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Abstract

The study of the symmetry of Pais–Uhlenbeck oscillator initiated in Andrzejewski et al. (2014) [24] is 
continued with special emphasis put on the Hamiltonian formalism. The symmetry generators within the 
original Pais and Uhlenbeck Hamiltonian approach as well as the canonical transformation to the Ostro-
gradski Hamiltonian framework are derived. The resulting algebra of generators appears to be the central 
extension of the one obtained on the Lagrangian level; in particular, in the case of odd frequencies one 
obtains the centrally extended l-conformal Newton–Hooke algebra. In this important case the canonical 
transformation to an alternative Hamiltonian formalism (related to the free higher derivatives theory) is 
constructed. It is shown that all generators can be expressed in terms of the ones for the free theory and the 
result agrees with that obtained by the orbit method.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The theories we are usually dealing with are Newtonian in the sense that the Lagrangian func-
tion depends on the first time derivatives only. There is, however, an important exception. It can 
happen that we are interested only in some selected degrees of freedom. By eliminating the re-
maining degrees one obtains what is called an effective theory. The elimination of a degree of 
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freedom results in increasing the order of dynamical equations for remaining variables. There-
fore, effective theories are described by Lagrangians containing higher order time derivatives [1]. 
Originally, these theories were proposed as a method for dealing with ultraviolet divergences [2]; 
this idea appeared to be quite successful in the case of gravity: the Einstein action supplied by the 
terms containing higher powers of curvature leads to a renormalizable theory [3]. Other examples 
of higher derivatives theories include the theory of the radiation reaction [4,5], the field theory on 
noncommutative spacetime [6,7], anyons [8,9] or string theories with the extrinsic curvature [10].

Of course, the appearance of terms with higher time derivatives leads to some problems. One 
of them is that the energy does not need to be bounded from below. To achieve a deeper insight 
into these problems and, possibly, to find a solution it is instructive to consider a quite simple, 
however nontrivial, higher derivatives theory. For example, it was shown in Ref. [11] (see also 
[12]) that the problem of the energy can be avoided (on the quantum level) in the case of the 
celebrated Pais–Uhlenbeck (PU) oscillator [13]. This model has been attracting considerable 
interest throughout the years (for the last few years, see, e.g., [11,12,14–24]). Recently, it has 
been shown (see [24]) that the properties of the PU oscillator, rather surprisingly, for some special 
values of frequencies change drastically and are related to nonrelativistic conformal symmetries. 
Namely, if the frequencies of oscillations are odd multiplicities of a basic one, i.e., they form 
an arithmetic sequences ωk = (2k − 1)ω, ω �= 0, for k = 1, . . . , n, then the maximal group of 
Noether symmetries of the PU Lagrangian is the l-conformal Newton–Hooke group with l =
2n−1

2 (for more informations about these groups see, e.g., [25–28] and the references therein). 
Otherwise, the symmetry group is simpler (there are no counterparts of dilatation and conformal 
generators (see the algebra (2.5)).

Much attention has been also paid to Hamiltonian formulations of the PU oscillator. There 
exists a few approaches to Hamiltonian formalism of the PU model: decomposition into the set 
of the independent harmonic oscillators proposed by Pais and Uhlenbeck in their original paper 
[13], Ostrogradski approach based on the Ostrogradski method [29] of constructing Hamiltonian 
formalism for theories with higher time derivatives and the last one, applicable in the case of odd 
frequencies (mentioned above), which exhibits the l-conformal Newton–Hooke group structure 
of the model. Consequently, there arises a natural question about the relations between them as 
well as the realization of the symmetry on the Hamiltonian level? The aim of this work is to give 
the answer to this question.

The paper is organized as follows. After recalling, in Section 2, some informations concern-
ing symmetry of the PU model on the Lagrangian level, we start with the harmonic decoupled 
approach. We find, on the Hamiltonian level, the form of generators (for both generic and odd 
frequencies) and we show that they, indeed, form the algebra which is central extension the one 
appearing on the Lagrangian level. Section 4 is devoted to the study of the relation between 
the above approach and the Ostrogradski one. Namely, we construct the canonical transforma-
tion which relates the Ostrogradski Hamiltonian to the one describing the decouple harmonic 
oscillator. This transformation enables us to find the remaining symmetry generators in terms 
of Ostrogradski variables. The next section is devoted to the case of odd frequencies where the 
additional natural approach can be constructed. In this framework the Hamiltonian is the sum of 
the one for the free higher derivatives theory and the conformal generator. We derive a canonical 
transformation which relates this new Hamiltonian to the one for the PU oscillator with odd fre-
quencies. Moreover, we apply the method (see [30]) of constructing integrals of motion for the 
systems with symmetry to find all symmetry generators. Next, by direct calculations we show 
that they are related by the, above mentioned, canonical transformation to the ones of the PU 
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model described in terms decoupled oscillators. We also express symmetry generators in terms 
of their counterparts in the free theory.

In concluding Section 6, we summarize our results and discuss possible further developments. 
Finally, Appendix A constitutes technical support for the mains results. We derive there some 
relations and identities which are crucial for our work.

