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MULTIVALUED MARKOV PROCESSES

Abstract. Multivalued random variables and stochastic processes can be use in integral 
geometry, mathematical economics or stochastic optimization. Using the methods o f selection 
operators we can give the selection characterization of identically distributed multivalued random 
variables. In this paper the regular selections and M arkov selections for multivalued stochastic 
processes will be studied.
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1. INTRODUCTION

We present a concept of selection operators for multivalued random 
variables. For multivalued stochastic processes the some clue problem is 
the question of existing the vector-valued selection processes. In this paper 
we continue our work on properties of multivalued random variables and 
stochastic process ( T r z p i o t  1999, 2000, 2004). First sections contain basic 
definition, next we remain characterizations of identically distributed mul
tivalued random variables and the selection problem of multivalued random 
variables converging in distribution. Finally, we study the selection problem 
for multivalued M arkov processes.

2. M ULTIVALUED RANDOM  VARIABLE

Given a probability measure space (0 ,A ,  ц) random variable in classical 
definition is a mapping from Q to R. Multivalued random variable is 
a m apping from Ü to all closed subset of X.
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We have a real Banach space X  with metric d. For any nonempty and 
closed sets А, В с: X  we define the Hausdorff distance h(A, В) of A  and B.

Definition 1. The exccss for two nonempty and closed sets be defined by 

e(A, B) =  sup d(x, B), where d(x, B) = inf||x — y||,
x e A  y e B

the Hausdorff distance of A  and В is given by

h(A, В ) =  max {e(A, B), e(B, A)}, 

the norm || A  || of set A  we get as

M il = K ^ ,  {0}) =  sup II x II.
x e A

The set of all nonempty and closed subsets of X  is a metric space with 
the H ausdorff distance. The set of all nonempty and compact subsets of 
A" is a complete, separable metric space with the metric h.

Definition 2. A multivalued function cp.Q -* 2X with nonempty and closed 
values, is said to be (weakly) measurable, if cp satisfies the following equi
valent conditions:

a) <p~\C) =  {cueß ■-(pico) n  G ф 0} e A  for every G open subset of X ,
b) d(x, is measurable in со for every x e X ,
c) there exists a sequence {fn} of measurable functions f n. Q - * X  such that

cp(a>) =  c l { fn(co)} for all а )е й .

Definition 3. A measurable multivalued function <p: £2 -* 2X with nonempty 
and closed values is called a multivalued random variable.

A multivalued function cp is called strongly measurable, if there exist 
a sequence {ęoj of simple functions (measurable functions having a finite 
number of values in 2X), such that h(ipn(co), <p(co)) -> 0 a.e.

Since set o f all nonempty and compact (or convex and compact) subsets 
of AT is a complete separable metric space with the metric h, so multifunction 
ę \Q ~ *  2х  is measurable, if and only if is strongly measurable. This is 
equivalent to the Borel measurability of <p.

Let -Kí-X-) 1 denote all nonempty and closed subsets of X .  As the cr-field 
on K (X ),  we get the er-field generated by cp~\G) =  {соe &: <p(co) n  G Ф 0},

1 K C ( X )  -  denote all nonempty, closed and convex subsets o f X.



for every open subset G of X.  The smallest ст-algebra containing these 
<p~[(G) we de noted by Acp

1. Two multifunctions <p and у/ are independent, if Acp and Ay/ are 
independent.

2. Two m ultifunctions (p and \y are identically distributed, if 
ц(ср~1(С)) — for all closed C c i X .

Definition 4. We say that a sequence of multivalued random variables 
(pn'.Q~* 2K(X) is independent, if so is {<?„} considered as measurable functions 
from (Я, А, ц) to д а о ,  G).

Definition 5. Two multivalued random variables tp, if/ : £2 -> 2ВД are iden
tically distributed, if cp(co) =  y/(£2) a.e.

Particularly for ę n with compact values independence (identical dist
ributedness) of {ęn} coincides with that considered as Borel measurable 
functions to all nonempty, compact subsets of X.

Definition 6. A selection of the measurable multifunction <p: Q - » 2X is 
a measurable function f : Q - * X ,  such that f((o)etp(a>) for all coe£2.

Let Lľ(£2,A), for 1 o o ,  denote the X  -  valued, I f  -  space. We
introduce the multivalued I f  space.

Definition 7. The multivalued space Lp[i2, K(A")], for 1 <  p <  oo denote 
the space of all measurable multivalued functions <p:£2 - » 2K{X\  such that
II (p II =  II p(-)|| is in U.

Then U[Q, K(X)]  becomes a complete metric space with the metric Hp 
given by

H p(<p, w) = {5aK<P(a>), ЧУ(а>)УйцУ1р for 1 <  p <  со,

Я  «(P. V) =  esssup h((p(co), ч/(со)),
(oeQ

where <p and i// are considered to be identical, if <p(a>) =  y/(cu) a.e.
We can define similarly other U  space for set of different subsets of 

X  (convex and closed, weakly compact or compact). We denote by 
LP[Q K(X)]  the space of all strongly measurable functions in LP[Q ,K (X )]. 
Then all this space is complete metric space with the metric Hp.

