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MULTIVALUED MARKOV PROCESSES

Abstract. Multivalued random variables and stochastic processes can be use in integral
geometry, mathematical economics or stochastic optimization. Using the methods of selection
operators we can give the selection characterization of identically distributed multivalued random
variables. In this paper the regular selections and Markov selections for multivalued stochastic
processes will be studied.
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1. INTRODUCTION

We present a concept of selection operators for multivalued random
variables. For multivalued stochastic processes the some clue problem is
the question of existing the vector-valued selection processes. In this paper
we continue our work on properties of multivalued random variables and
stochastic process (Trzpiot 1999, 2000, 2004). First sections contain basic
definition, next we remain characterizations of identically distributed mul-
tivalued random variables and the selection problem of multivalued random
variables converging in distribution. Finally, we study the selection problem
for multivalued Markov processes.

2. MULTIVALUED RANDOM VARIABLE

Given a probability measure space (0,A, u) random variable in classical
definition is a mapping from Q to R. Multivalued random variable is
a mapping from U to all closed subset of X.
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We have a real Banach space X with metric d. For any nonempty and
closed sets A, B c: X we define the Hausdorff distance h(A, B) of A and B.

Definition 1. The exccss for two nonempty and closed sets be defined by

e(A, B) = supd(x, B), where d(x, B) = inf||x —y]||,

xeA yeB

the Hausdorff distance of A and B is given by
h(A, B) = max {e(A, B), e(B, A)},
the norm | A | of set A we get as

Mil = K~, {0}) = sup nx
xeA
The set of all nonempty and closed subsets of X is a metric space with
the Hausdorff distance. The set of all nonempty and compact subsets of
A' is a complete, separable metric space with the metric h.

Definition 2. A multivalued function cp.Q -* 2X with nonempty and closed
values, is said to be (weakly) measurable, if @ satisfies the following equi-
valent conditions:

a) <p~\C) = {cueR m{picgn G ¢ 0}e A for every G open subset of X,

b) d(x, is measurable in co for every xeX,

c) there exists a sequence {fn} of measurable functionsfn.Q -*X such that

@) = cl{fn(co)} for all a)eii.

Definition 3. A measurable multivalued function <p:£2-* 2X with nonempty
and closed values is called a multivalued random variable.

A multivalued function @ is called strongly measurable, if there exist
a sequence {eoj of simple functions (measurable functions having a finite
number of values in 2X), such that h(ipn(co), <p(c)) -> 0 a.e.

Since set of all nonempty and compact (or convex and compact) subsets
of AT is a complete separable metric space with the metric h, so multifunction
e\Q~*2x is measurable, if and only if is strongly measurable. This is
equivalent to the Borel measurability of <

Let -Ki-X)1denote all nonempty and closed subsets of X. As the cr-field
on K(X), we get the er-field generated by cp~\G) = {coe &: )n G P 0},

1 KC(X) - denote all nonempty, closed and convex subsets of X.



for every open subset G of X. The smallest cralgebra containing these
<p[(G) we de noted by Acp
1 Two multifunctions < and y/ are independent, if Acp and Ay/ are

independent.
2. Two multifunctions ( and \y are identically distributed, if
u(cp~1C)) — for all closed CciX.

Definition 4. We say that a sequence of multivalued random variables
(M'.Q~* 2K(X is independent, if so is {<&} considered as measurable functions
from (A,A,u) to gnao, G).

Definition 5. Two multivalued random variables tp, if :£2-> 2B/} are iden-
tically distributed, if opco) = y/(£2) a.e.

Particularly for en with compact values independence (identical dist-
ributedness) of {en} coincides with that considered as Borel measurable
functions to all nonempty, compact subsets of X.

Definition 6. A selection of the measurable multifunction < Q -»2X is
a measurable function f:Q -*X, such that f((o)etp(ay for all coef2.

Let LI'(£2,A), for 1 oo, denote the X - valued, If - space. We
introduce the multivalued If space.

Definition 7. The multivalued space L{i2, K(A")], for 1< p < oo denote
the space of all measurable multivalued functions <p:£2-»2K{XA such that
IEl= 0pQ)| is in U.

Then U[Q, K(X)] becomes a complete metric space with the metric Hp
given by

Hp<p w) = {Bak<P(@>), Wa>)YiiuyYPp for 1< p < co,

A «(P. V) = esssup h((p(co), w/(co)),
(0eQ

where s and i/ are considered to be identical, if @) = y/(cu) a.e.

