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1. Introduction

Relation algebra ([1,2]) allows one to formulate first order logic (and set theory) in a quantifier-free,
purely algebraic (equational) way. It has found numerous applications in mathematics and computer
science (see, e.g., [3—8]). In particular, it is a foundation for relational databases [9]. A relation algebra
without some additional structures is equivalent in expressivity to three variable fragment of first order
logic [1]. A crucial ingredient that allows one to express with relation algebra all of the first order
logic is the existence of Cartesian products. These can be defined equationally, as so-called relational
products, within the relation algebra. In fact, the existence of relational products is strongly related to
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the representability of abstract relation algebras, i.e., the possibility of their realization as subalgebras of
the algebra of actual binary relations.

Allegories are enriched categories generalizing a category of sets and binary relations. Accordingly,
relational products in an allegory can be viewed as a more abstract version of Cartesian products.
Recently allegories were used as a mathematical framework to model databases in [10,11]. There, the
authors had to assume the existence of appropriate relational products in order to make the formalism
applicable in other than most trivial cases, in particular, relational products allow one to define n-ary
relations using binary ones.

There is a well-established definition of a binary relational product valid both for abstract relation
algebras (see e.g., [3,7,12,13]) and allegories (see e.g., [14] or Definition 9 in Section 2 of this paper). In
the case of the allegory of sets and binary relations, this definition characterizes, up to an isomorphism,
the usual Cartesian products. For general allegories, one proves easily [14] that the relational product is
a categorical product for the subcategory of maps of the given allegory, that is a subcategory consisting
of those arrows (generalized relations) that behave like total functions. It should be noted that, unlike
the categorical definition of the product, which involves both universal and existential quantification (for
all maps, such that ...there exists a unique map, such that ...), the definition of a relational product
involves no quantification—it is just equations, in terms of constant arrows and projection arrows, which
projection arrows must satisfy. Moreover, the unique factorization, the existence of which the categorical
definition asserts, is given explicitly by a simple algebraic formula in terms of projection arrows and the
maps to be factorized through the product. Unfortunately, this definition of a relational product is too
strong to be considered an algebraic characterization of categorical product; there are examples (see
e.g., [15]) of allegories in which a categorical product in the subcategory of maps does not satisfy all of
the standard axioms of a relational product. In [15] and [16], a weakening (see also Definition 10 in this
paper) of the standard relational product was investigated, which still provides a categorical product in
the subcategory of maps.

It is surprisingly difficult to generalize the definition of a binary relational product to an n-ary one for
an arbitrary n. The most obvious one does not yield a categorical product in the subcategory of maps.
A non-inductive definition (i.e., one that did not rely on the iteration of binary products) of the n-ary
relational product was given in [17]. The paper (concerned with abstract relational algebra rather than
with allegories) does not contain the proof that the n-ary relational product yields the n-ary categorical
product for functions, though the author proves that the n-ary relational products of the same objects
must be isomorphic.

In this paper, we define and investigate the weakening of an n-ary relational product from [17], which
for n = 2 is equivalent to the binary relational product defined in [15]. We prove that a weak n-ary
relational product yields an n-ary categorical product in the subcategory of maps. Furthermore, we
generalize to the case of weak n-ary relational products some of the results proven in [15] for weak
binary relational products. Finally, we show that by composing the weak n-ary products, we again get
weak n-ary products.
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2. Preliminaries

We assume that the reader is familiar with basic category theory, and an excellent introduction can be
found in [18]. We recall some basic categorical definitions in order to fix the clean, but somewhat
idiosyncratic, notation we use. The bulk of the preliminaries is taken by introductory material on
allegories, which are not widely known and for which [14] is the basic textbook.

Note that we consciously utilize the term “set” where “class” might be more appropriate in order not
to clutter the presentation with the set-theoretical considerations.

2.1. Categories and Graphs

“«—

A graph ¢ consists of a set of vertices Obj[¥], a set of arrows Arr[¢/] and a pair of maps (-), (_3 ;
Arr[¢9] — Obj[¥], called the source and target, respectively. We denote by Arrg(A,B) the set of
arrows with source A and target B, where A, B € Obj|¥/].