Definition 8. The mean E(<z>), for a m ultivalued random  variables 
cp:Q -> 2K(X) is given as the integral \a<pdn of <p defined by



E(<p) =  jo 4>dp = { J o /d ^ : /  e  S{<p)},

where
S(<p) =  {f eV[£2, X\ :f(co)e<p(co) a.e.}.

The mean E(̂ >) exist, if S(<p) is nonempty. M ultifunction (p is an integ- 
rable, if II (p(co)\\ is an integrable. If  <p have an integral, then E(<p) is compact. 
If Ц is atomless, then E(<p) is convex. If (p have an integral2 and E(ę?) is 
nonempty, then coE(ę?) =  E(cop) (со -  denote convex hull of the set). Now 
we present some properties of mean of multivalued random  variables.

Let cp,if/:£2 -+ 2K(jr) be two multivalued random variables with nonempty 
S((p) and then:

1) cl E(<p и  у )  =  cl(E(ę>) +  E(i//)), where (cp u  yj){(o) =  с\((р{оз) +  w(co)),
2) cl E(co ę) — со E(ę>), where (со <р)(оз) = со (p(co), the closed convex hull,
3) /j(c/E (9>), clE(v,)) =  # ,(? , v')-
Lemat 1 (A u m a n 1965) Let ip:i2 -* 2K(-X) and 1 <  p ^  oo. If

Sp(<P) = [ f  e U[£2, X] :/(&») e <p(co) a.e.}.

then exists a sequence {fn} contained in Sp((p) such that <p(ca) =  c[{fn(co)} 
for all (oeQ.

Lemat 2 (A u m  a n  1965). Let <p, y/:£2-* 2K<-X) and l < p < o o .  If 
Sp(y/) = Sp(y/) Ф 0 then (p(y/) =  y/(co) a.e.

3. M ULTIVALUED STOCHASTIC PRO CESS

Let T  denote the set of positive integers or nonnegative real numbers.

Definition 9. Multivalued stochastic process is a family of multivalued 
random variables indexed by T{<p„ te T } .

Supposing that P  are the certain properties of stochastic processes.

Definition 10. A vector valued stochastic process [ f t, t e T } will be called 
a P selection of {(pn, n >  1}, if {/„ t e T } has the properties P  and f te<pt, 
a.e. for each t e T .

Let {At, t e T }  be an increasing family of sub-a-algebras of A.
A multivalued stochastic process {<p„ t e T }  is said to be integrable, if 

for each t e T  is integrable bounded (respectively, A, measurable).

2 The multivalued integral was introduced by R. J. A u m a n  (1965). For detailed arguments 
concerning the measurability and integration o f multifuction we refer to (C a s t a i n g, V a - 
l a d i e r  1977; D e b r e u  1967; R o c k e f e l l a r  1976).



Definition 11. Let X  be a separable Banach space. The m ap Г: K (X ) -* X  
is called a selection operator, if Г (А )е А ,  for all A e K ( X ) .

1) Г  is called a continuous selection operator (or measurable operator), 
if Г  is continuous with respect to topology on K (X )  generated by the 
subbase { A e K ( X ) ,  a < d ( x , A ) < b } (a, b e R , x e l } ,  Denote Borel er-algebra 
of this topology by á?. This is separable and completely mertizable topology 
space (K(X), W).

2) Г  is called a linear selection operator, if for any A, B e K ( X )

Г(а1А  +  a 2B) =  a, Г(А)  +  а2Г(В),

3) Г  is called a Lipschitz selection operator, if there exists a constant 
k > 0  such that for any A, B e K ( X )

\ \Г ( А ) - П В ) \ \< Ы ( А ,В ) .

Theorem 1 (T r z p i o t 2004). Let X  be a separable Banach space. Then 
there exists a sequence of measurable selection operators {Гп, n ^  1} such 
that for each A e K ( X )

А  = с1{Гп(А), n >  1}.

G. S a l i  n e t t  i and R. W e t s  (1979) studied the distribution theory of 
multivalued random variables in finite-dimensional Banach spaces and they 
proved that:

•  Multivalued random variables and <p2 are identically distributed, if 
and only if the real-valued stochastic process {d(x, <p{), x e X )  and {d(x,<p2), 
x e X }  have the same finite dimensional distribution.

•  If a sequence of multivalued random variables {<pn, n >  1} converges 
in distribution to <p, then there exist selections {fn, 1} of {tpn, n ^  1} 
such that { | | / J n  >  1} converges in distribution to ||/ | |,  where /  is a vector 
valued random variables with f e tp  a.e.

