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Abstract. In survival analysis the subject o f observation is duration o f time until some 
event called failure event. Often in such studies only partial information on the length o f  
failure time is available what yields the so-called right-censored observations. The main interest 
in survival analysis is either to estimate the distribution of the true failure time or to identify 
the relationship between the true failure time and a set o f some covariates. Additional 
troublesome point o f theory and application o f survival techniques is treatment o f grouped 
observations (life-tables) along with incorporating covariates.

In the paper a new approach is considered which allows to treat the censored life-table 
with qualitative covariates as a standard contingency table. Such a table can be further 
analysed by means o f  log-linear models or other standard multivariate inference techniques.
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1. INTRODUCTION

The usual representation o f the right-censored random  sam ple with 
covariates takes the form

(Tj, Xj), i =  L 2, ..., n (1)

where öt =  1 if an i-th individual actually failed at time T t, St =  0 if an 
individual was right-censored at time T t and X t is a p-dim ensional vector 
of known covariates, for example, sex, age and other characteristics o f an 
individual.

Nearly all the statistical m ethods for censored survival d a ta  are based 
°n the assum ption th a t censoring mechanism is not related to mechanism  
causing failures. T hus the usual m odel for censored survival analysis 
assumes independent random  censoring. In this m odel variables T t and ô\ 
can be defined as follows
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T, =  m in (У,, Z (), S, =
1, if T l = Y l

(2)
0, if Г,if 7’, =  Z,

where У, are independent copies o f a positive random  variable У representing 
true failure time with a cum ulative distribution function (cdf) F. Similarly, 
Z, arc independent copies o f a positive random  variable Z  with a cdf G. 
It is assumed tha t variables У and Z  are independent, conditionally on X. 
Thus the observed variables T, represent here independent copies of 
a variable m in (y , Z ) w ith a cd f II  satisfying the equality

A special case o f  independent censoring occurs in studies where failure 
time is m easured from entry into the study and one observes the true 
failure times o f those individuals who fail by the time o f analysis and 
censored times for those individuals who do not. In such a case all 
censoring times Z, are know n and the sequence

instead of sequence (1) is observed. It is w orth noting tha t in the repeescn- 
tation (3) variables St are redundant and therefore can be om itted.

The m ain interest in survival analysis is either to estim ate the distribution 
o f the true failure tim e У represented by F or the so-called survival 
function F  =  1 — F o r to identify the relationship between the true failure 
time У and a set o f covariatcs X. A dditional troublesom e point o f theory 
and application o f survival techniques is treatm ent o f grouped observations 
(life-tables) along with incorporating covariates.

Standard life-tables techniques are the oldest techniques m ost extensively 
used by actuaries, m edical statisticians and dem ographers, starting from the 
work o f J. G raun t in 1662 (cf. D. V. G l a s s  (1950), B. B e n j a m i n  (1978)).

The life-table da ta  arise from a partition of the range [0,7” ] o f obser­
vations into some time intervals =  [tk, tt + 1 ) ,  к =  0, 1, К  — 1 where 
the endpoints 0 =  I0 <  < . . .  <  tK < T*  are pre-specified. The life-table data  
can be characterized by defining num bers o f individuals alive at the 
beginning o f each tim e interval and by defining num bers o f failures and 
censored observations in these intervals.

The m ain purpose is to estim ate conditional probabilities o f failure in 
the intervals Qt given survival to tk or to estim ate probabilities o f  survival

11=  1 - ( 1  - F ) ( l  - G ) .

(3)
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past in +1 for к =  0, 1, К  — 1 (sec E. L. K a p l a n  and P. M e i e r  (1958), 
C. L. C h  i a n  g (1968)).

