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Abstract

A class of unbiased estimators of survival probability P(T,>t) under random and
independent censorship model is considered, where the potential survival times T, are
possibly unobserved, but the censoring times Z, and min(T,, Z,) are observed and the sample
size is random.
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I. INTRODUCTION

Suppose that we observe survival times of some individuals, i.e. times
measured from entry into the study to an event of interest, usually called
a failure. Very often, for ethical as well as practical reasons the observation
terminates after a predetermined follow-up period. This causes that not all
the failures can be observed. Individuals who failed during this period
provide the true survival times, other individuals who did not fail yield the
so-called censored times.

In many studies individuals arrive at random during the given period
of observation, thus the length of time elapsed from their entry into the
study to the end of the follow-up period is a random variable. Throughout
the paper this variable will be called a monitoring or censoring variable.
It is worth noting that such a variable is fully observed and independent
of the survival time.



The type of censorship, which assumes random, observable censoring
times, independent of the survival times, appears often in applications (see
Cox, Oakes, 1984, p. 5). Such a model of censoring was firstly considered
by Kaplan and Meier (1958), who proposed an estimator of the survival
probability called the Reduced-Sample Estimator (RSE). They investigated
also a more general model, when the censoring times are not observed and
proposed a product-limit estimator. This estimator is well-known as the
Kaplan-Meier Estimator. Its properties have been widely studied in the
literature (e.g. Breslow, Crowley, 1974; Peterson, 1977; Chen et al., 1982,
Efron, 1988, Lumley, Heagerty, 2000). For instance, it was shown that it
is negatively biased.

Gajek and Gather (1991) considered estimation of survival distribution
Fe being an element of some scale family of distributions. They derived
the lower bound of the minimax value of the weighted mean squared error
for estimating & (f?e(0, oc), s ® 0) and showed that under Type | censoring
this bound is independent of the sample size and equals to 1. They showed
that Type Il censoring does not lead to such anomalies. Mizera (1996) as
well as Gajek and Mizera-Florczak (1998) considered also sequential
estimation of O, where 0 was a parameter indexing a general family of
distributions 0e<9}. They derived lower bounds for the minimax value
of a modified risk and applied this result to construct a minimax sequential
estimator of a failure rate in an exponential model under Type Il censoring.
A conclusion which can be drawn from these papers is that under Type
I censoring there does not exist an unbiased estimator of a survival
probability. However Type Il censoring or a sequential sampling scheme
can be used instead.

In this paper we will consider some sequential estimators of survival
probability assuming Type Il censoring, in which sample size is a ran-
dom variable distributed according to a negative binomial distribution.
These estimators will be called Sequential-Type Reduces Sample Esti-
mators.

The paper is organized as follows. Section Il introduces basic notation.
In section Il the Reduced-Sample Estimator proposed by Kaplan and
Meier is considered. In section IV a model of Type Il censoring is considered
and class of Sequential-Type Reduced Sample Estimators is proposed. Section
V contains final remarks.



II. NOTATION

Let Tj, T2, ..., TN denote iid survival times with a common continuous
cumulative distribution function F(t), F(0)= 0 and a survival function
F(t) = 1—F(). Similarly, let Z1,Z2,...,ZN denote iid censoring times with
a common continuous cumulative distribution function G(t), G(0) = 0. We
will assume that the sample size N is random, the sequence {Tj, is
independent of the sequence {Z;} i= 1, 2.... N and the variables
Tj, T2, ..., TNand Zj, Z2, ..., ZN are defined on the same probability space
(B, Pm

Although some of the survival times Ti may be unobserved, we will
assume, that all the 77(T; Z; for i=\,2,...,N arc observed. We will
also assume that all the censoring times Zf for i= 1 , 2 are observed.
In other words, we assume that the following random sample is observed

(*L,Z D), (X2Z22),....(**,ZN @
where
min(Ti( Zf), i=1, 2, N. )

Let us assume the following notation

F(t) = P(TL>t), F(t) = 1—F(1), 3)
GiOAPIZAt), G() = 1—G(1), )

H(t) = P(X1>t) = P(TI>t, Z1>t) = F()G(t), H(t) = 1-~H(). (5)

Our goal is the pointwise estimation of a life-time distribution of Tt
represented by a cumulative distribution function F or a survival function
F, on the basis of the sequence (1).