A category % is a graph with associative arrow composition f;g € Arrcg(T,?) defined
whenever f = ‘¢ (note the diagrammatic order) and identity map id : Obj [¢'] — Arr[%], such that
id(F);f = £:1d(F) = f for all f e Arr[#¢]. We write ids := id(A). When using single letter arrow
names, we will often omit the semicolon composition operator abbreviating fg := f;g.

We will often declare the composability of arrows using diagrams, e.g.,
o — - — ., -
e leeTme = T AT =T)a(®=T)

Note that unlike in [14], the diagrams are not considered commutative by default.

A categorical n-ary product is a family of arrows {ﬂi}ie{1,...,n} with a common source, such that
for any other family of arrows { fi}ie{l,...,n} with a common source and such that f = 7 for all
i€ {l,...,n}, there exists a unique arrow h, such that f; = hm; forall i € {1,...,n}.

2.2. Allegories

An allegory [14] .7 is a category enriched with intersection and reciprocation operators, respectively,
for all A, B € Obj[.«/|:

-m1-: Arrg(A,B) x Arr (A, B) — Arr (A, B),
(1)°: Arry/(A,B) — Arr(B,A)

We require these operators to satisfy the following conditions: Intersections make each hom-set a
meet-semilattice (see, e.g., [19]), where we denote the associated partial order by =, i.e., RE S :=
RnS =R, forall RS e Arr/(R,R). In addition, - 1 - and (-)° are to satisfy:

R°° =R, (1a) R(ST)= RSMRT (1d)
(RS)° = S°R°, (1b) RSHT= (RNTS)S (le)
(RmS)”=R"mS°, (Ic)
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For all R,S,T € Arr[.</], such that the above formulas are well defined. Applying the reciprocation
to both sides of the Equation (1d) (right semi-distributivity) and (1e) (right modular identity), using the

Equations (1a)—(1c) and redefining symbols yields easily the following right versions:

(SMT)R=SRATR (1f) RSHT  R(SHR°T) (1g)

Allegories generalize the allegory Z of sets (objects) and binary relations (arrows). Because of this,
we may refer to arrows in any allegory as “relations”. In %, we write aRb iff (a,b) € R. The identity in
X isid:A— {(a,a)|a € A}, and the intersection is the set intersection, i.e., Rm S := RN S, reciprocation
is defined by aR°b := bRa and composition of relations R, S € Arr[#] such that R =S is defined by:

a(RS)c := 3Jbe R .aRb A bSc 2)

We distinguish the following classes of arrows in allegory:

o If idT C RR°, then R is called total;

o IfR°RC idﬁ, then R is called functional;

e If R is functional and total, it is called a map. A set of all maps in an allegory < is denoted by
Map|</|;

e If RR® C id<, then R is called injective;

o If idﬁ = R°R, then R is called surjective;

eIfR=R=CandRC idc, then R is called coreflexive.

If R € Arr[.2/] is an isomorphism in an allegory <7, then both R and R° are maps, and R~' = R°. Note
that id4 for all A € Obj[.</] is a map, and the composition of maps is a map. For any A, B € Obj[</], we
denote by T4 p the top element of Arr,, (A,B), if it exists. In #Z, we have Tp:=A x B.

An arrow T is called symmetric if 7° = T. Some symmetric arrows might admit splittings:
Definition 1. An arrow R is called a splitting of a symmetric arrow T if and only if RR° = id<§, R°R=T.

We will make frequent use of the following results (cf. [14]):

s
Lemma2. R(SnT)=RSART forall e —%~e ? e, such that R is functional. Similarly, (SmT)R =

S
SR TR forall e ? o X o, suchthat R® is Sfunctional.

R
Lemma 3. Define Dom(R) := id< 1 RR°. Then, Dom(R 1 S) = id<- MRS° for all e ..
S

Lemma 4. Suppose that A is coreflexive. Then, A = A° (A is symmetric). Moreover, if B is another
coreflexive arrow, such that A =B and A =B, then AB=ArB. In particular, this implies that

AB = BA, AB is again coreflexive (as A 1 B obviously is) and that A is idempotent (i.e., AA = A). Finally,

A (and, hence, A°) is functional, as A°A = AA =AC idz.
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Lemma 5. The ordering restricted to maps is discrete, that is f = g = f = g for all f,g € Map|.</].