2. PU oscillator and its symmetry

Let us consider the three-dimensional PU oscillator, i.e., the system which is described by the 
following Lagrangian [13]

L = −1

2
�x

n∏
k=1

(
d2

dt2
+ ω2

k

)
�x, (2.1)

where 0 < ω1 < ω2 < . . . < ωn and n = 1, 2, . . . . Lagrangian (2.1) implies the following equa-
tion of motion

n∏
k=1

(
d2

dt2
+ ω2

k

)
�x = 0, (2.2)

which possesses the general solution of the form

�x(t) =
n∑

k=1

(�αk cosωkt + �βk sinωkt), (2.3)

where �α’s and �β’s are some arbitrary constants.
As it has been mentioned in the Introduction the structure of the maximal symmetry group 

of Lagrangian (2.1) depends on the values of ω’s. If the frequencies of oscillation are odd, i.e., 
they form an arithmetic sequence ωk = (2k − 1)ω, ω �= 0, k = 1, . . . , n, then the maximal group 
of Noether symmetries of the system (2.1) is the l-conformal Newton–Hooke group, with l =
2n−1

2 . It is the group which Lie algebra is spanned by H, D, K, Jαβ and Cα
p , α, β = 1, 2, 3, 

p = 0, 1, . . . , 2n − 1, satisfying the following commutation rules

[H,D] = H − 2ω2K, [H,K] = 2D, [D,K] = K,

[D, �Cp] =
(

p − 2n − 1

2

)
�Cp, [K, �Cp] = (p − 2n + 1) �Cp+1,

[H, �Cp] = p �Cp−1 + (p − 2n + 1)ω2 �Cp+1,[
Jαβ, J γ δ

] = δαδJ γβ + δαγ J βδ + δβγ J δα + δβαJ αγ ,[
Jαβ,C

γ
p

] = δαγ Cβ
p − δβγ Cα

p. (2.4)

Although this algebra is isomorphic to the l-conformal Galilei one (the latter can be obtained 
by a linear change of the basis H → H − ω2K , see [25,26,28] and [31–36] for more recent 
developments of this algebra) the use of the basis (2.4) implies the change of the Hamiltonian 
which alters the dynamics.

In the case of generic frequencies the maximal symmetry group is simpler. Its Lie algebra 
consists of H, Jαβ and �C±, k = 1, . . . , n. The action of Jαβ remains unchanged and only com-
k
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mutations rules between H and �C’s must be modified[
H, �C+

k

] = −ωk
�C−
k ,[

H, �C−
k

] = ωk
�C+
k . (2.5)

Both symmetry algebras posses central extension:[
Cα

p,Cβ
q

] = (−1)pp!q!δαβδ2n−1,p+q, (2.6)

in the odd case and[
C+α

k C
−β
j

] = ωk

ρk

δkj δ
αβ, (2.7)

in the generic case; which will turn out to be necessarily (see the next section) to construct the 
symmetry algebra on the Hamiltonian level.

3. Decoupled oscillators approach

An approach to the Hamiltonian formalism of the PU model was proposed in Ref. [13] where 
it was demonstrated that the Hamiltonian of the PU oscillator (in dimension one) turns into the 
sum of the harmonic Hamiltonians with alternating sign. To show this we follow the reasoning 
of Ref. [13] and introduce new variables

�xk = Πk �x, k = 1, . . . , n; (3.1)

where Πk is the projective operator:

Πk = √|ρk|
n∏

i=1
i �=k

(
d2

dt2
+ ω2

i

)
, (3.2)

and

ρk = 1∏n
i=1
i �=k

(ω2
i − ω2

k)
, k = 1,2, . . . , n. (3.3)

Note that ρk are alternating in sign. Then one finds

�x =
n∑

k=1

(−1)k−1
√|ρk|�xk, (3.4)

as well as

L = −1

2

n∑
k=1

(−1)k−1 �xk

(
d2

dt2
+ ω2

k

)
�xk = 1

2

n∑
k=1

(−1)k−1( �̇xk − ω2
k �x2

k

) + t.d. (3.5)

The corresponding Hamiltonian reads

H = 1

2

n∑
k=1

(−1)k−1( �p2
k + ω2

k �x2
k

)
, (3.6)

while the canonical equations of motion are of the form

�̇xk = (−1)k−1 �pk, �̇pk = (−1)kω2 �xk. (3.7)
k
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Taking into account the form of the general solution (2.3) we see that the dynamics of the new 
canonical variables is given by

�xk = (−1)k−1

√|ρk|
(�αk cos(ωkt) + �βk sin(ωkt)

)
,

�pk = ωk√|ρk|
( �βk cos(ωkt) − �αk sin(ωkt)

)
. (3.8)

Therefore, we have a correspondence between the set of solutions of the Lagrange equation (2.2)
and the set of solutions of the canonical equations (3.7). Consequently, we can translate the 
action of the group symmetry from the Lagrangian level to the Hamiltonian one and find all the 
symmetry generators in terms of oscillator canonical variables. We will show that the generators, 
obtained in this way, form the algebra which is the central extension of the symmetry algebra on 
the Lagrangian level.

In the generic case it is very easy to find the form of the remaining (the Hamiltonian is given 
by (3.6)) symmetry generators on the Hamiltonian level. First, let us note that the infinitesimal 
action of �μk

�C+
k and �νk

�C−
k , k = 1, . . . , n, on the Lagrangian level, takes the form

�x′(t) = �x(t) +
n∑

k=1

( �μk cosωkt + �νk sinωkt). (3.9)

Acting with Πk and applying Eq. (3.7) we find the infinitesimal action of �C±
k on the phase space; 

by virtue of

δ(·) = ε{·,Generator}, (3.10)

we obtain the following generators:

�C+
k = (−1)k−1

√|ρk| cos(ωkt) �pk + ωk√|ρk| sin(ωkt)�xk,

�C−
k = (−1)k−1

√|ρk| sin(ωkt) �pk − ωk√|ρk| cos(ωkt)�xk, (3.11)

which commute to the central charge – according to (2.7). Similarly, the angular momentum 
generators read

Jαβ =
n∑

k=1

(
xα
k p

β
k − pα

k x
β
k

)
. (3.12)

Consequently, we obtain the centrally extended algebra (2.5).