We can define similarly other U space for set of different subsets of
X (convex and closed, weakly compact or compact). We denote by
LHQ K(X)] the space of all strongly measurable functions in LHQ,K(X)]
Then all this space is complete metric space with the metric Hp.

Definition 8. The mean H<z), for a multivalued random variables
cp:Q -> 2K is given as the integral \a<pdn of <p defined by



E(<p) = jo 4dp = {Jo/d":/ e {<P)},
where
S<p) = {feV[E2, X\ :f(co)e<p(co) a.e.}.

The mean E(™>) exist, if S<p) is nonempty. Multifunction (p is an integ-
rable, if I(p(co)\ is an integrable. If phave an integral, then E(<p) is compact.
If L, is atomless, then E<p) is convex. If (p have an integral2 and E(g?) is
nonempty, then coE(e?) = E(cop) (co - denote convex hull of the set). Now
we present some properties of mean of multivalued random variables.

Let cp,if/:£2 -+ 2K(r) be two multivalued random variables with nonempty
S((p) and then:

1) cl E(pu y) = cl(E(e>) + E(i/)), where (@u yj){(0) = c\((p{os) + w(co)),

2) cl E(coe) — co E(e>), where (co <p)(®) = co (p(co), the closed convex hull,

3) fi(c/E(P), clE(V,)) = #,(?, V)-

Lemat 1 (Auman 1965) Let ip:i2-*2KX) and 1< p” oo. If

SHD = [fe U[£2, X] /(&) e <o) a.e.}.

then exists a sequence {fn} contained in Sp((p) such that <pca) = c[{fn(co)}
for all (0eQ.

Lemat 2 (Aum an 1965). Let < y/:£2-* 2KX) and I<p<oo. If
Spy/) = Sply/) @ 0 then (p(y/) = yi/(co) a.e.

3. MULTIVALUED STOCHASTIC PROCESS

Let T denote the set of positive integers or nonnegative real numbers.

Definition 9. Multivalued stochastic process is a family of multivalued
random variables indexed by T{<p,, teT}.
Supposing that P are the certain properties of stochastic processes.

Definition 10. A vector valued stochastic process [ft,te T } will be called
a P selection of {(pn, n> 1}, if {/,, teT} has the properties P and f te<pt,
a.e. for each teT.

Let {At, teT} be an increasing family of sub-a-algebras of A.

A multivalued stochastic process {{q, teT} is said to be integrable, if
for each teT is integrable bounded (respectively, A, measurable).

2 The multivalued integral was introduced by R. J. Auman (1965). For detailed arguments
concerning the measurability and integration of multifuction we refer to (Castaing, Va-
ladier 1977; Debreu 1967; Rockefellar 1976).



Definition 11. Let X be a separable Banach space. The map I': K(X) -* X
is called a selection operator, if ['(A)eA, for all AeK(X).

1) T is called a continuous selection operator (or measurable operator),
if I is continuous with respect to topology on K(X) generated by the
subbase {AeK(X), a<d(x,A)<b} (a, beR,xel}, Denote Borel er-algebra
of this topology by &?. This is separable and completely mertizable topology
space (K(X), W).

2) T is called a linear selection operator, if for any A, BeK(X)

M@+ aB) = a,l'(A) + aZ (B),

3) I is called a Lipschitz selection operator, if there exists a constant
k>0 such that for any A, BeK(X)

WM (A)-TB)\< bl (A,B).

Theorem 1 (Trzpiot 2004). Let X be a separable Banach space. Then
there exists a sequence of measurable selection operators {I'm, n~ 1} such
that for each AeK(X)

A =c1{I(A), n> 1}.

G. Salinettiand R. Wets (1979) studied the distribution theory of
multivalued random variables in finite-dimensional Banach spaces and they
proved that:

e Multivalued random variables and <2 are identically distributed, if
and only if the real-valued stochastic process {d(x, ), xeX) and {d(x,<p2,
xeX} have the same finite dimensional distribution.

e If a sequence of multivalued random variables {1 n > 1} converges
in distribution to <p then there exist selections {fn 1} of {tn n™ 1}
such that {||/Jn > 1} converges in distribution to ||/||, where/ is a vector
valued random variables with fetp a.e.