R S
Lemma 6. ([15]) Suppose that Q o and that S is functional. Then, RS T = (R TS°)S.
T

2.3. Distributive and Division Allegories

A distributive allegory is an allegory <7 in which for all hom-sets Arr, (A, B), there exists a bottom
element | 45 € Arr,/ (A, B) and a binary operation - L - : Arr/(A,B) x Arr(A,B) — Arr,/(A,B), which
together with - m - makes Arr,/(A,B) a distributive lattice with - - as the infimum and - L - as the

supremum. In addition, we require that - L - and | 4p satisfy:
R(SuT)=RSuURT

for all R,S,T € Arr[.7], such that the above formulae are type-correct.

A division allegory is a distributive allegory with a partial binary operation -\- (called a left division),

R S
defined if and only if both arguments have the same sources, and satisfying for all /7—.\; °
T

—>

RT=R, RT=T, ScRT=RScT

Note that & is a division allegory with the union defined as set union, i.e., R 1S := RuU S, bottom
1ap = & and a left division defined by:

R\T:={(x,y)e RxT |Vze R .(z,x)eR= (z,y) e T}

2.4. A Functional Part of a Relation

The notion of a functional part unp(R) of a relation R was introduced in [3] and was later generalized
to division allegories in [15]. Let <7 be a division allegory, and let R € Arr[.<7]. Then, the functional part
of R [3,15] is defined by:

unp(R) :=Rnm (Ro\idﬁ) 3)
Note that in %, we have, for any R € Arr[Z]:
unp(R) = {(x,y) €R|Vze K . (x,2) eR=z =y}

which, together with the following lemma, justifies interpreting unp(R) as the functional part of R.

Lemma 7. ([3,15]) For any R € Arr[</], where </ is a division allegory, we have that unp(R) is

functional, and moreover, R is functional if and only if R = unp(R).

The following result, which (slightly differently phrased) was proven in [15], shows that, given

relevant splittings, we can associate a map to any relation.
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Lemma 8. Let <7 be a division allegory, and let R € Arr[</]. Let also A be a coreflexive arrow, such that
A unp(R)unp(R)°. Suppose that A has a splitting s, i.e., s°s = A, ss° = id<-. Then s;unp(R) € Map[</].

Proof. We provide the proof for completeness. Note first that s is functional as 5% = A £ id—.
Furthermore, unp(R) is functional by Lemma 7. Hence, s;unp(R) must be functional, as well, being

a composition of functional arrows. The arrow s;unp(R) is also total as:

s;unp(R);unp(R)°;s° 2 sAs”  {asunp(R);unp(R)° Z A}
=ss"ss° {asA =s"s}

=id¢  {asss® =id«}

O

2.5. Relational Products

Here is a standard definition of a relational binary product in an allegory. Note that it is necessary to
assume the existence of the top relation between objects that are supposed to be the components of the

relational product.

Definition 9. ([14]) Let </ be an allegory. A pair of arrows e -2 e is called a relational
product if and only if it satisfies the following conditions:

O . O .
T = 1df1>, M = ldfz” (4a)
mr MM, = ide, (4b)
o p—
T T = Tf{ﬁz’ (4¢c)

The following is the weakening of the above definition formulated in [15]:

Definition 10. (/15]) Let </ be an allegory. A pair of arrows e -2« is called a weak

relational product if and only if it satisfies the following conditions:

TmC idz, T, M = idz, (5a)

mr] MM, = ide, (5b)
i f:

FACTm forall == s, suchthat fi, f» ¢ Map[] (5¢)
| ™

In [15], it was proven that a weak relational product is a categorical product in the subcategory of

maps. Additionally, it is immediate.
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3. Weak n-Ary Relational Products

The following is a generalization of the characterization of binary relational products to the
characterization of n-ary products.