3.1. Odd frequencies

In the odd case the symmetry group is reacher and, therefore, this case is much more inter-
esting. We assume now that the frequencies form the arithmetic sequence, i.e., ωk = (2k − 1)ω, 
k = 1, . . . , n. In this case the main point is that the numbers ρk can be explicitly computed; the 
final result reads

ρk = (−1)k−1(2k − 1)

2 n−1
, k = 1, . . . , n. (3.13)
(4ω ) (n − k)!(n + k − 1)!
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Consequently, one has useful relations

|ρk|
|ρk+1| = (2k − 1)(n + k)

(2k + 1)(n − k)
, k = 1, . . . , n − 1. (3.14)

Next, let us note that the following Fourier expansion holds (see Appendix A)

sinp ωt cos2n−1−p ωt =
{∑m

k=1 γ +
kp cos(2k − 1)ωt, p-even;∑m

k=1 γ −
kp sin(2k − 1)ωt, p-odd; (3.15)

where γ ±
kp can be expressed in terms of sum of products of binomial coefficients; however, their 

explicit form is not very useful; for our purposes some properties of γ ±
kp (see (A.2)–(A.6)) will 

turn out to be more fruitful. Now, using Eq. (3.15) we can rewrite the infinitesimal action (3.9), 
in the case of odd frequencies, in the equivalent form

�x′(t) = �x(t) + 1

ωp
�εp sinp ωt cos2n−1−p ωt, (3.16)

which gives suitable family of the generators �Cp , p = 0, 1, 2, . . . , 2n − 1, on the Lagrangian 
level, i.e., satisfying commutation rules of the l-conformal Newton–Hooke algebra (cf. [24]).

In order to find the action of �Cp in the Hamiltonian formalism, we use Eq. (3.15) together 
with (3.1) and (3.7), which yields

�x′
k = �xk + (−1)k−1�εp

ωp
√|ρk|

{
γ +
kp cos(2k − 1)ωt, p-even;

γ −
kp sin(2k − 1)ωt, p-odd; (3.17)

�p′
k = �pk + (2k − 1)ω�εp

ωp
√|ρk|

{−γ +
kp sin(2k − 1)ωt, p-even;

γ −
kp cos(2k − 1)ωt, p-odd.

(3.18)

Using Eq. (3.10) we derive the explicit expression for the generators �Cp in terms of the canonical 
variables

�Cp =
n∑

k=1

γ +
kp

ωp
√|ρk|

(
(−1)k−1 cos

(
(2k − 1)ωt

) �pk + (2k − 1)ω sin
(
(2k − 1)ωt

)�xk

)
, (3.19)

for p even, and

�Cp =
n∑

k=1

γ −
kp

ωp
√|ρk|

(
(−1)k−1 sin

(
(2k − 1)ωt

) �pk − (2k − 1)ω cos
(
(2k − 1)ωt

)�xk

)
, (3.20)

for p odd. Eqs. (3.19) and (3.20) can be inverted to yield �xk and �pk in terms of the generators �Cp

�pk = (−1)k−1
√|ρk| cos

(
(2k − 1)ωt

) 2n−1∑′′

p=0

β+
pkω

p �Cp

+ (−1)k−1 sin
(
(2k − 1)ωt

) 2n−1∑′
β−

pkω
p �Cp, (3.21)
p=0
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�xk =
√|ρk|

(2k − 1)ω
sin

(
(2k − 1)ωt

) 2n−1∑′′

p=0

β+
pkω

p �Cp

−
√|ρk|

(2k − 1)ω
cos

(
(2k − 1)ωt

) 2n−1∑′

p=0

β−
pkω

p �Cp, (3.22)

where β+, β− are the inverse matrices to γ +, γ − while one and two primes ′, ′′ denote the sum 
over odd and even indices, respectively.2

Next, we find the action of the dilatation generator. To this end let us recall (cf. [24]) that the 
infinitesimal action of dilatation on coordinates is of the form

�x′(t) = �x(t) − ε

2ω

(
(2n − 1)ω cos(2ωt)�x(t) − sin(2ωt) �̇x(t)

)
. (3.23)

Substituting (3.4) and acting with the projectors Πk we obtain, due to (3.1) and (3.7), the in-
finitesimal dilatation transformation on the phase space

�x′
k = �xk + ε

2
√|ρk| cos(2ωt)

(√|ρk−1|(n − k + 1)�xk−1 + √|ρk+1|(n + k)�xk+1
)

+ ε(−1)k

2ω
√|ρk| sin(2ωt)

(√|ρk−1|
2k − 3

(n − k + 1) �pk−1 −
√|ρk+1|
2k + 1

(n + k)

)
�pk+1,

�x′
1 = �x1 − ε

2
√|ρ1|

(√|ρ2|(n + 1) cos(2ωt)�x2 + sin(2ωt)
√|ρ2| (n + 1)

3ω
�p2

− n cos(2wt)
√|ρ1|�x1 + n

ω
sin(2ωt)

√|ρ1| �p1

)
, (3.24)

�p′
k = �pk − ε(2k − 1)

2
√|ρk| cos(2ωt)

(√|ρk−1|
2k − 3

(n − k + 1) �pk−1 +
√|ρk+1|
2k + 1

(n + k) �pk+1

)

+ εω(−1)k(2k − 1)

2
√|ρk| sin(2ωt)

