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MULTIVALUED MARKOV PROCESSES

Abstract. Multivalued random variables and stochastic processes can be use in integral 
geometry, mathematical economics or stochastic optimization. Using the methods o f selection 
operators we can give the selection characterization of identically distributed multivalued random 
variables. In this paper the regular selections and M arkov selections for multivalued stochastic 
processes will be studied.
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1. INTRODUCTION

We present a concept of selection operators for multivalued random 
variables. For multivalued stochastic processes the some clue problem is 
the question of existing the vector-valued selection processes. In this paper 
we continue our work on properties of multivalued random variables and 
stochastic process ( T r z p i o t  1999, 2000, 2004). First sections contain basic 
definition, next we remain characterizations of identically distributed mul­
tivalued random variables and the selection problem of multivalued random 
variables converging in distribution. Finally, we study the selection problem 
for multivalued M arkov processes.

2. M ULTIVALUED RANDOM  VARIABLE

Given a probability measure space (0 ,A ,  ц) random variable in classical 
definition is a mapping from Q to R. Multivalued random variable is 
a m apping from Ü to all closed subset of X.
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We have a real Banach space X  with metric d. For any nonempty and 
closed sets А, В с: X  we define the Hausdorff distance h(A, В) of A  and B.

Definition 1. The exccss for two nonempty and closed sets be defined by 

e(A, B) =  sup d(x, B), where d(x, B) = inf||x — y||,
x e A  y e B

the Hausdorff distance of A  and В is given by

h(A, В ) =  max {e(A, B), e(B, A)}, 

the norm || A  || of set A  we get as

M il = K ^ ,  {0}) =  sup II x II.
x e A

The set of all nonempty and closed subsets of X  is a metric space with 
the H ausdorff distance. The set of all nonempty and compact subsets of 
A" is a complete, separable metric space with the metric h.

Definition 2. A multivalued function cp.Q -* 2X with nonempty and closed 
values, is said to be (weakly) measurable, if cp satisfies the following equi­
valent conditions:

a) <p~\C) =  {cueß ■-(pico) n  G ф 0} e A  for every G open subset of X ,
b) d(x, is measurable in со for every x e X ,
c) there exists a sequence {fn} of measurable functions f n. Q - * X  such that

cp(a>) =  c l { fn(co)} for all а )е й .

Definition 3. A measurable multivalued function <p: £2 -* 2X with nonempty 
and closed values is called a multivalued random variable.

A multivalued function cp is called strongly measurable, if there exist 
a sequence {ęoj of simple functions (measurable functions having a finite 
number of values in 2X), such that h(ipn(co), <p(co)) -> 0 a.e.

Since set o f all nonempty and compact (or convex and compact) subsets 
of AT is a complete separable metric space with the metric h, so multifunction 
ę \Q ~ *  2х  is measurable, if and only if is strongly measurable. This is 
equivalent to the Borel measurability of <p.

Let -Kí-X-) 1 denote all nonempty and closed subsets of X .  As the cr-field 
on K (X ),  we get the er-field generated by cp~\G) =  {соe &: <p(co) n  G Ф 0},

1 K C ( X )  -  denote all nonempty, closed and convex subsets o f X.



for every open subset G of X.  The smallest ст-algebra containing these 
<p~[(G) we de noted by Acp

1. Two multifunctions <p and у/ are independent, if Acp and Ay/ are 
independent.

2. Two m ultifunctions (p and \y are identically distributed, if 
ц(ср~1(С)) — for all closed C c i X .

Definition 4. We say that a sequence of multivalued random variables 
(pn'.Q~* 2K(X) is independent, if so is {<?„} considered as measurable functions 
from (Я, А, ц) to д а о ,  G).

Definition 5. Two multivalued random variables tp, if/ : £2 -> 2ВД are iden­
tically distributed, if cp(co) =  y/(£2) a.e.

Particularly for ę n with compact values independence (identical dist­
ributedness) of {ęn} coincides with that considered as Borel measurable 
functions to all nonempty, compact subsets of X.

Definition 6. A selection of the measurable multifunction <p: Q - » 2X is 
a measurable function f : Q - * X ,  such that f((o)etp(a>) for all coe£2.

Let Lľ(£2,A), for 1 o o ,  denote the X  -  valued, I f  -  space. We
introduce the multivalued I f  space.

Definition 7. The multivalued space Lp[i2, K(A")], for 1 <  p <  oo denote 
the space of all measurable multivalued functions <p:£2 - » 2K{X\  such that
II (p II =  II p(-)|| is in U.

Then U[Q, K(X)]  becomes a complete metric space with the metric Hp 
given by

H p(<p, w) = {5aK<P(a>), ЧУ(а>)УйцУ1р for 1 <  p <  со,

Я  «(P. V) =  esssup h((p(co), ч/(со)),
(oeQ

where <p and i// are considered to be identical, if <p(a>) =  y/(cu) a.e.
We can define similarly other U  space for set of different subsets of 

X  (convex and closed, weakly compact or compact). We denote by 
LP[Q K(X)]  the space of all strongly measurable functions in LP[Q ,K (X )]. 
Then all this space is complete metric space with the metric Hp.