Definition 11. ([17]) Let I = {1,...,n}. A finite family of arrows {T;}ie; < Arr|.o/| with a common
source C, that is, such that 7; = C for all i € I, is called an n-ary relational product if and only if it

satisfies the following conditions:

Vi.m'm = id2, (6a)
[ |mm =idc, (6b)
i
vkel. | [| mm |m=Tem (6¢)
iel\{k}

Before we present the weakening of the above definition, we need the following piece of notation.
Let 7w := {m;};e; be a finite family of arrows in an allegory .7 with a common source. We denote:

Fri={{fitier | (VieLfieMap[/| A fi =) A (Vi,je Lfi = )} (7)
The following is the weakening of Definition 11:
Definition 12. Let I = {1,...,n}. A finite family of arrows {m;}ic; < Arr|.o/ | with a common source C,

that is, such that 7; = C for all i € I, is called a weak n-ary relational product if and only if it satisfies

the following conditions:

Vi.m'm € idg, (8a)
v{fi}iel € ﬁn—,i el. fl-ofl' c 71';37@', (Sb)
[ |7 =idc, (8¢)
iel
VI < Lke N\, {fi}icr € Fn . <|_| n,-zrf) M 2 <|_| 7r,-f,~o> fi (8d)
ieJ ieJ

An immediate corollary of Equations (8a) and (8c) is that arrows 7; for all i are maps. Another
immediate corollary is that an n-ary relational product is also a weak n-ary relational product. The
following result shows that any categorical product in Map|.e/| satisfies most of the Conditions (8):

Lemma 13. (¢f. [15]). Let {m;}ic; be an n-ary categorical product in Map|.<7|. Then, {T;}ic; satisfies
Conditions (8a), (8b), (8d) and the “=2” part of (8c).

Proof. Condition (8a) and the “2” part of Condition (8c) are satisfied, because all 7;’s are maps, hence,

respectively, functional and total. Let now {fi}ic; € -%. Because {;}e; is a categorical n-ary product, it

follows that there exists a (unique) map i € Map[.<7 |, such that f; = hm; for all i € I. Hence, for all i € I
fifi=mn h’hm;

C ;' m {h is functional}
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which proves Condition (8b). Similarly, we prove Condition (8d). Let J < I, and let k € I\J. Then:

<|_| m; f) fi = <|_| n,-n,.oh0> h

ieJ ieJ

= <|_| 7r,7tl°> h°hm,  {by Lemma 2}

ieJ

C (l_l i ) T {h is functional}
ie

[

Both the binary weak relational product and n-ary relational product are axiomatized using three
axioms, two of which correspond to the properties (8a) and (8c) of a weak n-ary relational product. It is
therefore interesting to check if the remaining properties (8b) and (8d) are really independent or if one of
them implies the other in the presence of other axioms. The following two examples prove that neither
implication holds:

Example 14. Consider the allegory % of binary relations, and let A € Obj|Z] be any set that is neither
empty nor a singleton. It is immediate that the three maps T, T, T3 := ida satisfy the Conditions (8a),
(8b) and (8c) (for I := {1,2,3}). They fail, however, to satisfy Condition (8d). Indeed, let fi, f>, f3 :
A XA — A, where f| and f, are both projections on the first component of a Cartesian product A x A
and f3 is the projection on the second component. Then, we have that (|_|l-E (1.2} 7r,~7ri°> 3 = idy, and

<|_|i€{172} JIifio> f3 = f5f3 = Ta. However, as A is neither empty nor singleton, we must have idy = Ty,
contradicting Condition (8d).
Example 15. Consider the allegory <7, with two distinct objects, A and B, and with:
Arry(A,A) :={ids}, Arry(A,B):={n}, Arry(B,A):={n"}, Arr(B,B):= {idp,n°n},
where T satisfies:
rn® =idy, 7n°mcidp

This allegory can be realized in % by setting, e.g.,
A:={0}, B:={0,1}, m:={(0,0)}

Let now I := {1,2,3}, and let |, 7,73 := 7. It is immediate that both Equations (8a) and (8c) are
satisfied by the m;’s. To check the remaining two axioms of n-ary weak relational product, first note
that Fy contains only two families of maps { ﬁ}ie{17273}.' one obtained by setting fi, f>, f3 := idp; the
other one by setting fi, f2, f3 := ®. Both families satisfy property (8d), however, setting f1, f2, f3 := idp
provides a counterexample to Equation (8b).