D. R. C o x  (1972) gave a First systematic study o f use o f covariates in 
the analysis o f failure time. He proposed a regression m odel for a hazard 
function and introduced a vector o f unknown regression param eters specifying 
the effect o f covariates on survival. If the covariates are not time-varying 
then C ox’s m odel can be termed “ proportional hazards” because the ratio  
of hazard functions for any two individuals is independent o f time. 
Sub-sequent papers by J. D. K a l b f l e i s c h  and R.  L. P r e n t i c e  (1973), 
N. B r c s l o w  and J. C r o w l e y  (1973), N. B r e s l o w  (1974, 1975), O. O. 
A a l e n  (1978), P. K. A n d e r s e n  and R.  I). G i l l  (1982) are the substantial 
contributions to  this subject.

T. R. H o i  f o r d  (1976) introduced the proportional hazards m odel for 
life-table data. In his m odel the baseline hazard function was assum ed to 
be constant within each time interval i l k, what implies piecewise exponential 
distributions for failure times.

This approach was further developed by T. R. II о 1 f o r d  (1980) and 
N. L a i r d  and D.  O l i v i e r  (1981), who discussed application o f log-linear 
analysis techniques to  life-tables with categorical covariates. T heir key result 
refers to  two im portan t observations. F irst, log-linear m odel for cell m eans 
of Poisson contingency table data  is equivalent to log-linear m odel for 
a hazard function in piecewise exponential survival model. Second, the 
likelihoods for both  models are equivalent. Thus, the statistical inference 
m ethods based on m axim um  likelihood for these models are also equivalent.

The broad survey o f the developm ent of the survival analysis th roughout 
the twentieth century can be found in T. R. F l e m i n g  and D. Y. L i n  
(2000) or D. O a k e s  (2001).

3. LOG-LINEAR M O D ELS FOR LIFE-TABLES WITH CATEGORICAL COVARIATES

Log-linear m odels provide a flexible and popular tool o f  treating  the 
m ultivariate categorical d a ta  arranged in a m ultidim ensional contingency 
table. Some o f the m ore attractive features o f this approach are the easy 
of model specification, flexibility in treating both dependent and independent 
variables and the fact tha t the equivalent m aximum likelihood estim ates o f 
model param eters m ay be obtained from different sam pling distributions, 
such as Poisson, m ultinom ial and product m ultinom ial distributions.

As it was pointed out by N. L a i r d  and D.  O l i v i e r  (1981), log-linear 
techniques can be easily applied in life- tables analysis to identify the 
relationship between the survival time and a set o f categorical covariates.



'Г. R. H o l  f o r  d (1976) considered the following representation for the 
hazard function h(y; X) o f failure time Y

where hk denotes a constan t baseline hazard in the time interval í)*, X is 
a fixed covariatc vector and ß is a vector of unknown param eters. N on­
proportional hazards m odel can be reform ulated from (4) by allowing the 
baseline hazard hk, к = 0, 1, К  -  1 to depend also on X.

The representation (4) implies that, conditional on X, hazard function 
h(y;X)  is a stepwise function o f time and failure times have piecewise 
exponential d istributions. Log-linear hazard model proposed by Laird and 
Olivier flows directly from H olfo rd’s m odel and takes the form

Let us assum e tha t the vector X specifies the levels o f p categorical 
covariates and each covaria te  X , o f X has / ,  levels indexed by iv  
s = l ,  2, ..., p. D enote for simplicity by i0 the index o f tim e intervals, 
i0 =  0, 1, 2, ..., К — 1. Thus, for the given time interval Q io and for the 
fixed set o f  covariates at levels (iu  i2, ..., ip) the hazard function h(y;X)  
given in (4) takes a constant value, which can be denoted by 0ioii if. Then 
employing the usual log-linear “ u-term s” notation, introduced by M. W. 
B i r c h  (1963), the m odel (5) can be rewritten in the following form

where param eters {effects} on the right-hand side o f  (6 ) satisfy the following 
linear constrains

The non-proportional hazards m odel can be introduced here by a simple 
generalization o f (6 )

K y i X) =  /v c x p { X T/0  for ye Clk, fc =  0, 1, K - l  (4)

h(y; X) =  \nhk +  X Tß  for y e Q k, к =  0, 1, ..., К  -  1 (5)

(6)

where



Thus, the problem  o f estim ating survival distributions under the m odel
(6 ) or (7) reduces to  estim ating the u-param etcrs, what can be done by 
means o f slightly m odified Iterative Proportional F itting Routines (see 
N. L a i r d  and I). O l i v i e r  (1981) for details).

