaprA s. If there
exists a splitting R P ArrrA s of

Ű

iPI πiπ
˝
i , then tπiuiPI is an n-ary weak relational product.

Proof. The basic idea of the proof is the same as of the proof of ([15], Lemma 6): we first prove that
tRπiuiPI is a weak n-ary relational product, and then, we use this result to prove that tπiuiPI must be
a weak n-ary relational product, too. Let us denote π̃i :“ Rπi for all i P I. The family tπ̃iuiPI satisfies
Condition (8a). Indeed, we have (cf. the proof of ([15], Lemma 6)) that for all i P I:

π̃
˝
i π̃i “ π

˝
i R˝Rπi

“ π
˝
i
`

πiπ
˝
i [

ę

jPIztiu

π jπ
˝
j
˘

πi tas R˝R“
ę

iPI

πiπ
˝
i u

“ idÝÑ
πi
[π

˝
i
`

ę

jPIztiu

π jπ
˝
j
˘

πi tby Lemma 6 as πi is functionalu

Ď idÝÑ
π̃i

tas ÝÑπ̃i “
ÝÑ
πiu

Note that RR˝ “ idÐÝR implies that R˝ is functional. Observe that for all i P I:

`

ę

jPI

π jπ
˝
j
˘

πi Ď πi (9)

Indeed, `

ę

jPI

π jπ
˝
j
˘

πi “
`

πiπ
˝
i [

ę

jPIztiu

π jπ
˝
j
˘

πi

“ πi[
`

ę

jPIztiu

π jπ
˝
j
˘

πi tby Lemma 6 as πi is functionalu

Ď πi

It follows that tπ̃iuiPI satisfies (cf. the proof of ([15], Lemma 6)):
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ę

iPI

π̃iπ̃
˝
i “

ę

iPI

Rπiπ
˝
i R˝

“ Rπ1π
˝
1 R˝[

ę

iPIzt1u

Rπiπ
˝
i R˝

“ R
`

π1π
˝
1 [R˝p

ę

iPIzt1u

Rπiπ
˝
i R˝qR

˘

R˝ tby Lemma 6 as R˝ is functionalu

Ď R
`

π1π
˝
1 [

ę

iPIzt1u

R˝Rπiπ
˝
i R˝R

˘

R˝ tby Equations (1g) and (1d)u

“ R
´

π1π
˝
1 [

ę

iPIzt1u

`

p
ę

jPI

π jπ
˝
j qπiπ

˝
i p
ę

kPI

πkπ
˝
k q
˘

¯

R˝ tas R˝R“
ę

iPI

πiπ
˝
i u

Ď R
`

π1π
˝
1 [

ę

iPIzt1u

πiπ
˝
i
˘

R˝ tby Equation (9)u

“ R
`

ę

iPI

πiπ
˝
i
˘

R˝

“ RR˝RR˝ tas R˝R“
ę

iPI

πiπ
˝
i u

“ idÐÝR

On the other hand, for all i P I, we have that [15] π̃iπ̃
˝
i “ Rπiπ

˝
i R˝ Ě RR˝ “ idÐÝR , as πi is total, for all

i P I; hence, also,
Ű

iPI π̃iπ̃
˝
i Ě idÐÝR . Thus, the family tπ̃iuiPI satisfies Condition (8c).

In order to see that the family tπ̃iuiPI satisfies Condition (8b), note first that Fπ̃ “Fπ and that tπiuiPI

is by assumption a categorical product in MaprA s and, thus, by Lemma 13, satisfies all of Condition (8)
but the “Ď” part of Condition (8c). Hence, for all families t fiuiPI PFπ̃ , we have:

f ˝i fi Ď π
˝
i πi tby Equation (8b) as t fiuiPI PFπu

Ď π
˝
i
`

ę

jPI

π jπ
˝
j
˘

πi tby the “Ě” part of Equation (8c)u

“ π
˝
i R˝Rπi tas R is a splitting of

ę

jPI

π jπ
˝
j u

“ π̃
˝
i π̃i

In order to see that the family tπ̃iuiPI satisfies Condition (8d), note first that, for any t fiuiPI PFπ̃ “Fπ ,
as tπiuiPI is, by assumption, a categorical product in MaprA s, there exists a map h, such that fi “ hπi

for all i P I. Furthermore, note that, as, by Lemma 13, tπiuiPI satisfies “Ě” part of Condition (8c) and R
is a splitting of

Ű

iPI πiπ
˝
i , we must have R˝R“

Ű

iPI πiπ
˝
i Ě idÝÑR . Then, it follows that, for allH‰ J Ď I

and k P IzJ, we have:
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`

ę

jPJ

π̃ j f ˝j
˘

fk “
`

ę

jPJ

Rπ j f ˝j
˘

fk

“
`

ę

jPJ

Rπ jπ
˝
j h˝

˘

hπk

“
`

ę

jPJ

Rπ jπ
˝
j
˘

h˝hπk tby Lemma 2 as h is functionalu

Ď
`

ę

jPJ

Rπ jπ
˝
j
˘

πk th is functionalu

Ď
`

ę

jPJ

Rπ jπ
˝
j R˝R

˘

πk tR˝R Ě idÝÑR u

“
`

ę

jPJ

Rπ jπ
˝
j R˝

˘

Rπk tby Lemma 2 as R˝ is functionalu

“
`

ę

jPJ

π̃ jπ̃
˝
j
˘

π̃k

By Theorem 18, we know now that tπ̃iuiPI is a categorical product in MaprA s and that the arrow
g :“