Axioms 2014, 3 350

The following two lemmas are crucial for proving the main result of this paper:

Lemma 16. LetI:={1,...,n}, andlet {m;}ic; < Arr[</| be a weak n-ary relational product. Let { fi}icr €
Fn. Define hy :=[\;c; fir?, for all & +J < 1. Then, for all & # J < I and k € I\J, the totality of hy
implies that hym f;, 2 idE.

Proof. Let & #J < I and k € J\I. Assume that Ay is total. Then:
hymfy = <|_|f,~7rl~°> T fr {definition of A}
ieJ

= (Hﬁnfn,nf) m.fy  {by Equation (8a)}

ieJ

3 (l_lhjﬂiﬂio> ﬂkf/? {AS hy & f,TL'lO forallie J}

ieJ

S hy <|_| mn',o) T fy {by Equation (1d)}

ieJ
3 hih fify {by Equation (8d) as hj f; = <|_| ﬂifio> £
ieJ
2ide- because Ay and fj are total
Je

]

Lemma 17. Let I := {1,...,n}, and let {m;}ic; < Arr[/| be a weak n-ary relational product. Let
{fi}tict € Fx. Then, hy = [\, fim? is total for all & # J < L.

Proof. We prove the lemma using induction on J. For the base case, note that for all i € I:

hyhiy = fim; mif; {definition of /; §
2 fif fifi  {by Condition (8b)}

=ide {as f; is total}
Suppose now that we have proven for some ¥ # J < I that hy is total. Note that Dom(R) = id4 is
equivalent with R being total. We have:
Dom(hy ) =Dom [ [ ]| fim’ | {definition of Ay gy}
ieJu{k}

= Dom(hy N fim;) {definition of Ay}

= idﬁ M hymy fi {by Lemma 3}

= ide- {By Lemma 16 and inductive assumption that A; is total.}
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The following result, which is the main result of this paper, shows that an n-ary weak relational
product is in fact a categorical product for maps.

Theorem 18. Suppose that {m;}ic; < Arr[.</] is a weak n-ary relational product. Let an arrow h €
fi

Arr[ 7] and family of maps {f;}ic;  Map|<Z]| be such that for all i € I, we have ¢~ e,
Then:
h=[|fimy = heMapla/]|A (Vi.hm=f;)
i
Note that the diagram in the assumption of the theorem above implicitly implies that all of the maps
fi have a common source.

Proof. (Theorem 18) First, assume that # € Map[.</| and hm; = f; for all i € I. Then:
h= h|_| miw;  {by Equation (8c)}
= |_|h7ri7rio {by Lemma 2 as h € Map|.</|}
=[ |fim>  {asVi.hm = fi}

Assume now that i = [ |, fizr?. Then:
The arrow £ is functional, that is A°h = id—h>. Indeed, for all ke I:

hh = <|_| f,~7r,~o> <|_| fjn;-’) {definition of h}
i j

C e fy fimp {monotonicity of composition and (-)°}

C mr is functional
kY k

Hence:
Whe [ |may  {asVi.h°hc mn)}
i

=id— {by Equation (8c)}

The arrow £ is total, that is 7h° 2 id7. Indeed, this is stated in Lemma 17.
Equality hm; = f; holds for all i. Indeed,

hm; = <|_| fkn,§> m;  {substitute definition of /}
k

C fin'm {meet property}
C f; {by Equation (8a)}
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On the other hand, we have already proven that % is a map, and so, both A7m; and f; are maps; hence,
by Lemma 5, hm; = f; implies hm; = f;. [

Let us also note that our definition of a weak n-ary relational product is a generalization of a weak
binary relational product, i.e., a pair of arrows m;, i = 1,2 with a common source in an allegory 7 is
a weak binary relational product (Definition 10) if and only if it is a weak two-ary relational product
(Definition 12). Indeed, by Theorem 18 and ([15], Theorem 2), a pair of arrows satisfying conditions
of either of these two definitions is a categorical product for maps. Then, by Lemma 13 and ([15],
Lemma 5) a categorical product satisfies all of the conditions of Definitions 10 and 12 apart from the
“c” part of Equations (5b) and (8c), which in this case, are identical anyway.