I'he form ula o f estim ating the log-survival function lnS (i) derived from 
the piecewise exponential distribution is expressed as follows

ln£(i) =  -exp{ú*} I  ( 0 + 1 -  +  0  -  i*)exp(t2jt°>}l teClk + 1

(8)

where ü* represents here the estimated total covariate effect.
The modified log-linear m odel for censored life-table d ata  proposed here 

allows to handle m any IPF  routines for log-linear m odels w ithout any 
m odification. The proposed m odel is closely related to the one given in
(7), however we will assum e that 0 , represent  probabilities o f  failure 
in time intervals Qio for fixed sets o f covariates at levels (ilt i2, ..., ip), This 
approach is based on the extended life-table da ta  and is based on a m ethod 
called here “ the com pletion m eth o d ” . T he approach  allows to  apply 
standard inference.

4. EXTENDED LIFE-TABLES WITH RIGHT-CONSORED DATA

F o r simplicity, let us assume th a t the covariate vector X is n o t observed. 
Let T * >  0 be a fixed real num ber such th a t H ( T * ) < 1 .  Let 
® =  fo <  h  < — <  tK = T* < o° constitute a partition o f [0,T*] into К  sub- 
-intervals o f the form Qk =  [t*, í, + J  for к = 0, l , . . . ,  К - I .  Let us also 
assume that n A. =  [ix , oo).

Let us assum e that individuals enter the follow-up study at random  
time points. F o r an i-th individual we observe a pair o f random  variables 
f^i> Zj), where T t and Z ; are defined in Section 1. The observation o f 
mdividuals term inates when for s items ( 0  2  is a fixed integer) we obtain  
T'ij>T*, j  = I, 2, s. Let N s denote the total num ber o f individuals 
observed in the experim ent. Thus, N ,  is a random  variable d istributed 
according to  the negative binomial distribution with param eters s and 
P =  1 -

We will consider an  extended life-table d a ta  characterized by the 
following statistics



N.
Dk =  1 1  ( T i e Slk, Z ^ t k+l), 

/=1
k = 0 , 1 , .... K -  1

DK =  0,

Ok = Í O ( T leClk, Z l eClk), к 
i= i

=  0, 1, ..., К

N.
M k =  ^  0 (T, ^  i*, Z ; ^  tk + j), 

1 = 1

1оII

оII*5

Wk = Ok + M k, к = 0, 1 , ..., К

where 1 (A)  denotes a characteristic function of a set A. Notice that there 
is W0Ok + M 0 = N ,  and WK =  0 K.

Statistics defined in (9) constitute an extended censored life-table and 
will be employed in the procedure called “ a com pletion m ethod” .

5. CO M PLETION M ETHO D KOR EXTENDED LIFE-TABLES

Let us consider a probability  qklk defined as follows

qklk = P (Y eC lk\ Y > t k), к =  0, 1, ..., К  -  1 (10)

This is the probability  o f failure in Q*, conditional on survival past tk. This 
probability will be estim ated by m eans o f the following statistics

^ ' ‘ =  л Г ? Т  к = 0 ' 1  K ~ l  (11)

The sim ilar estim ator o f qk]k was firstly considered by E. L. K a p l a n  
and P. M e i e r  (1958) for the sample with a fixed size. It is usually called 
the Reduced-Sam ple E stim ator (RSE). Let us define a probability qkll as 
follows

qk[l = P ( Y e a k \ Y ^ t , ) ,  k =  1 , 2, ..., К - i ,  I =  0 , 1 , ..., к -  1 ( 12)

