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TAIL DEPENDENCE IN BIVARIATE DISTRIBUTIONS

Abstract

In the paper the problem of tail dependence for bivariate data is considerod. The review
of different approaches is given. The particular emphasis is put on the conditional correlation
coefficients and tail dependence coefficients. It is shown how the latter can be analyzed
through copula analysis.
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e ¥ I. INTRODUCTION

cQ
The analysts of the dependence (relationship) between variables is one
of the most important tasks in multivariate (particularly - bivariate) statistical
analysis. One usually considers either the so called joint relationship or the
so callcd conditional relationship. In the first type of relationship all variables
arc regarded as whole set, in the second type of relationship one (or more)
variable is regarded as the dependent variable and the other variables are
considered as the independent variables.
The analysis of the relationship is usually performed through two different
quantitative approaches:
modeling the relationship by a function - for example - regression
function;
measuring the relationship by a number - for example - correlation
coefficient.
Very often, however, these two approaches are strictly connected, as it is
in the case of regression function and correlation coefficient.

* Professor, Department of Financial Investments and Insurance, Wroctaw University of
Economics.

[33]



When one assumes stochastic approach, the variables arc treated as
random variables, then all information about the relationship (dependence)
is contained in the cumulative distribution function. For example, if we
consider two variables, X and Y, then this information is given as:

- for joint relationship:

P(X<x, Y<y),
- for conditional relationship:
P(Y <y|AT<X).

Of course, in the applications, the simplification is made. Instead of cumulative
distribution function one takes into account only some parameters, usually
moments of the distribution. Then we get for example:

- for joint relationship:

COV(X, Y) = E(XY) - E(X)E(Y),
- for conditional relationship:
E(Y|X).

Such a simplification, however, may not capture the particular properties
of the relationship, for example the tail relationship, that is the relationship
existing between the very large (or very small) values of two variables. | his
is similar problem as in univariate analysis, where the classical “mean-based”
analysis does not capture the extreme peculiarities.

In this paper we discuss the problem of tail dependence. For simplicity,
we consider the case of bivariate distributions (two variables: X and Y).

Il. MODELUNG TAIL DEPENDENCE - DIFFERENT APPROACHES

There are different approaches that can be used in the modeling of tail
dependence. We divide them into three classes:

- separate modeling of center and tails of distribution;

- conditional dependence measures;

- tail dependence measures.



Separate modeling of center and tails of distribution

The first approach consists in the separation of data set into (usually)
two classes. The first class contains the “center” (the “core”) of the
multivariate distribution, here the modeling of the relationships is done
for the “typical” observations. lhe second class contains the tails (the
“outliers”) of the multivariate distribution, here the modeling of the
relationships is done for the extreme values. It may also happen that the
data set is separated into more than two classes (when more than one
tail is considered). In this approach we can distinguish two groups of
methods:

- clustering methods;

- mixture models.

Clustering methods aim at classifying the data set into classes, in such
a way that the observations in the same class are as similar as possible,
and the observations in different classes are as dissimilar as possible. In
many methods, the clustering optimization criterion is defined. This crite-
rion depends on the goal of classification and the understanding of
similarity of the observations. For example, in the one of the most
popular methods, k-means method, the similarity is measured through the
Euclidean distance between the observations. This means that for the
purpose of the modeling of the relationship one has to apply the suitable
criterion.

The second group, mixture models, assumes stochastic approach. Here
the multivariate distribution is treated as a mixture of distributions, where
the respective components of the mixture correspond to the center and tails
of the distribution. Mixture models are described for example by McLachlan
and Peel (2000).

Conditional dcpcndcncc measures

Here one considers the conditional distribution of two variables given that
one of these variables takes the value from the tail. As the natural dependence
measure the so called conditional correlation coefficient can be used. It is
given by the following formula (without the loss of generality we consider
the upper tail):

Pc =
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Here s denotes the large value of the variable. Therefore this conditional
correlation coefficient is defined given that one variable takes large (extreme)
value. It can be proved that for some bivariate distributions the conditional
correlation coefficient is related to correlation coefficient.

For bivariate (standard) normal distribution we have:

Pc - \ 2 . 2

A n*i*>9g
In the limiting case - if s goes to infinity we get:

P 1 /14
PC 0

Therefore the conditional correlation coefficient converges to zero regardless
of the value of (unconditional) correlation coefficient.