Theorem 2 ( T r z p i o t  2004). Let I  be a finite-dimensional Banach 
space, and let and (p2 be two multivalued random variables. Then the 
following are equivalent:

1) <p{ and (p2 are identically distributed,
2) there exist selection sequences { f [n, n >  1} and {ft, n >  1} of <pl and 

q>2, such that <pt(&) = c l n >  1}, i =  1,2,
3) the real-valued stochastic process {d(x,<pl), x eX } , and {d(x, <p2), x e l }  

have the same finite dimensional distribution.



Given a complete probability space (Ü, A, h) and increasing family 
of sub-cr-algebra of A: {At, t e R  + }. A multivalued stochastic process {(pt, 
t e T }  is said to be regular and right-continuous with respect to topology 
space (K ( X ), W), if it is adapted and for each a>eQ, has a left-hand 
limit and is right-continuous with respect to topology space (K (X ), И0 
for every i e R +.

Theorem 3 ( T r z p i o t  2004). Let AT be a separable Banach space and 
let {<pt, í e R  + } c  LP[Q, K C(X)] be a regular and right-continuous with respect 
to topology space (K ( X ), W). Then {ęt, i e R +} has a regular and right- 
-continuous selection.

Based on Theorem 3 ( T r z p i o t  2004) we can write the following 
theorem, which is a multivalued version of Theorem 2 ( T r z p i o t  2004).

4. M ULTIVALUED MARKOV PRO CESSES

Now we will study the selection problem for M arkov process. As in 
Definition 11, the topology on K (X )  is generated by the subbase { A e K (X ) ,  
a < d ( x ,A ) < b }  (a, b e R , x e X ) } .  Denote Borel er-algebra of this topology 
by B. This is separable and completely mertizable topology space (K(X), W). 
So we start from Definition 12.

Definition 12. Multivalued stochastic process is called a M arkov process, 
if it is a M arkov process with the measurable space (K ( X ), W) being its 
state-space.

Denote by D an index set and by a{<pd, deD }  the ст-algebra generated 
by the family of multivalued random variables. Denote by (ZN, YN) the 
countable product space of measurable space (Z, У).

Theorem 4. Let X  be a separable Banach space and let {cpt, i e R  + } be 
a multivalued M arkov process and A, — cr{<p„ s <  t}. Then exist the family 
of vector valued stochastic process í e R +, n >  1} such that

(P'(co) =  cl {/"(си), ie R  + , 1}.

Additionally if we write x,(co) = ......f " ,...,...) , then {x„ £ e R +} is
a M arkov process with the state space (X N, &8N).

Proof. Let {Fn, 1} be a sequence of measurable selection operators on 
K ( X ) (Theorem 1) and define for each t e R  + , n ^  1 a sequence



f"(co) = r n(<pt(co)). So we have a family of adapted process which satisfying 
the first thesis.

To proof that {xt, r e R +, n >  1} is a M arkov process it is sufficient 
to show that for each bounded measurable function h : (X N, 38N) -> R, 
one has

E[A(xr) H J =  E[/j(x,)|ct(x,)], t > s ,  t, s e R +,

where E[/i|j4] denotes the conditional expectation with respect to A. 
Define H : ( K ( X ) ,W ) -> R  as follows

H (A ) ш h ( r i( A ) , r 2( A ) , Г „ (с ),...), A e K ( X ) .

Then H ( - ) is a bounded measurable function on K(X).
From  the M arkov property of {tp,, r e R +} follows that

E [ H ( ^ ) |Ą J =  ЦН(<р^ I a.e. t > s ,  t, s e R +,

that means

E [/j(x ,) |Ą J=  E[/j(x()|ct(í»s)], a.e. t > s ,  t, s e R+,

and because <р,(а>) = cl{f?(co), i e R +, « > 1 }  we have

o-(í»s) =  o ( fns, n >  1) =  a(x, s).

According Theorem 2 the statistical law of <pt is completely determinated 
by that of {f,, í e R +, n ^  1}, so we can call the Theorem 4 the discretization 
theorem for multivalued M arkov process.

If the multivalued M arkov process takes the values in a finite subset 
Z  of positive integer, then the process {x„ i e R +, 1} presented on 
Theorem 4 may be regarded as a model of interacting particle systems.
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Grażyna Trzpiot 

W IELOW ARTOŚCIOW E PROCESY M ARKOW A

W ielowartościowe zmienne losowe i wielowartościowe procesy stochastyczne znajdują 
zastosowanie w geometrii różniczkowej, w matematycznej ekonomii oraz w zadaniach stocha
stycznej optymalizacji. Wykorzystując operatory selekcyjne możliwa jest charakterystyka ciągu 
wielowartościowych zmiennych losowych o takim samym rozkładzie. Przedmiotem badań 
zaprezentowanych w artykule są selektory wielowartościowych procesów Markowa.