This is the probability  o f failure in the interval Qk conditional on survival 
past i, for 0  <  / <  к and can be estimated from the following recurrent formula



W  — 1
Ük\t = _  j к = I, 2, ..., К  — 1 , 1 = 0, 1, к — 1 (13)

and the estimated number o f failures in the interval П, for О, individuals, 
who survived past th can be calculated as

Ą .I  *  O r  &II-; l = k,k-  1........  1 , 0 ,  к = 0, 1, ..., К — 1 (14)

Let

6 = Dk + £ ß u , k = 0, 1........  K -  1

i = ° (15)

0 K = N , -  е Ч  
* = 0

I he sum Ef=0 Dt /  on the right-hand site of (15) can be treated as an 
estimated num ber o f failures in the interval Clk for those items for which 
Zi< tk + i -  Thus, Ďk is an estim ated total num bers o f failures in the intervals 
0» for k =  0 , 1 ,  ..., K.

The set o f estim ates Dk determines a completed version o f an extended 
censored life-table defined by the statistics (9). This com pletion procedure 
!S esplained in details in an example in Section 6 .

Generally, we can consider extended life-tables constructed for a categorical 
covariate vector X fixed at levels (iu  i2, ip) and calculate the estim ated 
numbers o f failures similarly as in Tab. 2. Proceeding in such a way for
each com bination  o f levels (i lt i2....... ip) o f X we ob ta in  as a result
a P +  1-dim ensional contingency table with estim ated num bers o f failures 
ior each com bination (ij, i2, ip) and for each tim e interval П,о in its 
body. Such a table can be next analysed by m eans o f standard  log-linear 
techniques m entioned in Section 3.

6. A NUM ERICAL EXAMPLE

We will consider a sam ple o f patients who have had received a valve 
•niplantation (bioprothesis or m echanical valve) and had to  be reopered 
because o f some valve com plications. Patients enter the study at random  
time points. T he subject o f  observation was the length o f their life after 
feoperation (in years). T he study was term inated  when s =  8 patients



survived past T*  =  7 years. Thus, the length of life after reoperation is 
a random  right-censored variable, for some o f the patients were alive 
by the end of the study. T he to tal num ber o f patients N a observed 
in such an experim ent is a random  variable. Its realization observed 
here was equal to 50.

Let f0 =  0, tj =  1, t 2 = 1 and í í 0 =  [0, t j),  Q, =  [ix, t 2), П 2 =  [l2, со). 
We will consider an extended life-table determined by the statistics Dk, M k, 
Ok for к =  0, 1 ,2  (see T ab. 1).

T a b l e  1

The Extended Life-Table

Time Dk o k My

Qo =  [0, 1) 8 9 41
0 , - [ l .  7) 2 23 10

=  [7, oo) 0 8 0

From  T ab. 1 we can now estim ate total num bers of deaths Dk in each 
interval by m eans o f  form ulae given in (15). These estim ates constitute 
“ a com pleted version” o f T ab . 1 (see Tab. 2).

T a b l e  2

Completed Version o f  Tab. 1

Time intervals б к

fto =  [0, D 9.8
=  [1. 7) 8.0

«2 =  17, 00] 32.2

Note, that first two estim ates in the second colum n o f Tab. 2 represent 
estimated values o f Dk for /c =  0, 1, and the last value is calculated as 
N , - U = 0 Ď k.

7. SO M E THEORETICAL RESULTS

Theorem. T he estim ators Qklk and Qkll defined in (11) and (13) are 
unbiased estim ators o f respective conditional probabilities qk}k and qkц.



Proof.
Let us assume the following notation

P k - P ( T > x k) for /c =  0, 1, ..., K ,

4k = P ( T > x k, Z > x k+l) for k = 0, 1, K - l .