On the other hand, for bivariate t distribution with degrees of freedom
we have in limiting case:

Pc~* j— zmmmeee- ‘ @)
vV + (v-1) -p 2

Table 1 presents the limit of conditional correlation coefficient for bivariate
t distribution - different number degrees of freedom in columns and different
unconditional correlation coefficient in rows.

Tabic 1. Conditional correlation coefficient
- limit in the case of bivariate i distribution

3 4 10 20 30
-0.9 -0.79 -0.68 -0.43 -0.31 -0.25
-0.5 -0.45 -0.35 -0.19 -0.13 -0.10
0 0 0 0 0 0
0.5 0.45 0.35 0.19 0.13 0.10

0.9 0.79 0.68 0.43 0.31 0.25



In all presented cases - cxcept for 0 - the conditional correlation coefficient
is lower than (unconditional) correlation coefficient. It also gets lower when
the number of degrees of freedom increases - but it is different from 0.

Sometimes the other concept of conditional correlation coefficient is
used, where instead of one variable, conditioning is on both variables. Then
we get the following version of conditional correlation coefficient:

COV(X, y|X>s, Y>s)
..................... = * (5)
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It can be proved that in the case of bivariate normal distribution we get
in the limiting case:

1+p 1
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So also here the conditional correlation coefficient converges to zero regardless
of the value of (unconditional) correlation coefficient. Also the properties of
this version of conditional correlation coefficient are similar to the one in
the previous version. More detailed description of conditional correlation
coefficients is given by Malevergne and Sornette (2002).

It should be noted, that in both version of conditional correlation
coefficient we still are limited to linear relationship, which is the main
drawback of this approach. This drawback (as well as some others) does
not exist in the other approach, tail dependence measures, described below.

I11. TAIL DEPENDENCE MEASURES

This is the other group of dependence measures, where one looks directly
into tails of the bivariate distribution. There are two coefficients of tail
dependence, namely:

- coefficient of lower tail dependence, given as:

A =limP(y<G-1(u)|A '<F-1(«)), ©)
u>0
- coefficient of upper tail dependence, given as:

= \imP(Y> G~I(U)\X > F-'iu)),

n-1



Here F and G denote the cumulative marginal distribution function of
X and Y, respectively, and u denotes the probability.

Both tail dependence coefficients have rather clear interpretation. They
show the probability that one variable takes extremely large value (case of
upper tail dependence) or extremely small value (case of lower tail dependence)
given the other variables takes extremely large value (case of upper tail
dcpendencce) or extremely small value (ease of lower tail dependence). This
probability is taken as limiting probability and in fact one speaks about
asymptotic tail dependence (or independence).

As one can sec from (7) and (8) the extremely large or extremely small
values arc taken as high or low quantile and in the limit these quantiles
converge to (plus or minus) infinity. In addition, it should be mentioned that:

the tail dependence coefficient falls into interval [0;1];
we speak of asymptotic tail independence if tail dependence coefficient
is equal to O

- we speak of asymptotic tail dependence if tail dependence coefficient is

higher than 0.
In practice, the calculation of tail dependence coefficient is not easy. There
is one important case, when this coefficient is given through the analytical
formula. This refers to bivariate clliptically symmetric distributions. The
density of clliptically symmetric distribution is given as (sec e.g. Jajuga, 1993):

f(x) = clir®-5h[(x-/*)rl - 1C*:-/")]. (€)]

Among the members of this family are the following multivariate distributions:
normal distribution, and more general - Kotz type distribution;

- Cauchy distribution, and more general t distribution and even more
general Pearson type VII distribution;

- Pearson type Il distribution;

- logistic distribution, etc.

The upper tail dependence coefficient for bivariate clliptically symmetric
distributions depends on the correlation coefficient and is given as (Embrcchts,
McNcil, Straumann, 1999):

n/2
i cos‘tdt
i (M2 - aresinp)/2 "
AU— AT (HO0)
J'cosatdt
0

Here a denotes the tail index of the distribution (for example, in the case
of t distribution is equal to the number of degrees of freedom).



From the formula (10) it can he proved that for the normal distribution
we have the asymptotic tail independence, if the correlation coefficient is
different from +1 and -1. Therefore, bivariate normal distribution is not
the suitable model to capture tail de; endencc. On the other hand, for
bivariate t distribution, if the correlation coefficient is different from minus
1, we have asymptotic tail dependence.