(√|ρk−1|(n − k + 1)�xk−1 − √|ρk+1|(n + k)�xk+1
)
,

�p′
1 = �p1 − ε

2
√|ρ1| cos(2ωt)

(
−n

√|ρ1| �p1 +
√|ρ2|

3
(n + 1) �p2

)

+ εω

2
√|ρ1| sin(2ωt)

(
n
√|ρ1|�x1 + √|ρ2|(n + 1)�x2

)
, (3.25)

where k > 1 and, by definition, we put �xn+1 = �pn+1 = 0. One can check, using Eq. (3.14), 
that (3.24) and (3.25) define the infinitesimal canonical transformation generated (according to 
(3.10)) by

D = −1

2ω

(
ωA cos(2ωt) + B sin(2ωt)

)
, (3.26)

where

2 We will use this convention throughout the article.
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A = −
n∑

k=1

(√∣∣∣∣ρk−1

ρk

∣∣∣∣(n − k + 1)�xk−1 +
√∣∣∣∣ρk+1

ρk

∣∣∣∣(n + k)�xk+1

)
�pk + n�x1 �p1,

B = −
n∑

k=1

(−1)k
n − k + 1

2k − 3

√∣∣∣∣ρk−1

ρk

∣∣∣∣( �pk �pk−1 − (2k − 1)(2k − 3)ω2 �xk �xk−1
)

+ 1

2
n
(
ω2 �x2

1 − �p2
1

)
, (3.27)

and, by definition, �x0 = �p0 = 0. The meaning of the components A and B will become more 
clear in Section 5 (see (5.5)).

Similar calculations can be done for the conformal generator K . Namely, the infinitesimal 
conformal transformation, on the Lagrangian level, reads

�x′(t) = �x(t) − ε

2ω2

(
(2n − 1)ω sin(2ωt)�x(t) + (

cos(2ωt) − 1
) �̇x(t)

)
. (3.28)

Substituting �x and acting with the projector Πk we obtain the infinitesimal conformal transfor-
mation on the phase space and consequently (due to (3.10)) the explicit form of the generator K

K = 1

2ω2

(
B cos(2ωt) − ωA sin(2ωt) + H

)
. (3.29)

Finally, the angular momentum takes the same form as in the generic case

Jαβ =
n∑

k=1

(
xα
k p

β
k − pα

k x
β
k

)
. (3.30)

It remains to verify that obtained generators, indeed, yield integrals of motion and define the 
centrally extended l-conformal Newton–Hooke algebra. To this end we need a few identities 
which are proven in Appendix A. First, we compute the commutators of �C’s and check that they 
give the proper central extension. The only nontrivial case is [Cα

p, Cβ
q ] with p even and q odd (or 

conversely). We have

[
Cα

p,Cβ
q

] = ω(2ω)2(n−1)δαβ

ωp+q

n∑
k=1

(−1)k−1(n − k)!(n + k − 1)!γ +
kpγ −

kq

= p!(2n − 1 − p)!ω2n−1δαβ

ωp+q

n∑
k=1

(−1)k−1β+
pkγ

−
kq

= p!(2n − 1 − p)!ω2n−1δαβ

ωp+q

n∑
k=1

β−
2n−1−p,kγ

−
kq

= p!(2n − 1 − p)!ω2n−1δαβ

ωp+q
δ2n−1,p+q = p!q!δαβδ2n−1,p+q, (3.31)

where we use consecutively Eqs. (3.19), (3.20), (3.13), (A.3) and (A.2). For p odd and q even 
we obtain the same result except the extra minus sign. Consequently, we obtain the central 
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extension (2.6). In order to find the remaining commutators let us note that

[A,B] = −2H,

[B,H ] = 2ω2A,

[A,H ] = −2B. (3.32)

The proof of the above relations is straightforward although tedious and involve the use of (3.14). 
Now, by virtue of Eq. (3.32), it is easy to check that the generators H, D, K satisfy the first line 
of Eqs. (2.4).

Now, we find the adjoint action of H, D, K, Jαβ on �Cp . Since the calculations are rather 
wearisome and lengthy we sketch only the main points. To show that [H, �Cp] gives proper 
rule we use the identity (A.4). The case [D, �Cp] is more involved; however, using repeatedly 
Eqs. (3.14) and (A.5) we arrive at the desired result. Similarly to obtain [H, �Ck], first, we use 
Eq. (3.14) and then Eq. (A.6). Finally, it is easy to compute the commutators involving angular 
momentum.

Having all the commutation rules and (A.4) it is not hard to check that the obtained genera-
tors are constants of motion. This concludes the proof that, on the Hamiltonian level, they are 
symmetry generators and form the centrally extended l-conformal Newton–Hooke algebra.

4. Ostrogradski approach

Since the PU oscillator is an example of higher derivatives theory, it is natural to use the 
Hamiltonian formalism proposed by Ostrogradski [29]. To this end let us expand Lagrangian 
(2.1) in the sum of higher derivatives terms (here �Q = �x)

L = −1

2
�Q

n∏
k=1

(
d2

dt2
+ ω2

k

)
�Q = 1

2

n∑
k=0

(−1)k−1σk

( �Q(k)
)2

, (4.1)

where

σk =
∑

i1<...<in−k

ω2
i1

· · ·ω2
in−k

, k = 0, . . . , n, σn = 1. (4.2)