F or 0 ^ l < k  and l ^ k ^ K  — 1 the estim ator Qkll according to  (13) 
equals to

= Wl+lJ- \  Wl+2 - I Wk. t - 1 Wk -  1 Dk
М , -  1 M n i - \  ' M k- 2 - l '  M k- t - l '  M k - l

For I = к and 0 ^ k  ^  К  — 1 we have from (11)

Dk
Qklk~ M ^ i '

The expression Dk/ ( M  - 1) can be also w ritten  equivalen tly  as
* ~ (W *+ i — l)/(Af* — 1), thus for 0 ^ l < k  and l ^ k ^ K — 1

л  Wl + i - 1 Wl+a - 1  W i - i - 1  W i- 1  /  Wi+ 1 - 1
M, — 1 M, + 1 — 1 Л/ц _ 2 — 1 M*-j — 1 у M* — 1 

and for / =  к and 0 <  к <  К  — 1

ô  - i  W^ ~ l 
“  M ,  -  1

Let us denote by A rl, the following expression o f  the form

w , * i - i  Wi+г - i  w t - i - i  w ; - i  w t+ i — i
Ar\i — M , -  1 M 1+1- l  "■ M r_ 2 - 1  M r_ ! - 1  M r -  1

(16)

where r > / .  N ow the estim ator Q*,, expresses as follows

- _  {Ak- m  — A k\t for 0 ^ l < k ,  l ^ k ś K - l  
У*| , _  [1 - A kik for / =  k, O^k^K-  1 ( '



Let us find the expectation o f A rU defined in (16) using the jo in t 
distribution o f the variables N„ M t, Wl + l , ..., M r_ 2, Wr- X, M r- lt Wr, 
M T, Wr+i.

Notice, tha t the sam ple size N ,  is a random  variable with a negative 
binomial distribution and that given N ,  =  n the variables Wl+l , M r_ 2, 
Wr- i ,  M r- i ,  Wr, M r, Wr+l have a m ultinom ial distribution. T hus the jo in t 
probability distribution  function is o f the form

P ( N , =  n, M ,  =  m„ Wl + 1 =  w) + 1, M r _ ,  =  mr _ , ,  W, =  wr, M ,  =  mr, , =  wr+1) =

n - l V n - Л /  m , _ S  V  r mr - l ~ S\ f W' ~  s \ (  m' ~ S
S _  1 ) \ m l ~  s j \ w l + l  — SJ  \  Wr ~ S ) \ m r -  y \ W r + l ~ S

( l - q () " " И'(9 < -P l + l )m' ” W,+ , •

■ ( P l + 1 -  q,+ 1 • ...(Я г- i  -  Р г Г ' - ' - №'(Рг -  Я гГ '~ т ’(Яг -  P r+ l ) " ' "

( P r + l - P K ) W,+í~ ‘PK>

where

n =  s, s +  1, 

ffl, =  s, s + 1, n ,  

w i + i = s ,  s + 1 ,  m„ i = /, / + 1 ,  r, 

m, =  s, s + 1 , w, i =  / +  1 , r.

The distribution function o f N s, M (, Wi + l , ..., M r- 2, Wr- U i , W,, 
M r, VFr+ 1  can be expressed also equivalently as

P (N S = n, M,  = m„ Wl+1 =  Air_! =  m ,- ! ,  W, =  wr, M r = mr, Wr+1 =

=  wr+1) =

n - l V  m ' _ 1  V  . ( m ' - l - S\ ( Wr - ' \ (  m r ~ ] V  Wr+1 -  1

i / \ w« + i ~ v  v wr — 1 A n v - i A w r +1 - i A  s - 1

( 1 - 9 ,  )"-"■ 9Г -

gi -  p i + i \ m,~w,* ' ( p i + -д1+1\ щ+'~т,*%(д1+1\ т,*г .
\  4i J  v  Л + 1  у  W v



^ p r -  qry  m̂ q ry ^ r ~  P r . Л " ' w' " ^ P r  < A " '4' / ,Рг+ i - P kY ' * 1 V  Pk

P r + 1 /  \P r  + 1

where

w r + 1  =  5,  s +  1,

m, =  wl+1, wi+1  +  l ,  .... i =  r, r - 1 , / +  1 , I, 

w, =  m(, m ,+  l ,  i =  r, r - 1 , / + 1 , I, 

n = m(, m, + 1, ...