If all the T/s were observed with probability one and the sample size
were fixed (i.e. N = n = const) then an estimator of F known as the empirical
distribution function (EDF) could be applied

EDF(t)= 1 £1(T>0,
ni=1
where I(-) denotes the indicator variable.
It is well-known that EDF(t) is an unbiased estimator of Y(t) and its
variance equals to F(t)F(t)/n. Unfortunately, in the case of right-censoring
it could not be evaluated, because not all the T/s can be observed.



I1l. THE REDUCED-SAMPLE ESTIMATOR

The Reduced-Sample Estimator of the survival probability F (t) proposed
by Kaplan and Meier (1958) was derived from the sample (1) for a fixed
sample size.

Let us consider a random sample (1), where N = n with probability
one. Let Z,,, = max{Zj, 22, ..., Z,}. The Reduced-Sample Estimator RSE(t)
(Kaplan, Meier, 1958) is constructed as the ratio

RSE(t) = -------m-mmmm- , for te[0,Znn) (6)
I 1(Zj>t)
j=i
Let us notice that the estimator (6) is defined on the random time interval
[0, Z,,,n) and it takes values from the interval [0,1]. It follows also that (6)
is a truncated estimator, for it is not defined when Z,,, < t. A disadvantage
of using RSE as a function is that it is not monotonic and, as a consequence,
it is not a distribution function. Let N~t) and N2(t) be the following sums

Ni(t)="Z1(Zj>t), N2t)= £1(*f>i), teR.
i i=i

We will find the expected value and the variance of RSE(t), i.e. E(RSE(t))
and Var(RSE(t)) with respect to the probability measure P. It is obvious
that for t = 0 there is RSE(0) = F(0) = 1 with probability one. Thus,

E(RSE(0)) = F(0) and Var(tfS£(0)) = O.

Throughout the rest of this section we will assume that i6(0, Z,.,). It is
easy to see, that the expected value of RSE(t) equals to the conditional
expectation of the ratio N2(i)/~i(0 given Z,,>t. The variables N 2(t),
N t(t) —N 2(t) and n- N~t) have the multinomial distribution with parameters
nand p7= [H(E), G(t) —H (1), G(t)]. Thus, the expected value of RSE(t) equals



In order to transform the double sum on the right-hand side of (7) we
will need the following equality

£ n2h)VA(t)Fn-A>t) = ¥(t),
ar=0nl\n2

which is valid for F(i)e[0,1) and any integer nl ~ 1 and flows from properties
of any binomial distribution. Wc will also use the equality of the form

@w if /\(0*01

what flows directly from (5). The probability P(Znn>1t) in (7) can be
expressed as follows

P(Zn,>i) = | —G"(1).

From (7) and from the last three equalities the expected value of RSE(t)
takes the form

=r-G-i6J,(;,)6"(og-.(o =r F|] (T)d - o-o»=m

The variance of RSE(t) can be derived in a similar way
) N\
Var(ASE(t)) = E

("'J0'400°" 40.jo (N7 = () ™ OF"4OF" -~ a

From properties of any binomial distribution the following equality holds

m;GV «l \] W «l



Var(KSE(t)) = .

Z 1f7Vv"'(0G" _n,0-
On, =1nl \nl/

We will transform the sum on the right-hand side of (8)
Z U ny">c" _n,(0 9)
8, =1nl\n1/
using the following equality
L=1, n-—ni (»-*xX«-"i-1) (n-njjn-nj-t) 1
n n(n—1) n(n—I)(n —2)

n(in—I)(n —2) e« n
Thus,

the sum (9) can be expressed as follows
i BW)G" *40= . 1\5 "Vw N0+ 117 -hfBW ) G W+
SBIV«] i/