It can be shown (by standard reasoning) that the following identities hold

n∑
k=1

ρkω
2m
k = 0, m = 0, . . . , n − 2, (4.3)

n∑
k=1

ρkω
2(n−1)
k = (−1)n+1, (4.4)

n∑
m=0

σm(−1)m
n∑

k=1

ρkω
2(r−n+m−1)
k = 0, r ≥ n, (4.5)

where ρk is given by Eq. (3.3). Now, we introduce the Ostrogradski variables

�Qk = �Q(k−1),

�Pk =
n−k∑(

− d

dt

)j
∂L

∂ �Q(k+j)
= (−1)k−1

n∑
σj

�Q(2j−k), (4.6)

j=0 j=k
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for k = 1, . . . , n. Then the Ostrogradski Hamiltonian takes the form

H = (−1)n−1

2
�P 2
n +

n∑
k=2

�Pk−1 �Qk − 1

2

n∑
k=1

(−1)kσk−1 �Q2
k. (4.7)

By virtue of Eqs. (3.7) and (4.6), for k = 1, . . . , n, we find

�Qk = (−1)
k−1

2

n∑
j=1

√|ρj |(−1)j−1ωk−1
j �xj , k-odd;

�Qk = (−1)
k
2 −1

n∑
j=1

√|ρj |ωk−2
j �pj , k-even; (4.8)

and

�Pk = (−1)
k
2 −1

n∑
i=1

(−1)i−1
√|ρi |

(
n∑

j=k

σj (−1)jω
2j−k
i

)
�xi, k-even;

�Pk = (−1)
k−3

2

n∑
i=1

√|ρi |
(

n∑
j=k

σj (−1)jω
2j−k−1
i

)
�pi, k-odd. (4.9)

One can show that Eqs. (4.8) and (4.9) define a canonical transformation; to compute the Poisson 
brackets { �Qk, �Qj } and { �Qk, �Pj } we use (4.3) and (4.3)–(4.5), respectively; computing { �Pk, �Pj }
is the most complicated one and involves considering two cases k − j ≶ 1 as well as applying 
Eqs. (4.3) and (4.5).

Next, let us note that the inverse transformation is of the form

�xi =
n∑′

k=1

(−1)
k−3

2

n∑
j=k

σj (−1)jω
2j−k−1
i

√|ρi | �Qk +
n∑′′

k=1

(−1)
k
2
√|ρi |ωk−2

i
�Pk,

�pi =
n∑′′

k=1

(−1)
k
2 +i−1

n∑
j=k

σj (−1)jω
2j−k
i

√|ρi | �Qk +
n∑′

k=1

(−1)
k+1

2 +i
√|ρi |ωk−1

i
�Pk. (4.10)

No, we can try to find the symmetry generators (both in the odd and generic cases) in 
terms of the Ostrogradski variables. Of course, we expect that the Hamiltonian (3.6) should 
be transformed into the Ostrogradski one. Indeed, using (4.3)–(4.5) repeatedly we arrive, after 
straightforward but rather arduous computations (considering two cases: n-odd, even), at the 
Ostrogradski Hamiltonian (4.7).

Similarly, applying Eqs. (4.3)–(4.5), we check that the angular momentum (in both cases 
(3.12) and (3.30)) transforms under (4.10) into Ostrogradski angular momentum

Jαβ =
n∑

k=1

(
Qα

k P
β
k − Q

β
k P α

k

)
. (4.11)

As far as the generators �C’s are concerned (again using (4.3)–(4.5)) we obtain the following 
expressions:
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�C−
k =

n∑
k=1

(cosωit)
(k−1) �Pk −

n∑
k=1

(
(−1)k−1

n∑
j=k

σj (cosωit)
2j−k

)
�Qk,

�C−
k =

n∑
k=1

(sinωit)
(k−1) �Pk −

n∑
k=1

(
(−1)k−1

n∑
j=k

σj (sinωit)
2j−k

)
�Qk, (4.12)

in the case of generic frequencies, and

�Cp = 1

ωp

n∑
k=1

(
�Pk

(
sinp ωt cos2n−1−p ωt

)(k−1)

+ (−1)k �Qk

n∑
j=k

σj

(
sinp ωt cos2n−1−p ωt

)(2j−k)

)
, (4.13)

in the odd case; which perfectly agrees with the definitions of the Ostrogradski canonical vari-
ables (4.6) and the action of �C’s on Q (Eqs. (3.9) and (3.16)). Similar reasoning can be done for 
the remaining two generators D and K in the odd case. Then, they become bilinear forms in the 
Ostrogradski variables; however the explicit form of coefficients is difficult to simplify and not 
transparent thus we skip it here.

5. Algebraic approach to odd case

Since the l-conformal Newton–Hooke algebra is related to the l-conformal Galilei one by the 
change of Hamiltonian

H = H̃ + ω2K̃, (5.1)

where tilde refers to generators of the free theory (which possesses the l-conformal Galilei sym-
metry); therefore, it would be instructive to construct an alternative Hamiltonian formalism for 
the PU-model (in the case of odd frequencies) with the help of the one for the free higher deriva-
tives theory.