Ű

iPI πiπ̃
˝
i is a map satisfying πi “ gπ̃i for all i P I. On the other hand, as tπiuiPI is a categorical

product in MaprA s by assumption, the standard argument shows that g must be an isomorphism. In
any allegory, the inverse of an isomorphism equals the reciprocation of this isomorphism and both the
isomorphism and its inverse are maps; hence, in particular g´1 “ g˝. Denote by C the common source
of πi’s. Putting it together, the argument being almost identical to the proof of ([15], Lemma 6) shows
that the family tπiuiPI satisfies the “Ď” part of Condition (8c):

idC “ gg´1

“
`

ę

iPI

πiπ̃
˝
i
˘

g´1

“
`

ę

iPI

πiπ
˝
i pg

´1
q
˝
˘

g´1
tas π̃i “ g´1

πi for all i P Iu

“
`

ę

iPI

πiπ
˝
i g
˘

g´1
tas pg´1

q
˝
“ pg˝q˝ “ gu

“
`

ę

iPI

πiπ
˝
i
˘

gg´1
tby Lemma 2 as g˝ “ g´1 is functionalu

“
`

ę

iPI

πiπ
˝
i
˘

This ends the proof, as, by Lemma 13, the family tπiuiPI satisfies all of the other conditions of
Definition 12 by virtue of being the categorical product in MaprA s.

In Conditions (8b) and (8d) the range of universal quantification was restricted to maps. The following
result, which is the adaptation to n-ary weak relational products of ([15], Lemma 7), shows that we
can modify those conditions, so that the range of quantification is restricted only by source-target
considerations from the whole set of arrows in the allegory under consideration.
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Lemma 20. (cf. ([15], Lemma 7)) Let A be a division allegory in which all partial identities split. A
family tπiuiPI , where I “ t1, . . . ,nu, of arrows in A with a common source is an n-ary weak relational
product if and only if it satisfies Conditions (8a) and (8c), as well as:

@i P I . unppRiq
˝
´

ę

iPI

DompunppRiqq

¯

unppRiqĎ π
˝
i πi, (10a)

@J Ĺ I,k P IzJ .

˜

ę

iPJ

πiunppRiq
˝

¸

´

ę

iPI

DompunppRiqq

¯

unppRkqĎ

˜

ę

iPJ

πiπ
˝
i

¸

πk (10b)

for all families tRiuiPI of arrows in A with a common source and such that ÝÑRi “
ÝÑ
πi for all i P I.

Proof. The basic idea of the proof is adapted from the proof of ([15], Lemma 7). It is immediate that
if a family tπiuiPI satisfies Conditions (8a) and (8c), as well as Conditions (10), then it is a weak n-ary
relational product, because for any t fiuiPI PFπ , we have unpp fiq “ fi by Lemma 7 and Dompunpp fiqq “

Domp fiq “ idÐÝfi
for all i P I, and thus, Conditions 10 subsume trivially Conditions (8b) and (8d). Hence,

it remains to prove that Conditions (8b) and (8d) imply Conditions (10).
Assume that tπiuiPI is an n-ary weak relational product, and let tRiuiPI be a family A with a common

source C and such that ÝÑRi “
ÝÑ
πi for all i P I. Denote for brevity:

ı :“
ę

iPI

DompunppRiqq

and let s be a splitting of ı, i.e., ss˝ “ idÐÝs and s˝s “ ı. By Lemma 8, s;unppRiq is a map for all i P I.
Now, the families tπiuiPI and tRiuiPI satisfy Condition (10a) as, for all i P I:

unppRiq
˝; ı;unppRiq “ unppRiq

˝;s˝;s;unppRiq tas ı“ s˝su

Ď π
˝
i ;πi tby Condition (8b) as s;unppRiq PMaprA su

We prove Condition (10b) similarly. LetH‰ J Ĺ I and k P IzJ. Then:
˜

ę

iPJ

πi;unppRiq
˝

¸

; ı;unppRkq

“

˜

ę

iPJ

πi;unppRiq
˝

¸

;s˝;s;unppRkq tas ı“ s˝su

“

˜

ę

iPJ

πi;unppRiq
˝;s˝

¸

;s;unppRkq tby Lemma 2 as s is functionalu

Ď

˜

ę

iPJ

πiπ
˝
i

¸

πk tby Condition (8d) as s;unppR jq’s are maps.u

4. Iterated Relational Products

Relational products can be iterated (see, e.g., Diagram 11). We will prove that any iterated product
still satisfies the assumptions of Definition 12. It is immediate that in order to enable the trivial induction,
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it is enough to show that the iteration of the form depicted in the Diagram 11 is a weak pn`m´1q-ary
relational product ( πi’s are attached to ÝÑρ1 for notational convenience, and the proof would work the
same for any other position of attachment):