An example given in [15] shows that there are indeed allegories </ for which a categorical product
in Map[.<7] does not satisfy the “=” part of Equation (8c); hence, one needs to assume something more
about .27 to ensure that n-ary categorical products in Map|[.</| satisfy all Conditions (8). The following
result is a generalization of ([15], Lemma 6) to the case of weak n-ary relational products.

Lemma 19. Suppose that {m;}ic;, I = {1,...,n} is an n-ary categorical product in Map|.</|. If there
exists a splitting R € Art[.o/ | of [ |,c; mim?, then {m;}ier is an n-ary weak relational product.

Proof. The basic idea of the proof is the same as of the proof of ([15], Lemma 6): we first prove that
{Rm;}icr is a weak n-ary relational product, and then, we use this result to prove that {;},c; must be
a weak n-ary relational product, too. Let us denote 7; := R7; for all i € I. The family {7;};c; satisfies
Condition (8a). Indeed, we have (cf. the proof of ([15], Lemma 6)) that for all i € I:

7R = TORRT,
=7 (mm; M |_| min;)m  {as R°R = |_|7r,~7rf}

jel\{i} i€l

=idz m( |_| iy )m  {by Lemma 6 as ; is functional}
Jen{i}

Cid— {as 7 = 70}

1

Note that RR® = id<§ implies that R° is functional. Observe that for all i € I:

([ miz)m = m 9)
jel
Indeed, (|_| ;) = (mmy |_| 777 ) i
Jel Jjen{i}
= ( |_| m;) i {by Lemma 6 as ; is functional }

It follows that {7; };c; satisfies (cf. the proof of ([15], Lemma 6)):
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|_| ﬁ'iﬁ'f = |_|R7'L','7Z;)RO

i€l i€l
= Rm R’ ™ |_| R R°
ie\{1}
R(m 7y mR°( |_| R,y R°) {by Lemma 6 as R° is functional}
iel\{1}
= R(nl T |_| RORniniOROR)RO {by Equations (1g) and (1d)}
iel\{1}
_ R(nl o [ ((me)mm (] nkn,f)))zeo {as R°R = [ | mim?)
ieN{1} Jel kel i€l
cR(mayn [ ] ma)R° {by Equation (9)}
iel\{1}
= R<|_| niﬁio)R
i€l
— RR°RR® {as R°R = |mm}
i€l
= idﬁ

On the other hand, for all i € 1, we have that [15] &;%7 = Rm;myR° 2 RR® = id«E, as 7; is total, for all
i € I; hence, also, [ |, ity 2 idﬁ. Thus, the family {7;}e; satisfies Condition (8c).

In order to see that the family {7;};c; satisfies Condition (8b), note first that %z = %, and that {7;};c;
is by assumption a categorical product in Map[.<7| and, thus, by Lemma 13, satisfies all of Condition (8)
but the “=" part of Condition (8¢c). Hence, for all families { f;}ie; € -# %, we have:

fificmm {by Equation (8b) as {fi}ic; € Fr}
C 7y (|_| njn;’) m; {by the “2” part of Equation (8c)}
jel
= 7 R°RT; {as R is a splitting of |_| 7rj7rjo}
jel
= &7,

In order to see that the family {7; };c; satisfies Condition (8d), note first that, for any {fi}ic; € 2 = Fx,
as {m;}ics is, by assumption, a categorical product in Map[.</], there exists a map h, such that f; = hmx;
for all i € I. Furthermore, note that, as, by Lemma 13, {7;};; satisfies “=2” part of Condition (8c) and R
is a splitting of [ J;c; 77, we must have R°R =[], w7y 2 id. Then, it follows that, for all &f # J < 1
and k € I\J, we have:
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M) f= (Rmf) i