Denoting by �qm, �πm, m = 0, . . . , n − 1 the phase space coordinates of the free theory and 
adapting the results of Ref. [37] to our conventions we obtain the following form of the generators 
of the free theory (at time t = 0)

H̃ = (−1)n+1

2
π2

n−1 −
n−1∑
m=1

�qm �πm−1,

D̃ =
n−1∑
m=0

(
m − 2n − 1

2

)
�qm �πm,

K̃ = (−1)n+1 n2

2
�q2
n−1 +

n−2∑
m=0

(2n − 1 − m)(m + 1)�qm �πm+1,

J̃ αβ =
n−1∑
m=0

(
qα
mπβ

m − qβ
mπα

m

)
,

�̃Cm = (−1)m+1m! �πm, m = 0, . . . , n − 1,

�̃C2n−1−m = (2n − 1 − m)!�qm, m = 0, . . . , n − 1. (5.2)
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Of course, the change of the algebra basis given by (5.1) induces the corresponding one for 
the coordinates in dual space of the algebra (denoted in the same way); consequently we define 
the new Hamiltonian as follows

H = H̃ + ω2K̃ = (−1)n+1

2
π2

n−1 −
n−1∑
m=1

�qm �πm−1

+ (−1)n+1 n2ω2

2
�q2
n−1 +

n−2∑
m=0

(2n − 1 − m)(m + 1)ω2 �qm �πm+1. (5.3)

We will show that (5.3) is indeed the PU Hamiltonian in �qm, �πm coordinates and we will find the 
remaining generators in terms of them. To this end let us define the following transformation

�xk = (−1)k

( n−1∑′′

m=0

ω−m

m!√|ρk|γ
+
km �qm +

n−1∑′

m=0

m!ωm
√|ρk|

(2k − 1)ω
β+

2n−1−m,k �πm

)
,

�pk = (−1)k

( n−1∑′

m=0

ω−m(2k − 1)ω

m!√|ρk| γ +
k,2n−1−m �qm +

n−1∑′′

m=0

m!ωm
√|ρk|β+

mk �πm

)
, (5.4)

for k = 1, . . . , n. Using (3.14) and (A.3) we check that (5.4) define a canonical transformation. 
Moreover, by applying Eqs. (3.14) and (A.2)–(A.4) we check that the PU Hamiltonian (3.6) (with 
odd frequencies ) transforms into (5.3). The remaining generators can be also transformed. First, 
using (3.14), (A.2), (A.3), (A.5) and (A.6), after troublesome computations, we find that

A = −2D̃,

B = −H̃ + ω2K̃, (5.5)

and, consequently, we obtain a nice interpretation of A and B . Using Eqs. (5.5), one checks that 
H , D, K take the form

H = H̃ + ω2K̃,

D = D̃ cos 2ωt + 1

2ω

(
H̃ − ω2K̃

)
sin 2ωt,

K = 1

2
(1 + cos 2ωt)K̃ + 1

2ω2
(1 − cos 2ωt)H̃ + sin 2ωt

ω
D̃. (5.6)

Finally, the angular momentum reads

Jαβ =
n−1∑
m=0

(
qα
mπβ

m − qβ
mπα

m

)
, (5.7)

i.e., takes the same form as the one for the free theory (according to it commutes with H ). The 
generators �Ck are obtained by plugging (5.4) into (3.19) and (3.20), see also (5.17).

Summarizing, we expressed all PU symmetry generators in terms of the ones for free theory 
(and consequently in terms of �qm and �πm) and we see that the both sets of generators (except 
Hamiltonian) agree at time t = 0. This result becomes even more evident if we apply the al-
gorithm of constructing integrals of motion for Hamiltonian system with symmetry presented 
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in Ref. [30]. Namely, for the Lie algebra spanned by Xi , i = 1, . . . , n, [Xi, Xj ] = ∑n
k=1 ck

ijXk , 
with the adjoint action

Adg(Xi) = gXig
−1 =

n∑
j=1

D
j
i (g)Xj , (5.8)

the integrals of motion Xi(ξ, t) corresponding to the generators Xi are of the form

Xi(ξ, t) =
n∑

j=1

D
j
i

(
etH

)
ξj , (5.9)

where ξ ’s are the coordinates of the dual space to the Lie algebra (more precisely, their restriction 
to the orbits of the coadjoint action in the dual space).

Let us apply this approach to our case. One can check that for H , D, K , Jαβ Eq. (5.9) gives 
(5.6) and (5.7). For �Cp we have

�Cp = etH �̃Cpe−tH =
2n−1∑
r=0

apr(t) �̃Cr, p = 0, . . . ,2n − 1, (5.10)

where the functions apr satisfy the set of equations

ȧpr (t) = (r + 1)ap,r+1(t) + (r − 2n)ω2ap,r−1(t), (5.11)

with ak,−1 = ak,2n = 0 and the initial conditions apr(0) = δpr . Substituting apr(t) = âpr (tω)ωr

we obtain

˙̂apr(t) = (r + 1)âp,r+1(t) + (r − 2n)âp,r−1(t), (5.12)

with appropriate initial conditions. It turns out that for fixed p Eq. (5.12) is strongly related to 
the evolution of �q’s and �π ’s in the PU model with odd frequencies. More precisely, the canon-
ical equations of motion for the Hamiltonian (5.3) are equivalent to Eq. (5.12) for fixed p (cf.
[38]). Consequently, the solution can be written in terms of combinations of harmonics with odd 
frequencies:

âpr (t) =
2n−1∑′

a=−(2n−1)

irβrae
iat s

p
a , (5.13)

where βpa is given by (A.24) and sp
a are some constants (see [38])). Taking into account the 

initial conditions, we obtain

apr(t) = ωr−p

2n−1∑′

a=−(2n−1)

irβraγapeiatω. (5.14)

By virtue of Eqs. (A.25) and (A.29), we have

apr(t) = ωr−p
n∑

k=1

β±
rkγ

±
kp cos (2k − 1)ωt, (5.15)

where upper (lower) sign corresponds to p, r even (odd); and

apr(t) = ∓ωr−p

n∑
β∓

rkγ
±
kp sin (2k − 1)ωt, (5.16)
k=1
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where upper (lower) sign corresponds to p even and r odd (p odd and r even). Having the explicit 
form of apr(t), and using Eqs. (5.2) and (5.10) we obtain �C’s in terms of �q’s and �π’s:

�Cp =
n−1∑
r=0

(
(−1)r−1r!apr(t)�πr + (2n − 1 − r)!ap,2n−1−r (t)�qr

)
. (5.17)

As we have mentioned above (5.17) is related by canonical transformation (5.4) to (3.19)
and (3.20).