‚
ρ1

||

ρn

!!
‚

π1

}}

πm

""

¨ ¨ ¨ ‚

‚ ¨ ¨ ¨ ‚

(11)

Lemma 21. Let tρku1ďkďn and tπku1ďkďm be weak n and m-ary relational products, respectively, such
that ÐÝπk “

ÝÑ
ρ1 for all 1 ď k ď m (see Figure 1). Then, tδku1ďkďm`n´1 defined below is also a relational

product:

δk :“

$

&

%

ρ1πk if 1ď k ď m

ρk´m`1 if mă k ă m`n
.

Figure 1. Construction of universal arrows.

‚

f1

��

h1

��

h
�� fm`n´1

��

‚

ρ1
||

ρn
!!

‚

π1
}}

πm
""

¨ ¨ ¨ ‚

‚ ¨ ¨ ¨ ‚

Proof. In order to simplify the notation, we assume here that index variables i and j run through the
values t1, . . .mu and t2, . . .nu by default. Furthermore, denote the common source of ρi’s by A. We will
now check the satisfaction of the consecutive Conditions (8):

Identity (8a) is satisfied because ρ˝j ρ j Ď idÝÑ
ρ j

and π˝i ρ˝1 ρ1πi Ď π˝i πi Ď idÝÑ
πi

for all i, j as π’s and ρ’s
satisfy Equation (8a). Identity (8c) is satisfied as:

ę

k

δkδ
˝
k “

˜

ę

i

ρ1πiπ
˝
i ρ
˝
1

¸

[

˜

ę

j

ρ jρ
˝
j

¸

tdefinition of δku

“ ρ1

˜

ę

i

πiπ
˝
i

¸

ρ
˝
1 [

˜

ę

j

ρ jρ
˝
j

¸

tby Lemma 2u

“ ρ1ρ
˝
1 [

˜

ę

j

ρ jρ
˝
j

¸

tπ’s satisfy Equation (8c)u

“ idA tρ’s satisfy Equation (8c)u
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Suppose that t fiu1ďiďm`n´1 P Fδ . In particular, this implies that t fiu1ďiďm P Fπ , and hence,
by Theorem 18, the arrow h1 :“

Ű

1ďiďm fiπ
˝
i (see Figure 1) is a map that satisfies fi “ h1πi for

all 1 ď i ď m. Then, th1u Y t fkum`1ďkďm`n P Fρ , and thus, by Theorem 18 it follows that h :“
h1ρ˝1 [

Ű

2ď jďn fm` j´1ρ˝j is a map that satisfies h1 “ hρ1, fm` j´1 “ hρ j for all 2 ď j ď n. It follows
immediately that fi “ hδi for all 1 ď i ď m`n´1. Then, we can use the same methods as in the proof
of Lemma 13 to verify Conditions (8b) and (8d).

5. Conclusions

In the paper, we defined and investigated the weakening of an n-ary relational product from [17],
which for n“ 2 is equivalent to the binary relational product defined in [15]. Our most important result
is the proof that a weak n-ary relational product yields an n-ary categorical product in the subcategory of
maps (Theorem 18). This result shows also that an n-ary product presented in [17] is also a categorical
product for maps. Lemmas 19 and 20 generalize to the case of weak n-ary relational products the similar
results proven in [15] for weak binary relational products. We also prove that by composing the weak
n-ary products, we again get weak n-ary products (Lemma 21). This last result shows that the weak n-ary
relational products can be constructed iteratively from the binary ones.

It should be noted that our definition of n-ary weak relational product, unlike that of usual relational
product, whether binary or n-ary, does involve universal quantification. If one considers using allegories
as a means of avoiding quantification when dealing with products, this is still better than a combination
of universal and existential quantification (and one gets an explicit formula for a factorizing map, too).
Note that the definition of a weak binary relational product in [15] involved universal quantification, as
well, but this quantification could have been hidden in the definition of certain constant arrows. This is
not possible with our definition.

The results presented in this paper were motivated by our work on the allegorical data model [10,11].
This model is abstract enough to model both the sharp and fuzzy relations in a uniform way, but only
binary relations are modeled directly. If I is a finite set of size n and if R is an n-ary relation (in the sense
of standard relational database model) with attributes Ai of type Ti for all i P I, then, for any sets J1, J2

partitioning I (i.e., I “ J1Y J2, J1X J2 “ H), R can be viewed in an obvious way as a binary relation
between

Ś

iPJ1
Ti and

Ś

iPJ2
Ti. This simple observation shows how generalizations of n-ary relations

can be represented (non-canonically) as arrows in an allegory, provided that the appropriate relational
products exist.
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