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ESTIMATION OF BIAS AND VARIANCE OF SAMPLE MEDIAN
BY JACKKNIFE AND BOOTSTRAP METHODS

Abstract. In the paper the estimation of sample median bias and variance by jackknife
and bootstrap methods are considered. Monte Carlo analysis of properties of estimators is
presented (mean of bias and mean of variance for some groups of experiments). Sensitivity
of distribution of sample median to changes of the sample size is investigated.
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1. INTRODUCTION

The jackknife and bootstrap methods are the data-resampling methods
which are applied in statistical analysis (see: Efron, Tibshirani 1993;
Shao, Tu 1996). They are used for the estimation of bias and variance
of different estimators. They can be applied for the construction of con-
fidence sets (intervals) and statistical tests, too.

In this paper the application of jackknife and bootstrap methods to the
estimation of bias and variance of sample median are considered.

2. ESTIMATION OF BIAS AND VARIANCE
OF ESTIMATOR BY JACKKNIFE METHOD

We assume that we investigate a population with respect to random
variable X. Let X {...,Xnbe simple sample drawn from the population and

X, . X, - realization of this sample.
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Let Tn= Tn(X, , Xrn) be an estimator of parameter 0 of X 5 distribution
and let Tn_ |, be an estimator of 0 determined on the basis of
AT, X, uXl+ hX, in the analogous way as Tn. It means that

Tn-ivi= T, i(XLX, i, XI+U..., X1 (1)

The jackknife estimator of bias of T,, that is E(T,,- 0), is defined by the

formula (see: Shao, Tu 1996)
bIAK(TH = (n-1)(Tn-Tn (2

where
Tn=hITn_u (3)
ni-1
The jackknife estimator of 0 is of the following form:

Tjack— T, —bjack ~ nNT,,—(n—I1)Tn 4

The jackknife estimator of variance of tn is defined as (see: Shao, T u 1996):

VJACATN) = t (Tn_ul-T ny (5)
n o i-1

There are also considered jackknife procedures in which some sample
elements are deleted.

3. ESTIMATION OF BIAS AND VARIANCE
OF ESTIMATOR BV BOOTSTRAP METHOD

We assume that X is an investigated population variable, the sequence
X\,...,Xnis simple sample drawn from the population and x,,...,xnis the
realization of this sample.

Let Tn= Tn(X,,..., X,J be an estimator of parameter 0 of X's distribution
and let X Bbe the random variable for which probability distribution function
has the following form:

P(XB=x,)=- for i=1..n (6)

We generate «-element sequences of pseudorandom numbers from dist-
ribution (6). Let N be a number of these sequences. They are called



realizations of the bootstrap sample X'l ..., X'rk and denoted by x|k, ..., Xrk
where k=1,...,N. The variable Xk 1=1,...,n and k =1,...,N, has dist-
ribution given by formula (6).

The bootstrap estimator of 0 is of the form

1 J
Thoot — 1 TATn.k )
K-
where
T;k= Tn(x K., x;K (8>

The bootstrap estimator of bias of Tn is the following:

bBooT(T) =~ (K k~Tn 9)
W K- 1

and the bootstrap estimator of variance of Tn is the form

1 N 7/ Il N 12

Weot= N (10)

We can consider bootstrap sampie whose size is not equal n.

4. ESTIMATORS OF MEDIAN

The median (Me) is a parameter of distribution of random variable.
We can estimate this parameter by different methods. The sample median is
used for it. We can apply jackknife or bootstrap methods, too.

Let n is the size of population sample. In this paper the sample median
(Men is defined as the statistic whose value is observation being on the
position with number (n+ 1)/2 for odd n in nondecreasing sequence of
observations, or the average of two observations with numbers n/2 and
n/2 + 1 for even n in nondecreasing sequence of observations (the first
variant). The statistic whose value is observation on the position with
number [n/2] in nondecreasing sequence of observations is another variant
of sample median (the second variant).