!]‘1 a(n-1)(n-2) vy W (0 +.. 4+

+,,Z'—15'éf(m-l)(:ﬂ4§ ) ,')"ZZ|W> -'W G --« =

=- XfBW)o6""",(0+-4" Zl(l_l 1Y>(£)C',-' 40 +
«m=AnJ «—1-1=iVv "i /
+—nr

)G (G- "()) +... F GG (€ =

=1(1- G-(0)+ — f(G(0- G"()+ 1JG2AD- G{)+

+.4G-1(0- 01" ~ (i)' 69

and we have

m 1/mn
Z -(

4 n "1 G\t) -
\Gn'(t)Gn~n'(t) =
«=ini V4

Gn(t)
or equivalently



CO
n=Inl\nlJ »=1 * )

Finally, the variance of RSE(t) takes the form

va (i,

and satisfies the inequality

Var(RSE«)) = — — e N B I > - r -

It follows that RSE(Il) is less effective than the empirical distribution function
EDF(t) usually used in the uncensored case.

IV. SEQUENTIAL-TYPE REDUCED-SAMPLE ESTIMATORS

In this section we will consider a class of the Reduced-Sample Estimators
of F(t) defined for ie[0, i0] under Type Il censoring. For this reason the
special type of experiments will be defined.

Let us assume that individuals enter the follow-up study at random
time points. For an i-th individual we observe a pair of random variables
(Xt,zf), where Xt=rwn(l;, Z;) and Z; represents a random, observable
censoring time, independent of T; where Tt represents an unobserved potential
survival time.

Assume that the observation of individuals terminates when for k items
(/c> 1 is an integer chosen in advance) we obtain zlj>to0, j=1,2
where i0>0 is a fixed time point, such that G(i>0. In the experiment
the number Nk of individuals is a random variable distributed according
to the negative binomial distribution with parameters k and p = G(t0).
Thus, the probability distribution function of Nk takes the form

PINt=n)=A"AG * (i0)G--1(i0), n=k k+1,k +2.. (12

It is worth noting, that it is usually possible to fix such a t0 for which
G(t0) > 0, even if the distribution function G is unknown.



Let us consider a class of estimators of the form

I 1(*,>£)

RSEk() = M- » for re[0,i0], fceN. (13)
iHZj>1)
=i

We will study the expected value and the variance of the estimators (13).
Let N lik(t), N2k(l) denote the following sums defined for teR

tfi.*(0 = THZj>t), N2k{t) = 11 (*>£)e
j=i i=i

If i = 0 then RSEk(0) = F(0) = 1 with the probability 1 and
E(RSEkK(0)) = F(0) and VaT(RSEKQ)) = 0.

Further we will assume that i6(0, i0].

Given Nk= n and for ie(0, t0) the variable N I%(t) —k has the binomial
distribution with parameters n—k and p = (G(t) —G(t0))/G(10). For t=10
the variable N uk(t0) takes the value k with probability one. Thus,

TNV KE-p)n o £6(0,00), «j = k,k+ I,...,n
P(Ni 'k(®) = n1\Nk= ) = { ’1' ;tk‘_ .
: &
0, N
© (14)

Given Niik(t) = nl, Nk=n and for ie(0, £0] the variable N2*({) has the
binomial distribution with parameters nt and F(t) = Il (t)/G (t) (notice that
for £6(0, t0] there is G(t)*0). Thus,

P(N2.k(t) = n2\Nuk(t) = "i, =») = (, p-YE£)r"-UE), (15)

where n2—0,1,2,..., nt.

The joint distribution of (Nk, N lik(t), N 2-k(t)) can be obtained from (12),
(14) and (15). The expectation and the variance of (13) will be derived
from the joint distribution of (Nk, N Itk(t),N2Kk(t)).



