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Abstract

The phenomenon of nonresponse in a sample survey usually leads to bias in estimates
of population parameters. One of the techniques applied as a countermeasure for nonresponse
is based on two-phase (or double) sampling. Usually a linear combination of mean value
estimates obtained in both phases of the survey is used as an estimate of population mean
value of the characteristic under study. In this paper alternative estimators for two-phase
sampling scheme using estimates of response probabilities obtained on the basis of logistic
regression model are considered. The results of Monte Carlo simulation study comparing the
properties of these estimators are presented. In the simulations, the data from the Polish 1996
Agricultural Census were used.
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I. INTRODUCTION - TWO-PHASE SAMPLING

Let us assume that the mean value ¥ of some characteristic ¥ in the
population U of the size N is to be estimated and to accomplish this
a simple random sample s of the size ti is drawn without replacement from
U, according to the sampling design p(-), given by formula:

(D

We admit, as in the paper of Cassel et al. (1983), that nonresponse mechanism
is a stochastic one. This means that each i-th population unit has some



unknown probability pt of responding if it is included in the sample. Hence,
the phenomenon of nonresponse may be treated as an additional phase of
sample selection, governed by some unknown probability distribution g(s2|s).
Sarndal et al. (1992) call the probability distribution q(s2|s) the response
distribution.

Depending on response probabilities, during an attempt to collect data
some units respond and some do not. Hence, the sample s can be divided
into two sets sl and s2, of the sizes 0 and 02 n2”n containing
responding and non-responding units respectively. Consequently, wc have
SjUSj =5, s,ns2=0 and n, + n2= n. Si/Es n, and n2 are random variables,
whose distributions depend on unknown response probabilities. As it has
been shown by Lessler and Kalsbeek (1992), estimates of population mean
based only on observations from the set will be biased. To reduce bias,
a subsampling scheme proposed by Hansen and Hurwitz (1946) may be
applied. According to this scheme, a second phase of the survey is performed.
In this second phase, a simple subsample u of the size nu= cn2 (where
0<c< 1is a constant fixed in advance) is selected without replacement
from among n2 units of the set s2. The probability of selection for a certain
subsample may be expressed as:

BA»,) - ; (2)

All units included in the subsample are then re-contacted, and we assume
that appropriate effort is made to obtain data for all subsampled units.
Hence, under this procedure the probabilities pt apply only to the first
phase of the survey.

Il. CLASSICAL MEAN VALUE ESTIMATOR IN TWO-PHASE SAMPLING

As it has been shown by Sarndal et al., (1992), for the sampling scheme
described above and stochastic nonresponse, the following statistic is an
unbiased estimator of population mean:

y, = wiyl+w2yu 3

where y L= £ yt,y2= £ yt and y'u= —]£y, are mean values of the
nl ies, n2ies2 Muieu

characteristic under study in the sets st, s2 and u respectively, whereas



W = nl and w2 = ”nZ denote fractions of sets s, and s, in the initial sample

s. Let us also define: S2=- LI £ fa-Y “and S*=—1- £ (~-7 2)2
“ 1 ieU n2~ 1iejj

The variance of y, depends on unknown response probabilities, and can

be expressed as:

nr)- £=V +Ja (»i- (4

where denotes expectation with respect to the first stage sampling
designl, and Eq denotes expectation with respect to the response distribution.
In particular, when deterministic nonresponse appears, the population
U may be divided into two strata Ul and U2 such that Ux contains
respondents and U2 contains nonrespondcnts. Consequently, the variance
may be expressed as:

®)

where W2 is the population nonrcspondent fraction and S2 is the variance
of the characteristic under study in nonrespondent stratum U2. In further
study, the estimator ys will be denoted by the symbol S.

I1l. ALTERNATIVE MEAN VALUE ESTIMATOR USING AUXILIARY INFORMATION

The estimator (3) is constructed as a linear combination of mean value
estimates obtained in both phases of survey. In the case of deterministic
nonresponse, the weights of this combination may be treated as the estimates
of respondent and nonrcspondent stratum fractions WI and W2. However,
there arc other possible ways to construct these weights on the basis of
available auxiliary information, which lead to the estimator:

Yi.= “Fi+ O -a)y, (6)

In particular, Wywial (2001a) suggests to assess the parameter a as:
(7

1 Here: simple random sampling without replacement.



where is the estimate of individual response probability pi for the i-th
unit. The estimates are obtained by assuming that for any population
unit the probability of response is given by the following function of auxiliary
variables:

(8)

where R = [/?0.../iJ denotes the vector of unknown parameters and
xi— denotes the vector of auxiliary variables corresponding to
the i-th population unit. We will assume that xi0 = 1 for i= 1...N, which
means that B0 may be treated as intercept. Assume that J, = 1 if i-th
unit responds and ./, = 0 if it does not. The parameters B can be estimated
on the basis of the response behaviour observed in the initial sample s by
minimizing the likelihood function (see Chow, 1995):

This is equivalent to the maximization of log-likelihood:

(10)

Assuming that partial derivatives of this expression with respect to parameters
Bi equal to zero we obtain the system of nonlinear equations, whose solution
ft is treated as an estimate of the parameter vector B (see Theil, 1979). The
solution jt may be found by using iterative methods, discussed e.g. by
Minka (2001). In particular, a gradient projection method proposed by J.S.
Rosen (1969) may be used. Finally, substituting ft instead of B in the
formula (8) it is possible to compute the estimates p; of individual response
probabilities, the parameter a, and the mean value estimate y-L. In general,
the estimator J L is biased, but we may expect its variance to be significantly
lower than the variance of Js. In further study the estimator yL will be
denoted by the symbol L.