The estimators of population median are obtained from formulas (4)
and (7), too. Then we take Tn= Men

For each estimator the values of its bias and variance are very important.
The bias of sample median can be estimated on the basis of formulas (2) or



(9). We can consider different ways of estimation or approximation of
sample median variance. If we repeat experiments in which we estimate the
median we can determine the variance for many obtained estimates of
median. We may apply formulas (5) and (10) for estimation of sample
median variance. In this way we obtain jackknife and bootstrap estimators
of sample median variance.

For approximation of sample median variance we can use the theorem
which says that the asymptotical distribution of sample median is normally

N| ,Me,— 7=------) where/ is density function of investigated variable (the
2yJnf(Me)J
variable is continuous).

5. MONTE CARLO ANALYSIS OF PROPERTIES OF SAMPLE MEDIAN

In order to investigate the properties of sample median Monte Carlo
experiments were conducted. The algorithm of carrying out these experiments

was of as follows:
1 we generate n (n= 20, 21, 40, 41) values from fixed distribution

among distributions which are given in Tab. 1;

Table 1
Parameters of distributions used in Monte Carlo experiments
Population . . Standard .
L . Expectation Variance . Median
distribution* deviation
N(0; 1) 0 1 1.0000 0.0000
M 3 6 2.4495 2.3660
M 5 10 3.1623 4.3515
I 7 14 3.7417 6.3458
- N(10; 2) + \x | 8.25 13.69 3.7000 9.1810b
4 4

“ Symbol N(/i, a) denotes the normal distribution with expectation 1 and standard deviation
3 1

a, symbol x| - the chi-square distribution with k degrees of freedom and symbol N(10; 2) + mx|
4 4

- the mixture of distributions N(10; 2) and x| with weghts 3/4 and 1/4. b Median estimate is

3 1,
obtained on the basis of 1001 values generated from distribution - N(10; 2) + ~xI-
4 4

Source: own preparation.



2) we estimate median Me on the basis of obtained wu-element sequence
of pseudo values. It means we calculate the value of estimator Men (sample
median). This value will be denoted by men. We apply two ways for
calculations: the classical definition of median (the first variant) and the
definition of [n/2]-th order statistic (the second variant);

3) we estimate the bias and variance of sample median by jackknife
and bootstrap method. In the bootstrap estimation we apply 1000 repetitions
of bootstrap sample drawing;

4) we repeat steps from 1) to 3) one thousand times and we obtain
1000 estmates of median on the basis of sample, by jackknife methods and
by bootstrap method, 1000 estimates of bias of sample median and 1000
estimates of variance of sample median for jackknife method and bootstrap
method. Next, we calculate the mean and standard deviation for:

- 1000 estimates of sample median: (me,sj,

- 1000 jackknife estimates of median: (meJAcK, sneuc),

- 1000 bootstrap estimates of median: (me boot,sm 0)>

- 1000 jackknife estimates of variance of sample median: (JJACk, s*

- 1000 bootstrap estimates of variance of sample median: (¥Boot=>5400)e

Moreover, we calculate

B 1 1000
b =W '~ Me] <H>
_ j 1000
bjACK = J] mejACK, i (12)
_ J 1000
bjACK = YqQqQq X ImeBOOT,i~ men\ (13)
_ 2 looo
beooTMe = JQQQ X/ /MeBOOT~ ~ e\ on)
where:
menj - the value of sample median for i-th repetition,

meJACK,i - the jackknife estimate of population median for i-th repetition,

meBooT,i - the bootstrap estimate of population median for i-th repetition.

The values (11)—(14) were calculated for two variants of definition of
median.