jeJ jeJ
= ([ |Rmjmsn®) hmy
jeJ
= (|_|R7rj7r}?)hoh7tk {by Lemma 2 as A is functional }
jeJ
= (|_|R7rj7r;) T {h is functional}
jeJ
c ([ |Rma;R°R)m {R°R 2 idg}
jeJ
= (|_|R7rj7t}°R°)R7rk {by Lemma 2 as R° is functional}
jeJ
= (| 7%
jeJ
By Theorem 18, we know now that {7;};c; is a categorical product in Map[.<Z]| and that the arrow
g = i ™% is a map satisfying m; = g7; for all i € I. On the other hand, as {;};c; is a categorical
product in Map[.</| by assumption, the standard argument shows that g must be an isomorphism. In
any allegory, the inverse of an isomorphism equals the reciprocation of this isomorphism and both the

isomorphism and its inverse are maps; hence, in particular g~!

= g°. Denote by C the common source
of m;’s. Putting it together, the argument being almost identical to the proof of ([15], Lemma 6) shows

that the family {7;};c; satisfies the “=" part of Condition (8c):

ide = gg™!

= (|_| mﬁl?)g_1
iel

- (|_| ﬂiytf(gfl)o)gfl {as 7t = g 'mforallie I}
el

= ([ |min7g)g™ {as (¢71)° = (¢°)° = ¢}
iel

= (|—| 7r,-7tl-o)gg_1 {by Lemma 2 as g° = g~ ! is functional}
i€l

- ()
iel

This ends the proof, as, by Lemma 13, the family {7m;};c; satisfies all of the other conditions of
Definition 12 by virtue of being the categorical product in Map[«7]. [

In Conditions (8b) and (8d) the range of universal quantification was restricted to maps. The following
result, which is the adaptation to n-ary weak relational products of ([15], Lemma 7), shows that we
can modify those conditions, so that the range of quantification is restricted only by source-target

considerations from the whole set of arrows in the allegory under consideration.
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Lemma 20. (c¢f. ([15], Lemma 7)) Let </ be a division allegory in which all partial identities split. A
Sfamily {m;}ic;, where I = {1,...,n}, of arrows in &/ with a common source is an n-ary weak relational
product if and only if it satisfies Conditions (8a) and (8c), as well as:

Viel.unp(R <|_|©om unp(R; )))unp(R ) E @ mW;, (10a)
iel
VIicLkel\J. <|_| munp(R ) (H@om unp(R; )))unp Ry) = (l_l T ) 8 (10b)
ie iel ie

for all families {R;}ics of arrows in </ with a common source and such that E =T foralliel.

Proof. The basic idea of the proof is adapted from the proof of ([15], Lemma 7). It is immediate that
if a family {m;};c; satisfies Conditions (8a) and (8c), as well as Conditions (10), then it is a weak n-ary
relational product, because for any { f;}ic; € %7, we have unp(f;) = f; by Lemma 7 and Dom(unp(f;)) =
Dom(f;) = id?_ for all i € I, and thus, Conditions 10 subsume trivially Conditions (8b) and (8d). Hence,
it remains to prlove that Conditions (8b) and (8d) imply Conditions (10).

Assume that {7;};c; is an n-ary weak relational product, and let {R;};c; be a family .7 with a common
source C and such that ﬁ: = T for all i € I. Denote for brevity:

1= H@om(unp(Ri))
iel
and let s be a splitting of 1, i.e., ss° = id<- and 5°s = 1. By Lemma 8, s;unp(R;) is a map for all i € /.
Now, the families {7;};c; and {R;} ;s satisfy Condition (10a) as, for all i € I
unp(R;)°;;;unp(R;) = unp(R;)°;s”;s;unp(R;)  {as1=s"s}
C w5 {by Condition (8b) as s;unp(R;) € Map| </}

We prove Condition (10b) similarly. Let ¢J # J < I and k € I\J. Then:
|_|7r,-;unp(R,-)°> ;i;unp(Ry)
ie

= |_|7rl-;unp(R,-)°> ;s7ss;unp(Ry)  {as1=s"s}

e

= |_| 7r,~;unp(R,~)°;s°> ;s;unp(R;)  {by Lemma 2 as s is functional}
ieJ

I

|_| ;) ) 8 {by Condition (8d) as s;unp(R;)’s are maps. }
ieJ

]