In this paper a modified version of this estimator based on rounded
(discretized) response probabilities p\ is also proposed. The discretization is
achieved by transforming the estimates of response probabilities according
to the formula:



fl for Pi>0.5
1 jo for pt<05

and then applying transformed values instead of p, in expressions (7) and
(6). Such approach is in some sense justified, when it is expected that
nonresponse mechanism is deterministic, or approximately deterministic. In
such case, the proposed procedure resembles the application of discrimination
method, to divide population into clusters of respondents and nonrespondents,
and assess their population proportions, as proposed by Wywiat (2001b).
In further study the modified version of the estimator y L will be denoted
by the symbol R.

It is worth noting that assumptions similar to the one given by (8)
making use of multivariate logistic curve arc often considered in the context
of nonresponse modelling (see Cassel et al.,, 1983; Ekholm and Laaksonen,
1991; or Gao et al., 2000), but they typically constitute the basis for
construction of weighting adjustments in single-phasc sampling.

IV. ANOTHER ESTIMATOR INVOLVING ESTIMATES OK RESPONSE PROBABILITIES
- AN EXTENSION OF THE SINGLEPHASE WEIGHTING ADJUSTMENT

The typical way the estimates of response probabilities are used in
single-phase sampling is to construct individual weights, for each observation.
As indicated by Sérndal et al. (1992) and Bethlehem (1988), for an arbitrary
sampling design the weight for i-th unit is usually set to I/aipi where ni
is the inclusion probability associated with this unit. In the case of simple
random sampling without replacement, the inclusion probability of the first
order is equal to n/N so the mean value estimator takes the form:

JV ies, nPi

The use of estimates pt instead of exact response probabilities introduces
some bias, but we may hope that this bias is modest if response probabilities
are estimated with sufficient accuracy. However, this estimator cannot be
used if any of the estimates p, is equal to zero. We propose the way to
overcome this obstacle using the two-phase sampling procedure described
above. Let us note that the (conditional) response probability for any i-th
unit included in the first-phase sample s may be expressed as:

Pi= Pi+ ® -Pg", (13)



where pi is the probability of this unit responding at the first phase and
C(1 —Pi) represents the probability of this unit not responding at the first
phase, but being included in the subsample and consequently responding
at the second phase. This allows to rewrite the estimator (12) in the form:

o= KB BY 04)

It is easy to notice that the expression in denominator is always positive,
provided that ¢ > 0. Let us also stress that sampling units from both set
si and subsample u are used in computation of mean value estimates. For
this estimator the logistic regression model will be used again as a means
of estimating response probabilities. In further study the estimator y'w will
be denoted by the symbol W.

V. COMPARISON OK ESTIMATORS BY MEANS
OF MONTE CARLO SIMULATION

A simulation study was performed to compare the accuracy of the four
estimators presented above. The data obtained from Polish Agricultural
Census in 1996 for certain municipalities of the Dgbrowa Tarnowska district
represented the population under study during simulations. The total of
2422 units were used in simulation. The variable under study, denoted by
Y was total sales of the farm in the year 1995. The auxiliary variables
were the farm area (in acres) - X x, the number of pigs in the farm - X2,
and the number of cattle stock in the farm - X 3. The Pearson linear
correlation coefficients between these variables are shown in the following
table:

Table 1. Correlation coefficients between variable under study
and auxiliary variables

Yy X, *3

Yy 1 0.63 0.52 0.50
0.63 1 0.58 0.67

0.52 0.58 1 0.62

0.50 0.67 0.62 1

For every population unit the response probabilities were generated
according to the model given by expression (8), and predefined parameter
vector 8. The experiments were carried out by repeatedly drawing without



replacement simple random samples from the population. To represent the
stochastic nonresponse mechanism, for each unit included in any sample
an independent random trial was executed with the probability of success
equal to this unit’s response probability. A unit was assumed to respond
if the outcome of the trial was a success and treated as nonrespondent
otherwise. For the resulting set of nonrespondents a simple subsample of
the size equal to the 30% of the first-phase nonrcspondcnt number was
drawn without replacement, and all the four estimators denoted by letters
S, L, R, W were computed. On the basis of computed estimates, the mean
square error of each estimator was evaluated.