The results of experiments are presented in Tab. 2-A. We>canlote'that
the estimates of bias mean and variance mean for the sample median are
very different in many cases when we use jackknife method and the sample



Results of Monte Carlo experiments for median estimation of some probability distributions
and for sample size: n=20 i n= 21

Variant of estimator

Distribution Mean (stand, deviation) first second
of population for estimates of suitable size of sample
parameters
1= 20 n=21 n=20 n=21
1 2 3 4 5 6

me 0.0118 -0.0043 -0.0524 -0.1207

o) (0.2820) (0.2670) (0.2918) (0.2669)

mejACK 0.0118 0.0097 1.2605 -1.2294

(0.2820) (0.9558) (1.3497) (1.1364)

T™MREOOT 0.0115 -0.0027 -0.0510 -0.1173

s .3 (0.2588) (0.2431) (0.2605) (0.2436)

K 0.2284 0.2125 0.2391 0.2333

N(O: 1) bIACK 0.0000 0.0000 -1.3129 1.1087
BBOOT 0.0533 0.0622 0.0693 0.0629

BBOOTVE 0.2081 0.1951 0.2147 0.2160

\IACK 0.1476 0.0936 0.1419 0.1283
K J (0.2903) (0.1382) (0.2649) (0.2575)

\BOOT 0.0883 0.0850 0.0958 0.0851
(0.0518) (0.0522) (0.0561) (0.0525)

me 2.4560 2.4389 2.3218 2.1852

(0 (0.5980) (0.5803) (0.5877) (0.5395)

ey 2.4560 2.4119 4.9284 -0.2308

(0.5980) (2.0290) (2.9825) (2.4369)

TeroT 2.5044 2.4800 2.3719 2.2374

(0.5540) (0.5316) (0.5345) (0.4934)

K 0.4704 0.4645 0.4645 0.4676

b JACK 0.0000 0.0270 -2.6066 2.4161

bBOOT 0.1179 0.1397 0.1443 0.1351

b BOOIVB 0.4460 0.4291 0.4241 0.4185

AJACK 0.6573 0.4667 0.6079 0.6235

(1.3078) (0.6858) (1.3453) (1.2725)

\VBOOT 0.4149 0.4240 0.4180 0.3676

G (0.2913)  (0.3105)  (0.2993)  (0.2687)
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4.3798
(0.8058)
4.3798
(0.8058)
4.4324
(0.7468)

0.6346
0.0000
0.1604
0.5824

1.1217
(2.4214)
0.7406
(0.4745)

6.3857
(0.9603)
6.3857
(0.9603)
6.4385
(0.8850)

0.7657
0.0000
0.1935
0.7092

1.5757
(3.0402)
1.0842
(0.6902)

9.0734
(0.8780)
9.0734
(0.8780)
8.9551
(0.8730)

4

4.3685
(0.7801)
4.3042
(2.7135)
4.4121
(0.7178)

0.6170
0.0643
0.1834
0.5700

0.7704
(1.1399)
0.7466
(0.4043)

6.3463
(0.9407)
6.1062
(3.5698)
6.4136
(0.8562)

0.7535
0.2401
0.2437
0.6743

1.2816
(1.8519)
1.1760
(0.7509)

9.1248
(0.8816)
9.3389
(3.0402)
9.0146
(0.8758)

Table 2 (contd.)

5

4.2049
(0.7990)
7.8038
(3.7358)
4.2533
(0.7272)

0.6547
-3.5989
0.1914
0.5818

1.0546
(2.0843)
0.7582
(0.4924)

6.1788
(0.9686)
10.5914
(4.7260)
6.2217
(0.8687)

0.7944
-4.4127
0.2335
0.7109

1.6427
(3.4286)
1.1194
(0.7149)

8.8878
(0.9397)
13.5362
(5.0646)
8.7420
(0.9306)

6

4.0462
(0.7488)
0.9772
(3.1206)
4.0827
(0.6821)

0.6587
3.0691
0.1837
0.5969

0.9971
(2.2104)
0.6683

(0.4218)

5.9435
(0.9044)
2.1077
(3.9339)
6.0010
(0.8186)

0.8134
3.8358
0.2143
0.7273

1.5698
(3.0904)
1.0643
(0.6634)

8.7442
(0.9790)
5.1191
(4.4158)
8.5966
(0.9823)



Table 2 (conld.)