4. Iterated Relational Products

Relational products can be iterated (see, e.g., Diagram 11). We will prove that any iterated product
still satisfies the assumptions of Definition 12. It is immediate that in order to enable the trivial induction,



Axioms 2014, 3 356

it is enough to show that the iteration of the form depicted in the Diagram 11 is a weak (n+m — 1)-ary
relational product ( 7;’s are attached to pj for notational convenience, and the proof would work the
same for any other position of attachment):

(11)

P
PN

Lemma 21. Let {py}1<i<n and {7} 1<k<m be weak n and m-ary relational products, respectively, such
that T = pi for all 1 < k < m (see Figure ). Then, {&}1<k<min_1 defined below is also a relational
product:

P17 fl<k<m
5k =

Pi—m+1 fm<k<m+n

Figure 1. Construction of universal arrows.

fm+n—l

Proof. In order to simplify the notation, we assume here that index variables i and j run through the
values {1,...m} and {2,...n} by default. Furthermore, denote the common source of p;’s by A. We will
now check the satisfaction of the consecutive Conditions (8):

Identity (8a) is satisfied because p;p; = idﬁ? and 77 pyp17; © ;' 7; © id for all i, jas @’s and p’s
satisfy Equation (8a). Identity (8c) is satisfied as:

|_|5k5,f = (leﬂinfpf) M <|_|pjp;-’> {definition of &}
k J

=pP1 (l_l 7fz7flo> pr <|_|pjp}°> {by Lemma 2}
i J

=p1py <|_| pjpjc-’> {m’s satisfy Equation (8c)}
J

=idy {p’s satisfy Equation (8c)}
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Suppose that {fi}i<i<min—1 € Fs. In particular, this implies that {fi}1<j<m € Zz, and hence,
by Theorem 18, the arrow A’ := [ i<i<m fi®; (see Figure 1) is a map that satisfies f; = h'm; for
all 1 <i<m. Then, {h'} U {fi}mtick<min € Fp, and thus, by Theorem 18 it follows that h :=
W'py N[ e jcn fimtj—1P; is a map that satisfies &' = hpy, fiurj—1 = hp; for all 2 < j < n. It follows
immediately that f; = hd; for all 1 <i<m+n— 1. Then, we can use the same methods as in the proof
of Lemma 13 to verify Conditions (8b) and (8d). LI

5. Conclusions

In the paper, we defined and investigated the weakening of an n-ary relational product from [17],
which for n = 2 is equivalent to the binary relational product defined in [15]. Our most important result
is the proof that a weak n-ary relational product yields an n-ary categorical product in the subcategory of
maps (Theorem 18). This result shows also that an n-ary product presented in [17] is also a categorical
product for maps. Lemmas 19 and 20 generalize to the case of weak n-ary relational products the similar
results proven in [15] for weak binary relational products. We also prove that by composing the weak
n-ary products, we again get weak n-ary products (Lemma 21). This last result shows that the weak n-ary
relational products can be constructed iteratively from the binary ones.

It should be noted that our definition of n-ary weak relational product, unlike that of usual relational
product, whether binary or n-ary, does involve universal quantification. If one considers using allegories
as a means of avoiding quantification when dealing with products, this is still better than a combination
of universal and existential quantification (and one gets an explicit formula for a factorizing map, t0o).
Note that the definition of a weak binary relational product in [15] involved universal quantification, as
well, but this quantification could have been hidden in the definition of certain constant arrows. This is
not possible with our definition.

The results presented in this paper were motivated by our work on the allegorical data model [10,11].
This model is abstract enough to model both the sharp and fuzzy relations in a uniform way, but only
binary relations are modeled directly. If / is a finite set of size n and if R is an n-ary relation (in the sense
of standard relational database model) with attributes A; of type 7; for all i € I, then, for any sets Ji, J,
partitioning I (i.e., I = Jy U Jp, J1 nJo = ), R can be viewed in an obvious way as a binary relation
ey T; and X
can be represented (non-canonically) as arrows in an allegory, provided that the appropriate relational

between X s, Ii- This simple observation shows how generalizations of n-ary relations

i
products exist.
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