6. Discussion

Let us summarize. In the present paper we focused on the Hamiltonian approaches to the 
PU model and its symmetries. First, we derived the form of the symmetry generators, in the 
original Pais and Uhlenbeck approach (for both generic and odd frequencies). We have shown 
that the resulting algebra is the central extension of the one obtained on the Lagrangian level, i.e., 
the centrally extended l-conformal Newton–Hooke algebra in the case of odd frequencies and the 
algebra defined by Eqs. (2.5) and (2.7), in the generic case. Next, we considered the Ostrogradski 
method of constructing Hamiltonian formalism for theories with higher derivatives. We derived 
the canonical transformation (Eqs. (4.8)–(4.9)) leading the Ostrogradski Hamiltonian to the one 
in decoupled oscillators approach.

Let us note that the both approaches, mentioned above, do not distinguish the odd frequencies 
and in that case do not uncover the richer symmetry. A deeper insight is attained by nothing 
that for odd frequencies an alternative Hamiltonian formalism can be constructed. It is based 
on the Hamiltonian formalism for the free higher derivatives theory exhibiting the l-conformal 
Galilei symmetry. More precisely, we add to the Hamiltonian of the free theory the conformal 
generator. As a result, we obtain the new Hamiltonian, which turns out to be related, by canonical 
transformation (5.4), to the PU one. This construction can be better understood from the orbit 
method point of view, where the construction of dynamical realizations of a given symmetry 
algebra is related to a choice of one element of the dual space of the algebra as the Hamiltonian 
(see [30] and the references therein). In our case, both algebras (l-Galilei and l-Newton–Hooke) 
are isomorphic to each other; only the one generator, corresponding to the Hamiltonian, differ 
by adding the conformal generator of the free theory. This gives the suitable change in the dual 
space and consequently the definition (5.3).

The change of the Hamiltonian alters the dynamics, which implies different time dependence 
of the symmetry generators (which do not commute with H ); however, all PU generators should 
be expressed in terms of the generators of the free theory (for t = 0). This fact was confirmed by 
applying the method presented in Ref. [30] as well as, directly, by the canonical transformation 
(5.4) to the decoupled oscillators approach for the PU model.

Turning to possible further developments, let us recall that in the classical case (l = 1
2 ) the dy-

namics of harmonic oscillator (on the half-period) is related to the dynamics of free particle by 
well known Niederer’s transformation [39] (this fact has also counterpart on the quantum level). It 
turns out that this relation can be generalized to an arbitrary half-integer l [24] on the Lagrangian 
level; on the Hamiltonian one, we encounter some difficulties since there is no straightforward 
transition to the Hamiltonian formalism for a theory with higher derivatives. However, in the 
recent paper [40] the canonical transformation which relates the Hamiltonian (5.3) to the one 
for free theory (the first line of (5.2)) has been constructed; it provides a counterpart of classi-
cal Niederer’s transformation for the Hamiltonian formalism developed in Section 5. Using our 
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results one can obtain similar transformation for both remaining Hamiltonian approaches. We 
also believe that the results presented here can help in constructing quantum counterpart of the 
Niederer’s transformation for higher l as well as to study of the symmetry of the quantum version 
of PU oscillator.
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ments discussions. The e-mail discussion with Professors Anton Galajinsky and Ivan Masterov 
is highly acknowledged. The work is supported by the grant of National Research Center number 
DEC-2013/09/B/ST2/02205.

Appendix A

In this appendix we prove the following Fourier expansion

sinp t cos2n−1−p t =
{∑n

k=1 γ +
kp cos(2k − 1)t, p-even;∑n

k=1 γ −
kp sin(2k − 1)t, p-odd; (A.1)

and derive some, crucial for the main part of the paper, properties of the expansion coefficients; 
namely

γ +
kp = (−1)k−1γ −

k,2n−1−p, β+
pk = (−1)k−1β−

2n−1−p,k, (A.2)

2p!(2n − 1 − p)!β±
pk = 22n−1(n − k)!(n + k − 1)!γ ±

kp, (A.3)

(2k − 1)γ ±
kp = ∓pγ ∓

k,p−1 ± (2n − 1 − p)γ ∓
k,p+1, (A.4)

(n + k)γ ±
k+1,p + (n − k + 1)γ ±

k−1,p ± nγ ±
kpδk1 = (2n − 1 − 2p)γ ±

kp, (A.5)

(n + k)γ ±
k+1,p − (n − k + 1)γ ±

k−1,p ∓ nγ ±
kpδk1 = ∓pγ ∓

k,p−1 ∓ (2n − 1 − p)γ ∓
k,p+1, (A.6)

where β± is the inverse matrix of γ ± and by definition γ ±
kp = 0 whenever p < 0, p > 2n − 1, 

k < 1, k > n. Let us stress that β+
pk, γ

+
kp (β−

pk, γ
−
kp) are defined only for p even (odd).