1 2 3 4 5 6
K 0.6562 0.6757 0.7199 0.7919
N(10; 2)+ A3 bACK 0.0000 -0.2141 -4.6483 3.6251
4 bBOOT 0.2045 0.2244 0.2584 0.2615
bBOOTME 0.6706 0.6831 0.7614 0.8487
Viack 1.2955 0.9816 2.0261 1.5588
(3.1103) (1.6133) (6.3460) (4.0520)
VBOOT 1.1772 1.1401 1.4534 1.4773
(5 mo0r) (1.0929) (1.0476) (1.3540) (1.3598)

Source: author’s calculations.

Table 3

Results of Monte Carlo experiments for median estimation of some probability distributions
and for sample size: n =40 i n =41

Variant of estimator
Mean (stand, deviation)
for estimates of suitable

Distribution first second

of population size of sample

parameters
n =40 n=41 n =40 n=41
1 2 3 4 5 6

me -0.0004 -0.0041 -0.0315 -0.0623
(*J (0.1929) (0.1982) (0.1951) (0.1973)

mejACK -0.0004 -0.0245 1.2972 -1.1981
(v j (0.1929) (0.9055) (1.3663) (1.1160)

™8 YOO -0.0017 -0.0029 -0.0330 -0.0631
(0.1825) (0.1853) (0.1823) (0.1859)

K 0.1545 0.1574 0.1583 0.1645

N(: 1) b JACK 0.0000 0.0204 -1.3287 1.1358
bBOOT 0.0340 0.0387 0.0411 0.0387

bBOOTIVE 0.1464 0.1466 0.1478 0.1562

XgaK 0.0730 0.0509 0.0814 0.0641

K J (0.1475) (0.0728) (0.1827) (0.1214)

VBOOT 0.0435 0.0432 0.0455 0.0434

Gyon) (0.0238)  (0.0236)  (0.0250)  (0.0236)



Table 3 (contd.)

2 3 4 5 6
me 2.4074 23748 2.3385 2.2507
(O (0.4299)  (0.4118)  (0.4234)  (0.3982)

AIACK 2.4074 2.2573 4.9486 -0.1702

(0.4299)  (2.0322)  (2.7239)  (2.3739)

e BOOT 2.4294 2.4038 2.3630 2.2766

(0.4042)  (0.3805)  (0.3958)  (0.3681)

n 3.9385 3.9711 0.3393 0.3351
b JACK 0.0000 01174  -2.6102 2.4209
bBOOT 0.0750 0.0878 0.0860 0.0844

L BOOTME 3.9164 3.9421 0.3167 0.3051
VIACK 0.3723 0.2455 0.3118 0.2958
« (0.9213)  (0.3945)  (0.6935)  (0.6739)
VBOOT 0.2005 0.2040 0.2023 0.1883
@) (0.1176)  (0.1226)  (0.1207)  (0.1111)
me 4.3810 4.3779 4.2883 4.2023
(O (0.5760)  (0.5710)  (0.5712)  (0.5541)
"W 4.3810 4.2978 8.0887 0.7760

(0.5765)  (2.8303)  (3.8883)  (3.5856)

ABOOT 4.4019 4.4016 4.3105 4.2244

/- (0.5373)  (0.5294)  (0.5292)  (0.5139)
bW 1.9659 1.9680 1.9224 1.8363
b JACK 0.0000 0.0800  -3.8004 3.4262
bBOOT 0.1025 0.1253 0.1209 0.1173

boorme 0.9447 1.9442 1.9445 1.8584
ek 0.6942 0.4755 0.6490 0.6305
KJ (1.7559)  (0.7206)  (1.3814)  (1.5139)
Voor 0.3767 0.3908 0.3845 0.3707
(Soor) (0.2149)  (0.2264)  (0.2215)  (0.2137)
me 6.3273 6.3964 6.2150 6.1706
(ON) (0.6970) (0.7013) (0.6920) (0.6940)

6.3273 6.5007 10.3856 1.7658
(0.6970)  (3.2457)  (4.4781)  (4.3365)
"BOOT 6.3541 6.4101 6.2466 6.1985

0-%«) (0.6589) (0.6507) (0.6512) (0.6355)



Table 3 (contd.)