Definition 8. The mean E(<z>), for a m ultivalued random  variables 
cp:Q -> 2K(X) is given as the integral \a<pdn of <p defined by



E(<p) =  jo 4>dp = { J o /d ^ : /  e  S{<p)},

where
S(<p) =  {f eV[£2, X\ :f(co)e<p(co) a.e.}.

The mean E(̂ >) exist, if S(<p) is nonempty. M ultifunction (p is an integ- 
rable, if II (p(co)\\ is an integrable. If  <p have an integral, then E(<p) is compact. 
If Ц is atomless, then E(<p) is convex. If (p have an integral2 and E(ę?) is 
nonempty, then coE(ę?) =  E(cop) (со -  denote convex hull of the set). Now 
we present some properties of mean of multivalued random  variables.

Let cp,if/:£2 -+ 2K(jr) be two multivalued random variables with nonempty 
S((p) and then:

1) cl E(<p и  у )  =  cl(E(ę>) +  E(i//)), where (cp u  yj){(o) =  с\((р{оз) +  w(co)),
2) cl E(co ę) — со E(ę>), where (со <р)(оз) = со (p(co), the closed convex hull,
3) /j(c/E (9>), clE(v,)) =  # ,(? , v')-
Lemat 1 (A u m a n 1965) Let ip:i2 -* 2K(-X) and 1 <  p ^  oo. If

Sp(<P) = [ f  e U[£2, X] :/(&») e <p(co) a.e.}.

then exists a sequence {fn} contained in Sp((p) such that <p(ca) =  c[{fn(co)} 
for all (oeQ.

Lemat 2 (A u m  a n  1965). Let <p, y/:£2-* 2K<-X) and l < p < o o .  If 
Sp(y/) = Sp(y/) Ф 0 then (p(y/) =  y/(co) a.e.

3. M ULTIVALUED STOCHASTIC PRO CESS

Let T  denote the set of positive integers or nonnegative real numbers.

Definition 9. Multivalued stochastic process is a family of multivalued 
random variables indexed by T{<p„ te T } .

Supposing that P  are the certain properties of stochastic processes.

Definition 10. A vector valued stochastic process [ f t, t e T } will be called 
a P selection of {(pn, n >  1}, if {/„ t e T } has the properties P  and f te<pt, 
a.e. for each t e T .

Let {At, t e T }  be an increasing family of sub-a-algebras of A.
A multivalued stochastic process {<p„ t e T }  is said to be integrable, if 

for each t e T  is integrable bounded (respectively, A, measurable).

2 The multivalued integral was introduced by R. J. A u m a n  (1965). For detailed arguments 
concerning the measurability and integration o f multifuction we refer to (C a s t a i n g, V a - 
l a d i e r  1977; D e b r e u  1967; R o c k e f e l l a r  1976).



Definition 11. Let X  be a separable Banach space. The m ap Г: K (X ) -* X  
is called a selection operator, if Г (А )е А ,  for all A e K ( X ) .

1) Г  is called a continuous selection operator (or measurable operator), 
if Г  is continuous with respect to topology on K (X )  generated by the 
subbase { A e K ( X ) ,  a < d ( x , A ) < b } (a, b e R , x e l } ,  Denote Borel er-algebra 
of this topology by á?. This is separable and completely mertizable topology 
space (K(X), W).

2) Г  is called a linear selection operator, if for any A, B e K ( X )

Г(а1А  +  a 2B) =  a, Г(А)  +  а2Г(В),

3) Г  is called a Lipschitz selection operator, if there exists a constant 
k > 0  such that for any A, B e K ( X )

\ \Г ( А ) - П В ) \ \< Ы ( А ,В ) .

Theorem 1 (T r z p i o t 2004). Let X  be a separable Banach space. Then 
there exists a sequence of measurable selection operators {Гп, n ^  1} such 
that for each A e K ( X )

А  = с1{Гп(А), n >  1}.

G. S a l i  n e t t  i and R. W e t s  (1979) studied the distribution theory of 
multivalued random variables in finite-dimensional Banach spaces and they 
proved that:

•  Multivalued random variables and <p2 are identically distributed, if 
and only if the real-valued stochastic process {d(x, <p{), x e X )  and {d(x,<p2), 
x e X }  have the same finite dimensional distribution.

•  If a sequence of multivalued random variables {<pn, n >  1} converges 
in distribution to <p, then there exist selections {fn, 1} of {tpn, n ^  1} 
such that { | | / J n  >  1} converges in distribution to ||/ | |,  where /  is a vector 
valued random variables with f e tp  a.e.