Experiment 1. In the first experiment only one auxiliary variable
was used. Response probabilities were generated for an arbitrarily chosen
parameter vector 8 —[-4, 0.003]. Consequently, the average response pro-
bability in the population was 0.89. Simulations were executed for the
sample size n =40, 80, .., 200. For every value of n a total of 10 000
samples were drawn from the population. The relative accuracy (the
proportion of MSE of any estimator to the MSE of the standard estimator
S) is shown on the Graph 1. Each point on the graph therefore corresponds
to 10 000 computed estimates.
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Graph 1. The dependence between the initial sample size n and relative accuracy ol the
estimators for single auxiliary variable

As it can be seen on the graph, for any value of n for which the
simulations were executed, each of the estimators: L, R and W had lower
MSE than the standard two-phase estimator S. For small initial sample
sizes the estimator R was the best (in terms of MSE). However, the MSE



of this estimator grew rapidly, and for larger samples the estimators L and
W were more accurate than R. The results suggest that for the sample size
large enough, the MSE of estimator R may exceed the MSE of standard
estimator S. The relative accuracy of the strategies L and W was rather
stable and it was approximately equal to 80%. In most cases, the strategy
W had lower MSE than the strategy L. It is worth noting that for small
sample sizes the estimator R behaves well, despite non-detcrministic character
of response mechanism.

Experiment 2. In the second experiment three auxiliary variables X It
X2 and Xr were used. Response probabilities were generated for an
arbitrarily chosen parameter vector /?= [-6, 0.002, 0.146, 0.348], with
values Ri...R0 inversely proportional to the mean values of corresponding
auxiliary variables. Consequently, the average response probability in the
population was 0.85. Simulations were executed for the sample size
n =40, 80, ...,200. For every value of n a total of 10 000 samples were
drawn from the population. The relative accuracy (the proportion of MSE
of any estimator to the MSE of the standard estimator S) is shown on
the Graph 2. Each point on the graph therefore corresponds to 10 000
computed estimates.

In this experiment, again each of the estimators: L, R and > had lower
MSE than the standard two-phase estimator S, for any value of n for
which the simulations were executed. The lowest MSE was observed for
the estimator R, and the highest for the estimator W.
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Graph 2. The dependence between the initial sample size n and relative accuracy
of the estimators for three auxiliary variables



It’s worth noting that the addition of two auxiliary variables did not
influence significantly the relative accuracy of the estimator L, but the
behavior of two other estimators changed. The MSE of the estimator R grows
slower with the increase of initial sample size, whereas the MSE of the
estimator W is stable, but greater than it was for only one auxiliary variable,
probably because of weaker correlation between variable Xt (X2) and the
variable under study.

VI. SUMMARY

In general, the estimators considered in this paper arc biased. For the
price of bias, lower values of MSE may be achieved. It should be stressed
however that, in order to improve the MSE suitable auxiliary information
is needed. In the case of estimators L and R auxiliary characteristics have
to be observed for all population units to compute the estimates. For the
estimator W auxiliary characteristics should only be observed for all the
units included in the initial sample, so this estimator may be applied in
situations where the estimators R and L are not applicable due to lack of
data on auxiliary characteristics in the whole population. Moreover, the
simulation results presented here are based on assumption, that functional
form of response mechanism is known. In practice, such knowledge usually
comes from sources external to the survey, and it may be inaccurate or
simply false. In such case a model misspecification error occurs, and as
a result the MSE of the estimators may be greater. When the functional
form of response mechanism is unknown, some nonparametric methods
may also be used to estimate the response probabilities.
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Wojciech Gamrot

O ZASTOSOWANIU REGRESJI LOGISTYCZNEJ 1)0 OCENY WARTOSCI
PRZECIETNEJ Z WYKORZYSTANIEM SCHEMATU LOSOWANIA
DWUFAZOWEGO W PRZYPADKU BKAKOW ODPOWIEDZI

Streszczenie

Wystapienie niekompletnosci obserwacji badanej cechy w badaniu statystycznym zazwyczaj
prowadzi do obcigzenia uzyskanej oceny badanego parametru populacji. Jedna z technik
stosowanych dla przeciwdziatania temu zjawisku opiera sie na wykorzystaniu schematu losowania
dwufazowego. Jako estymator wartos$ci przecietnej w populacji wykorzystuje sie zazwyczaj
kombinacje liniowa ocen warto$ci przecietnej uzyskanych w pierwszym i drugim etapie (fazie)
badania. W niniejszym referacie podjeto prébe zbadania wtasnoséci alternatywnych strategii
estymacji wykorzystujgcych schemat losowania dwufazowego, uwzgledniajgcych w konstrukcji
estymatora oceny prawdopodobienstw uzyskania odpowiodzi od poszczegélnych jednostek
populacji uzyskane przy wykorzystaniu modelu regresji logistycznej. Poréwnanie wiasnosci
wymienionych strategii przeprowadzono droga symulacji komputerowej, przy wykorzystaniu
danych uzyskanych w wybranych gminach powiatu Dgbrowa Tarnowska podczas spisu rolnego
w roku 1996.
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