1 2 3 4 5 6
0.5604 0.5594 3.8490 3.8046
n

XZ b IACK 0.0000 -0.1043 -4.1706 4.4048
bBOOT 0.1194 0.1364 0.1367 0.1448

bBOOTME 0.5285 0.5242 3.8806 3.8325

AIACK 0.9720 0.6907 0.8294 0.9714
5900 (2.2626)  (0.9280)  (2.0007)  (1.9145)

BooT 0.5232 0.5500 0.5333 0.5285
ysoor) (0.3067)  (0.3083)  (0.3138)  (0.2990)

me 9.1537 9.1823 9.0630 8.9908

(5me) (0.5947)  (0.5871)  (0.6158)  (0.6317)

LLACK 9.1537 9.2693  12.9718 5.2532

(0.5947)  (3.1079)  (4.0141)  (4.6018)

TeBoOT 9.1162 9.1359 9.0221 8.9419

) (0.5759)  (0.5790)  (0.5926)  (0.6212)

L 0.4623 0.4540 0.4835 0.4823

0.0000 -0.0870 -3.9088 3.7376

3 N(10;2) + " x\ b IACK

4 4 bBOOT 0.1059 0.1343 0.1215 0.1360
L BOOTE 0.4483 0.4389 0.4697 0.4888

Viack 0.6434 0.5450 0.7190 0.8586

b j (1.5591)  (1.0601)  (1.7176)  (2.9242)

Veoor 0.4246 0.4595 0.4689 0.5271

5 e (0.3432)  (0.4430)  (0.3901)  (0.5208)

Source: author’s calculations.

size increases from 20 to 21 or from 40 to 41. In Tab. 4 there is also
given the variance of normal distribution which is approximation of dist-
ribution of sample median (see asymptotical distribution of sample median
in Sec. 4).

We can compare the obtained results. The estimates of bias mean for
the sample median differ considerably with respect to the estimation method.
We can observe similar results for estimates of variance mean for the
sample median. Moreover, the estimates of variance of sample median are
relatively big (especially for jackknife method).



Table 4

Results of Monte Carlo experiments for estimation of variance of median
for some probability distributions

Estimate of variance Estimate of variance
Population Estimation of sample median of sample median“
distribution method for sample size for sample size

n=20 n=21 n=40 n=41

N(0; 1) without est.4 0.0785 0.0747 0.0393 0.0383

mom. meth." 0.0795 0.0713 0.0372 0.0393

jackknife 0.1476 0.0939 0.0730 0.0509

bootstrap 0.0883 0.0850 0.0435 0.0432

Xl without est. 0.3537 0.3368 0.1768 0.1725

mom. meth. 0.3576 0.3368 0.1849 0.1696

jackknife 0.6573 0.4667 0.3723 0.2455

bootstrap 0.4149 0.4240 0.2005 0.2040

xl without est. 0.6660 0.6342 0.3329 0.3249

mom. meth. 0.6493 0.6035 0.3323 0.3261

jackknife 1.1217 0.7704 0.6942 0.4755

bootstrap 0.7406 0.7466 0.3767 0.3908

Xl without est. 0.9789 0.9321 0.4894 0.4775

mom.meth. 0.9222 0.8849 0.4858 0.4918

jackknife 1.5757 1.2816 0.9720 0.6907

bootstrap 1.0842 1.1760 0.5232 0.5500

N(10:2 3 without est. 0.6044 0.5897 0.1826 0.1782
. oy 4 -

1 (10:2) 4 mom. meth. 0.7709 0.7772 0.3537 0.3447

jackknife 1.2955 0.9816 0.6434 0.5450

bootstrap 1.1772 1.1401 0.4246 0.4595

“ Sample median is calculated according to classical definition of median. * “Without est.”
denotes “without estimation”. ¢ “Mom. meth.” denotes “moment method”.
Source: author’s calculations.

6. FINAL REMARKS

The jackknife and bootstrap methods are used for estimation of bias
and variance of estimators. However, for the carried out experiments these
methods did not give good results in case of sample median and sample
size: 20, 21, 40, 41.
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