We have
0 N1 n
E(RSEKk(t)) = | | I -P(N* = n,Nilk(t) = nlt Nzk(t) = n2) =

n=k n,=k nj=0 «1

= £ P(N*=n) t P(NIit(i) = ndJV* = n) | P(N2i*(0 =

a=* ni=* n2=0

= n2|N 1k(t) = nj, N* = n)

and it follows that
E(RSEt(0)= IP(iV* =B )t ~-P(NL1*{) = n1|[N* = n) nl F(i) = F(i).
n=k q,=* “|

Thus the estimators defined in (13) are unbiased estimators of the survival
probability F(f) for ie[0, f]. The variance of RSEKk(t) is equal to

Vai(RSEK())

=1 | (--nt))2p(Nk=n,NUt)=nl,NUt) =n2)=

(=Kka,=M=0\T11 /
=t i P(Nk=n,NUt) =ni)x
n-k ni-A
x I ("2- niF~— P(N2t(0 = na|N Itt(0 = Nk= n) =
A1=0 rni
= F(t)F(t)Z 1| ;-P(iV* = n,N1Ki) = nl).
n=*n,=* N1
For i = i0 the double sum in the last expression reduces to 1Lk and the

variance is equal to

VarfRSE4@0)) = 222 Q.

For ie(0, ) this double sum can be expressed in the form



i i - P(Nk=n,NUt) =nl) =

n=«k rij=K ftl

m)-G (to\n k(G(t)\n-" =
I G(>0) I \G(t0)J

V 1
£ kn\k-1)\G (t)J

*(m -1 0,

Y 1/»i-tW “0AV, Gjto)\n'~k
n~"kn \ k -\ J\G (1) I\ G(t)J

Let p(t) denote the ratio G(t0)/G(t). Then we have
£ t -P (Nk=n,NL1k(t)y=nl)= £ —cC"1 1V (t)(l-p(0)',,_* (16)
n% ni=k"i \ fc- 1/

The expression on the right-hand side of (16) can be treated as the expectation
of \/N*(t), where N*(t) is a random variable with the negative binomial

distribution with parameters k and p(t).
When k= 1 and te(0, t0) this expression reduces to the form

o J 1-p(0 «=1 «1

In the general case, for fc> 2 and te(0, i0) there is

+(")E—1§> | noo.tot 7



On the right-hand side of (17) and (18) there is a series £ -—--—--—- . To find
a,=1 ni
this sum it is worth noting that for any xe(0,1) there is

coO rn X
1 ,=2zZJ'-1
n=1n n—10
For xe(0, 1) the series yJ‘I 1v" 1 is uniformly convergent on [0,x]. Thus,
oo y-n o X X 00 1
r- =1 £v"-1av = In k- (19)
n=1n n=10 On=1 I X

Finally, from (16), (17) and (19) the variance of RSE~t) for ie(0, ) is
equal to

Var(RSE”t)) =¥ (t)F (t)~ In (20)
PKH pw

and in the general case, for k>2, from (16), (18) and (19) , for £e(0, t0)
we have

Var(RSEK1)) = T(t)F(t)AK), 21)

where
y f n- vm(s~\(l¥|§S+V( nL-igWin rpl\
22)

and p(t) = G(t0)IG(t), MO = 1- PW-

Finally, the variance of (13) takes the form

0, for i =0,
lc= 1,
Var(RSEk(t)) = 1— for £e(0, i0),
( ) F()F(EM*(O0, N2, 0;’

F(t)F(t)/k, for £= t0,



V. DISCUSSION

In the paper we have considered the non-parametric, unbiased and
pointwise estimation of a survival probability under fully observed, random
and independent censoring. Some detailed results concerning the variances
of the proposed estimators have been presented.

It is worth noting that in many applications it is more satisfying to regard
the censoring variables as fixed numbers rather than as random variables. In
such studies censoring variables can be treated in terms of values actually
observed rather than in terms of their unknown distribution. The results
obtained in this paper may be also extended to such a type of censoring.
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Agnieszka Rossa

NIEOBCIAZONA ESTYMACJA PRAWDOPODOBIENSTW PRZEZYCIA
W MODELU Z OBSERWOWALNYMI CZASAMI CENZUROWANIA

Streszczenie

W pracy zaproponowana zostata klasa nieobcigzonych estymatoréw prawdopodobieristwa
przezycia P(T,>r) w modelu losowego, niezaleznego i obserwowalnego cenzurowania, w ktérym
potencjalne czasy zycia T, sg nieobserwowalnymi zmiennymi losowymi, natomiast zmienne
cenzurujagce Z, oraz zmienne min(T,, Z,) sa obserwowalne.