Let us consider, for fixed n, n = 1, 2, . . . , the set of functions

P +
k (τ ) =

√
2 cos(2k − 1)t

cos2n−1 t

∣∣∣∣
t=arctan τ

,

P −
k (τ ) =

√
2 sin(2k − 1)t

cos2n−1 t

∣∣∣∣
t=arctan τ

, (A.7)

where k is, a priori, an integer. One can check that functions (A.7) satisfy the orthonormality 
relations

∞∫
−∞

P +
k (τ )P +

j (τ )

π(1 + τ 2)2n
dτ =

∞∫
−∞

P −
k (τ )P −

j (τ )

π(1 + τ 2)2n
dτ = δkj ,

∞∫
P ±

k (τ )P ∓
j (τ )

π(1 + τ 2)2n
dτ = 0, (A.8)
−∞
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and the following identities

P ±
0 = ±P ±

1 , (A.9)(
1 + τ 2)(P ±

k

)′ = ∓(2k − 1)P ∓
k + (2n − 1)τP ±

k , (A.10)(
1 + τ 2)P ±

k+1 = P ±
k

(
1 − τ 2) ∓ 2τP ∓

k , (A.11)(
1 + τ 2)P ±

k−1 = P ±
k

(
1 − τ 2) ± 2τP ∓

k , (A.12)

(n − k)P ±
k+1 + (n + k − 1)P ±

k−1 = (2n − 1)P ±
k − 2τ

(
P ±

k

)′
, (A.13)

(n − k)P ±
k+1 − (n + k − 1)P ±

k−1 = (2k − 1)P ±
k ∓ 2

(
P ∓

k

)′
. (A.14)

Let X denote the operator

X = (
1 + τ 2) d

dτ
− (2n − 1)τ. (A.15)

Then

XP ±
k = ∓(2k − 1)P ∓

k ; (A.16)

consequently the action of the operator Y = X2 is as follows

YP ±
k = −(2k − 1)2P ±

k , (A.17)

i.e., P ’s are eigenvectors of the operator Y .
Now, the point is that for k = 1, . . . , n the functions P ±

k are polynomials of degree less than 
or equal to 2n − 1 (this can be seen by expanding sin(2k − 1)t and cos(2k − 1)t). Due to (3.1)
they form the orthonormal basis in the space W 2n−1(τ ) of all polynomials degree less than 2n

with the scalar product

(f, g) =
∞∫

−∞

f (τ)g(τ )

π(1 + τ 2)2n
dτ. (A.18)

Since P +
k , (P −

k ) are even (odd) functions the expansion with respect to the standard basis 
{τp}2n−1

p=0 of W 2n−1(τ ) is of the form

P +
k (τ ) = √

2
2n−1∑′′

p=0

β+
pkτ

p, k = 1, . . . , n;

P −
k (τ ) = √

2
2n−1∑′

p=0

β−
pkτ

p, k = 1, . . . , n. (A.19)

Moreover, since P +
0 = P +

1 and P −
0 = −P −

1 we have β+
p0 = β+

p1 and β−
p0 = −β−

p1. Denoting by 
γ ± the inverse matrix of β± we get the following relations

τp = 1√
2

n∑
k=1

γ +
kpP +

k (τ ), p-even;

τp = 1√
2

n∑
γ −
kpP −

k (τ ), p-odd. (A.20)

k=1
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Substituting τ = tan t in Eqs. (A.20) we obtain the expansions

tanp t =
n∑

k=1

γ +
kp

cos(2k − 1)t

cos2n−1 t
, p-even;

tanp t =
n∑

k=1

γ −
kp

sin(2k − 1)t

cos2n−1 t
, p-odd; (A.21)

which are equivalent to the Fourier expansion (A.1).
Now, we prove the identities (A.2)–(A.6). First, let us note that the operator X was considered 

in Ref. [38]3 as acting on the space W 2n−1
C

(the space of complex values polynomials of degree 
less than 2n). It was shown there that the polynomials

Pa(τ) = (1 + iτ )
2n−1+a

2 (1 − iτ )
2n−1−a

2 , (A.22)

where the index a is an odd integer belonging to the set {−(2n − 1), . . . , (2n − 1)}, form an 
orthonormal basis of W 2n−1

C
and are the eigenvectors of X, i.e.,

XPa = iaPa. (A.23)

Moreover, it was proved that the coefficients of the expansion

Pa(τ) =
2n−1∑
p=0

ipβpaτ
p, (A.24)

satisfy the relations

βp,−a = (−1)pβpa, β2n−1−p,a = (−1)
2n−1−a

2 βpa. (A.25)

Furthermore, with (γap) being the inverse matrix to (βpa) the following important relation holds

p!(2n − 1 − p)!βpa = G(n,a)γapip, (A.26)

where

G(n,a) = 22n−1
(

2n − 1 + a

2

)
!
(

2n − 1 − a

2

)
!. (A.27)

We can use this information to obtain some relations for β± and γ ±. To this end let us note 
that we have

P +
k = √

2 Re(P2k−1) = √
2 Re(P−(2k−1)),

P −
k = √

2 Im(P2k−1) = −√
2 Im(P−(2k−1)), (A.28)

which implies

β+
pk = (−1)

p
2 βp,2k−1, β−

pk = (−1)
p−1

2 βp,2k−1,

γ +
kp = 2γ2k−1,p, γ −

kp = 2iγ2k−1,p, (A.29)

where p is even (odd) for the +(−) case, respectively.

3 For our convention n must be replaced there with n − 1.
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Now, we are ready to prove the relations (A.2)–(A.6). First, using (A.25), (A.26) and (A.29)
we get (A.2) and (A.3). Recursion relation (A.4) is obtained by differentiating (A.1). Substituting 
(A.19) to (A.13) and using (A.3), (A.9) we arrive at (A.5). Similarly, inserting (A.19) into (A.14)
and applying (A.2), (A.3), (A.9) we get (A.6).
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