T hus, the expectation o f Aril is equal to

00 00 00 00 00 Ш — 1 Ul 1 111 I
£M ,„> =  I  E  ... I  S

* r)1 =  i  ą = w , ( l  W|+ ) =mi*i m, = w,+1 n = m, m l * m r - l  I M r 1

• p (w s =  n , ..., w ;+ ! =  wP+ j) =  

w f + ! — 1 \ /  P r + 1 P k \ w ’ * x ~ ‘ (  Р к \ ’  у  w r + 1 - 1 /  m r —у  / " r +1  * W Kr+1 I'K 1 / ť í  1 v-1

Wr+ 1  = * \  s  — 1 / V  P r + l  /  \ P r + l )  m , .w r+ | w r — 1 V w r + 1 1

. | 4  ~  "  Wr+ ‘^ r +  1 \ W,+1 _

£  / 4 + , - 1  V pI+ 1 -  *,+ i y , ł l ' w,łV ^ t i \ " ,łł £  W,+ 1 - 1/  m, — 1 \

W| + 1=m ,+ 1\ m ( + l  — V \  P l + l  /  \ P ( + l /  mi-wi+i m l ~  1 \ W! + 1 — V

i  ( " ~  \ \  1 - ЧГ =  & ± i - Ł . . . . . P t t l . ? ! i i
n = m \ m l ~  V  <7r 9 r - l  9 i - l  <?!

P ( T ^ t r+1) P (T ^ £ r) P ( T ^ t l+2)
P ( T > t „ Z > t r+1) P ( T ^ i r_ i , Z ^ i r) P ( T > t l+uZ > t l+2)

P ( T > t l+1)
P(T> t[, Z  ^  i |+ i)



P ( y > t r+1, Z > t r + ł )  P { Y  ^  t„ Z  t r) P ( Y  ž  í |+ 2 i Z  ^  íi + 2) 

P ( Y ž t r, Z ž t r l l ) P ( Y > t r - u Z > t f)  P ( Y > t „ u Z > t l + i )

' P ( Y > t l t l L Z > t l t l ) _
P ( Y ž  t i , Z ^ t i + 1)

= p ( y ^ t r+1) р (У 5 * о  P ( ľ > t l+i) P ( y > t ,+1) f ( ľ > < r t l ) 

Р ( У > * , )  P ( Y > t r - \ )  Р ( У > í | +1)  P ( ľ > í , )  P ( ľ > t , )  '

F rom  the result ju st o b ta in ed  and usin g  the d e fin itio n  (17) w e h a v e  for 0 < / < / c ,  

U U K - 1

,  ч Р (У > « * )  P ( Y > t k+1)  Р ( У е П . )

Я (& к ) -  Я ( Л - щ )  - -E(^*tí) =  p ( Y p t , )  ~  Р ( У > 0  ~~ P ( Y > t , )  ~  qk>1’

and for I =  k,  O ^ k ^ K  -  l

v r t  П А  Ф > Ь + 1) P jYeCK)  _
( ( M  ( *1*) P ( y > í * )  P ( ľ > ý

w hat co m p letes  the p ro o f.
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A g n ie s z k a  R o ssa

ANALIZA TABLIC TRW ANIA ŻYCIA DLA DANYCH CENZUROW ANYCH  
Z W YKORZYSTANIEM  M ODELI LOGARYTM ICZNO-LINIOW YCH

W pracy przedstawiono propozycję analizy tablicy trwania życia dla danych prawostronnie 
cenzurowanych. Przedstawiona metoda pozwala na sprowadzenie takiej tablicy do wielo­
wymiarowej tablicy kontyngencyjnej, którą można analizować standardowymi technikami 
wielowymiarowego wnioskowania statystycznego, np. za pomocą modeli logarytmiczno-liniowych.