Theorem 2 (Trzpiot 2004). Let I be a finite-dimensional Banach
space, and let and (@ be two multivalued random variables. Then the
following are equivalent:

1) ¢{ and (@ are identically distributed,

2) there exist selection sequences {fp, n> 1} and {ft, n> 1} of ¢ and
g2 such that q(&) =c I n> 1} i= 1.2,

3) the real-valued stochastic process {d(x,<pl), xeX}, and {d(x, 9, xel}
have the same finite dimensional distribution.



Given a complete probability space (U, A,h) and increasing family
of sub-cr-algebra of A: {At, teR +} A multivalued stochastic process {(pt,
teT} is said to be regular and right-continuous with respect to topology
space (K(X), W), if it is adapted and for each a>eQ, has a left-hand
limit and is right-continuous with respect to topology space (K(X), N0
for every ieR +.

Theorem 3 (Trzpiot 2004). Let AT be a separable Banach space and
let {gt, ieR +} ¢ LP[Q, KGX)] be a regular and right-continuous with respect
to topology space (K(X), W). Then {et, ieR+} has a regular and right-
-continuous selection.

Based on Theorem 3 (Trzpiot 2004) we can write the following
theorem, which is a multivalued version of Theorem 2 (Trzpiot 2004).

4. MULTIVALUED MARKOV PROCESSES

Now we will study the selection problem for Markov process. As in
Definition 11, the topology on K(X) is generated by the subbase {AeK(X),
a<d(x,A)<b} (a,beR,xeX)}. Denote Borel er-algebra of this topology
by B. This is separable and completely mertizable topology space (K(X), W).
So we start from Definition 12

Definition 12. Multivalued stochastic process is called a Markov process,
if it is a Markov process with the measurable space (K(X), W) being its
state-space.

Denote by D an index set and by a{<pd deD} the cralgebra generated
by the family of multivalued random variables. Denote by (ZN, YN the
countable product space of measurable space (Z, Y).

Theorem 4. Let X be a separable Banach space and let {q, ieR +} be
a multivalued Markov process and A, —a{<p, s < t}. Then exist the family

of vector valued stochastic process ieR+, n> 1} such that
(P(co) = cl {/"(cm), ieR +, 1}.
Additionally if we write x(co)= ... f",.....), then {x, £eR+} is

a Markov process with the state space (XN &N).

Proof. Let {Fn, 1} be a sequence of measurable selection operators on
K(X) (Theorem 1) and define for each teR +, n” 1 a sequence



f"(co) = r n(qt(co)). So we have a family of adapted process which satisfying
the first thesis.

To proof that {xt, reR+, n> 1} is a Markov process it is sufficient
to show that for each bounded measurable function h:(XN, 38N -> R,
one has

E[ADH J= E[[j(x)lct(x,)], t>s, t, seR+,

where E[/i|j4] denotes the conditional expectation with respect to A.
Define H:(K(X),W)->R as follows

H(A) wh(ri(A),rA A ), r..(c),..), AeK(X).

Then H(-) is a bounded measurable function on K(X).
From the Markov property of {tp, reR+} follows that

E[H(™)|AJ= UH(<pMI ae t>s, t, seR+,
that means
E[/j(x,)|AJ= E[/j(xQ|ct(i»9)], ae. t>s, t, seR+,
and because <@ = cl{f?(co), ieR+, «>1} we have
o(» = o(fs, n> 1) = a(x, ).

According Theorem 2 the statistical law of g is completely determinated
by that of {f,, ieR+, n”™ 1}, so we can call the Theorem 4 the discretization
theorem for multivalued Markov process.

If the multivalued Markov process takes the values in a finite subset
Z of positive integer, then the process {x, ieR+, 1} presented on
Theorem 4 may be regarded as a model of interacting particle systems.
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Grazyna Trzpiot

WIELOWARTOSCIOWE PROCESY MARKOWA

Wielowartosciowe zmienne losowe i wielowarto$ciowe procesy stochastyczne znajdujg
zastosowanie w geometrii rézniczkowej, w matematycznej ekonomii oraz w zadaniach stocha-
stycznej optymalizacji. Wykorzystujac operatory selekcyjne mozliwa jest charakterystyka ciagu
wielowarto$ciowych zmiennych losowych o takim samym rozktadzie. Przedmiotem badan
zaprezentowanych w artykule sg selektory wielowarto$ciowych proceséw Markowa.