Theorem 2 ( T r z p i o t  2004). Let I  be a finite-dimensional Banach 
space, and let and (p2 be two multivalued random variables. Then the 
following are equivalent:

1) <p{ and (p2 are identically distributed,
2) there exist selection sequences { f [n, n >  1} and {ft, n >  1} of <pl and 

q>2, such that <pt(&) = c l n >  1}, i =  1,2,
3) the real-valued stochastic process {d(x,<pl), x eX } , and {d(x, <p2), x e l }  

have the same finite dimensional distribution.



Given a complete probability space (Ü, A, h) and increasing family 
of sub-cr-algebra of A: {At, t e R  + }. A multivalued stochastic process {(pt, 
t e T }  is said to be regular and right-continuous with respect to topology 
space (K ( X ), W), if it is adapted and for each a>eQ, has a left-hand 
limit and is right-continuous with respect to topology space (K (X ), И0 
for every i e R +.

Theorem 3 ( T r z p i o t  2004). Let AT be a separable Banach space and 
let {<pt, í e R  + } c  LP[Q, K C(X)] be a regular and right-continuous with respect 
to topology space (K ( X ), W). Then {ęt, i e R +} has a regular and right- 
-continuous selection.

Based on Theorem 3 ( T r z p i o t  2004) we can write the following 
theorem, which is a multivalued version of Theorem 2 ( T r z p i o t  2004).

4. M ULTIVALUED MARKOV PRO CESSES

Now we will study the selection problem for M arkov process. As in 
Definition 11, the topology on K (X )  is generated by the subbase { A e K (X ) ,  
a < d ( x ,A ) < b }  (a, b e R , x e X ) } .  Denote Borel er-algebra of this topology 
by B. This is separable and completely mertizable topology space (K(X), W). 
So we start from Definition 12.

Definition 12. Multivalued stochastic process is called a M arkov process, 
if it is a M arkov process with the measurable space (K ( X ), W) being its 
state-space.

Denote by D an index set and by a{<pd, deD }  the ст-algebra generated 
by the family of multivalued random variables. Denote by (ZN, YN) the 
countable product space of measurable space (Z, У).

Theorem 4. Let X  be a separable Banach space and let {cpt, i e R  + } be 
a multivalued M arkov process and A, — cr{<p„ s <  t}. Then exist the family 
of vector valued stochastic process í e R +, n >  1} such that

(P'(co) =  cl {/"(си), ie R  + , 1}.

Additionally if we write x,(co) = ......f " ,...,...) , then {x„ £ e R +} is
a M arkov process with the state space (X N, &8N).

Proof. Let {Fn, 1} be a sequence of measurable selection operators on 
K ( X ) (Theorem 1) and define for each t e R  + , n ^  1 a sequence



f"(co) = r n(<pt(co)). So we have a family of adapted process which satisfying 
the first thesis.

To proof that {xt, r e R +, n >  1} is a M arkov process it is sufficient 
to show that for each bounded measurable function h : (X N, 38N) -> R, 
one has

E[A(xr) H J =  E[/j(x,)|ct(x,)], t > s ,  t, s e R +,

where E[/i|j4] denotes the conditional expectation with respect to A. 
Define H : ( K ( X ) ,W ) -> R  as follows

H (A ) ш h ( r i( A ) , r 2( A ) , Г „ (с ),...), A e K ( X ) .

Then H ( - ) is a bounded measurable function on K(X).
From  the M arkov property of {tp,, r e R +} follows that

E [ H ( ^ ) |Ą J =  ЦН(<р^ I a.e. t > s ,  t, s e R +,

that means

E [/j(x ,) |Ą J=  E[/j(x()|ct(í»s)], a.e. t > s ,  t, s e R+,

and because <р,(а>) = cl{f?(co), i e R +, « > 1 }  we have

o-(í»s) =  o ( fns, n >  1) =  a(x, s).

According Theorem 2 the statistical law of <pt is completely determinated 
by that of {f,, í e R +, n ^  1}, so we can call the Theorem 4 the discretization 
theorem for multivalued M arkov process.

If the multivalued M arkov process takes the values in a finite subset 
Z  of positive integer, then the process {x„ i e R +, 1} presented on 
Theorem 4 may be regarded as a model of interacting particle systems.
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Grażyna Trzpiot 

W IELOW ARTOŚCIOW E PROCESY M ARKOW A

W ielowartościowe zmienne losowe i wielowartościowe procesy stochastyczne znajdują 
zastosowanie w geometrii różniczkowej, w matematycznej ekonomii oraz w zadaniach stocha­
stycznej optymalizacji. Wykorzystując operatory selekcyjne możliwa jest charakterystyka ciągu 
wielowartościowych zmiennych losowych o takim samym rozkładzie. Przedmiotem badań 
zaprezentowanych w artykule są selektory wielowartościowych procesów Markowa.