Table 2 (taken from Embrcchts, McNeil, Straumann, 1999) presents the
upper tail dependence coefficients for bivariate t distribution - different
number degrees of freedom in columns and different unconditional correlation
coefficient in rows.

Tabic 2. Upper tail dependence coefficient
- case of bivariate t distribution

-0.5 0 0.5 0.9
2 0.06 0.18 0.39 0.72
4 0.01 0.08 0.25 0.63
10 0 0.01 0.08 0.46

In general situation the analytical formulas for tail dependence coefficients
arc not given. However, in some cases on still can arrive at the solution by
applying the so called copula analysis. The presentation of this idea is given
below.

IV. COPULA ANALYSIS AND TAIL DEPENDENCE

The idea of copula analysis lies in the decomposition of the multivariate
distribution into two components. The first component consists of the marginal
distributions. The second component - the crucial one - is the function linking
these marginal distributions in multivariate distribution. This function reflects
the structure of the relationship between the components of the multivariate
random vector. For simplicity, we consider the bivariate case.

This idea is reflected in Sklar theorem, given through the following
formula:

H(xt,x2) = C(FI(xI), F2(x2)), (12)

where:
Il - the multivariate distribution function;
F. - the distribution function of the i-th marginal distribution;
C - copula function.



Thus the bivariate distribution function is the function of the univariate
(marginal) distribution functions. This function is called copula function
and it reflects the structure of the relationships between the univariate
components. In the case of bivariate continuous distribution the presentation
given by (11) is unique.

The presentation given by (11) can be reverted. Here the copula function
is given as bivariate distribution function defined for the quantiles of the
marginal distributions. It is given as:

C(ui>u2) = H(Fi 1(ul), p2 1(u2)). (12)

Among the particular cases arc (already discussed) bivariate normal dist-
ribution and bivariate t distribution. When this distribution is decomposed
according to Sklar theorem, we get the so called normal copula and t copula.
Their analytical form is given as:

- normal copula:

Y q:j‘,)mj‘z)vvl ( X2-2pxy=ty2
. . <13

- t copula:
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So we see that in both cases, numerical procedures are needed to calculate
the values of copula function.

Among the other interesting types of copulas, it is worth to mention the
so called Archimedean copulas. They are defined for strictly decreasing and
convex function in the following way:

c(ui>«2) =~ + (15)
where:
¥:[0; 1] —»[0; co)
V'(l) = 0.

The most popular case of Archimedean copula is Gumbel copula, where:

Ht)= - On(t)y. (16)



Here parameter ¢ is interpreted as a measure of dependence, taking values

from 1to infinity. The value equal to 1 means independence, and the closer

is this value to infinity, the closer is to the strict positive dependence.
Gumbel copula can be written in the following form:

C(ut,u2) = exp(—((—InU j/ + (—In u2)R)i,R). a7
The crucial property of the copula function refers to the tail dependence
coefficients. It turns out that both, upper tail and lower tail dependence
coefficients can be expressed through the copula function, in the following

way:
the lower tail dependence coefficient:

h = lim[C(u, u))/u\, (18)
n-0
- the upper tail dependence coefficient:

Xv = lim[(l —2u + C(u, u))/(l -n)]. (19)
141

Using (19), it can be proved that for the Gumbel copula we get asymptotic
tail dependence, if;

B>\.
Then the upper tail dependence coefficient is equal to:
Xa=2-—2". (20)

In practice, the important issue is, of course, the identification of suitable
copula function for given bivariate data sets - this helps to determine the
asymptotic tail dependence coefficients.
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ZALEZNOSC W OGONIK DLA ROZKLADOW DWUWYMIAROWYCH

Streszczenie

W artykule rozpatrywany jest problem zaleznosci w ogonie dla rozktadéw dwuwymiarowych.
Przedstawiono przeglad réznych podejs¢ do analizowania tej zalezno$ci. Szczegdlna uwaga
poswiecona zostata warunkowym wspétczynnikom korelacji oraz wspo6tczynnikom zaleznosci
w ogonie. Wskazano, jak te wspotczynniki moga by¢ analizowane za pomocg tzw. analizy
potaczen.



