ACTA UNIVERSITATIS LODZIENSIS
FOLIA OECONOMICA 175, 2004

Agnieszka Rossa*

ANALYSIS OF CENSORED LIFE-FABLES WITH COVARIATES
BY MEANS OF LOG-LINEAR MODELS

Abstract. In survival analysis the subject of observation is duration of time until some
event called failure event. Often in such studies only partial information on the length of
failure time is available what yields the so-called right-censored observations. The main interest
in survival analysis is either to estimate the distribution of the true failure time or to identify
the relationship between the true failure time and a set of some covariates. Additional
troublesome point of theory and application of survival techniques is treatment of grouped
observations (life-tables) along with incorporating covariates.

In the paper a new approach is considered which allows to treat the censored life-table
with qualitative covariates as a standard contingency table. Such a table can be further
analysed by means of log-linear models or other standard multivariate inference techniques.
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1. INTRODUCTION

The wusual representation of the right-censored random sample with
covariates takes the form

(Ti, Xj), i=L 2 ..,n @

where 6t= 1 if an i-th individual actually failed at time Tt, St= 0 if an
individual was right-censored at time Tt and Xt is a p-dimensional vector
of known covariates, for example, sex, age and other characteristics of an
individual.

Nearly all the statistical methods for censored survival data are based
°n the assumption that censoring mechanism is not related to mechanism
causing failures. Thus the wusual model for censored survival analysis
assumes independent random censoring. In this model variables Tt and 06\
can be defined as follows
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where ¥, are independent copies of a positive random variable Y representing
true failure time with a cumulative distribution function (cdf) F. Similarly,
Z, arc independent copies of a positive random variable Z with a cdf G.
It is assumed that variables ¥ and Z are independent, conditionally on X
Thus the observed variables T, represent here independent copies of
a variable min(y, Z) with a c¢df Il satisfying the equality
11=1-(1 -F) (I -G).

A special case of independent censoring occurs in studies where failure
time is measured from entry into the study and one observes the true
failure times of those individuals who fail by the time of analysis and
censored times for those individuals who do not. In such a case all
censoring times Z, are known and the sequence

(3)

instead of sequence (1) is observed. It is worth noting that in the repeescn-
tation (3) variables St are redundant and therefore can be omitted.

The main interest in survival analysis is either to estimate the distribution
of the true failure time Y represented by F or the so-called survival
function F = 1—F or to identify the relationship between the true failure
time ¥ and a set of covariatcs X. Additional troublesome point of theory
and application of survival techniques is treatment of grouped observations
(life-tables) along with incorporating covariates.

2. LIFE-TABLE ANALYSIS

Standard life-tables techniques are the oldest techniques most extensively
used by actuaries, medical statisticians and demographers, starting from the
work of J. Graunt in 1662 (cf. D. V. Glass (1950), B. Benjamin (1978)).

The life-table data arise from a partition of the range [0,7”] of obser-
vations into some time intervals = [tk, tt+1), K= 0, 1, K —1 where
the endpoints 0 = 10<  <... <tK< T* are pre-specified. The life-table data
can be characterized by defining numbers of individuals alive at the
beginning of each time interval and by defining numbers of failures and
censored observations in these intervals.

The main purpose is to estimate conditional probabilities of failure in
the intervals Qt given survival to tk or to estimate probabilities of survival



past in+l for k = 0, 1, K —1(sec E. L. Kaplan and P. Meier (1958),
C. L. Chian g (1968)).

D. R. Cox (1972) gave a First systematic study of use of covariates in
the analysis of failure time. He proposed a regression model for a hazard
function and introduced a vector of unknown regression parameters specifying
the effect of covariates on survival. If the covariates are not time-varying
then Cox’s model can be termed “proportional hazards” because the ratio
of hazard functions for any two individuals is independent of time.
Sub-sequent papers by J. D. Kalbfleisch and R. L. Prentice (1973),
N. Brcslow and J. Crowley (1973), N. Breslow (1974, 1975), O. O.
Aalen (1978), P. K. Andersen and R. I). Gill (1982) are the substantial
contributions to this subject.

T. R. Hoi ford (1976) introduced the proportional hazards model for
life-table data. In his model the baseline hazard function was assumed to
be constant within each time interval ilk, what implies piecewise exponential
distributions for failure times.

This approach was further developed by T. R. Il o 1ford (1980) and
N. Laird and D. Olivier (1981), who discussed application of log-linear
analysis techniques to life-tables with categorical covariates. Their key result
refers to two important observations. First, log-linear model for cell means
of Poisson contingency table data is equivalent to log-linear model for
a hazard function in piecewise exponential survival model. Second, the
likelihoods for both models are equivalent. Thus, the statistical inference
methods based on maximum likelihood for these models are also equivalent.

The broad survey of the development of the survival analysis throughout
the twentieth century can be found in T. R. Fleming and D. Y. Lin
(2000) or D. Oakes (2001).

3. LOG-LINEAR MODELS FOR LIFE-TABLES WITH CATEGORICAL COVARIATES

Log-linear models provide a flexible and popular tool of treating the
multivariate categorical data arranged in a multidimensional contingency
table. Some of the more attractive features of this approach are the easy
of model specification, flexibility in treating both dependent and independent
variables and the fact that the equivalent maximum likelihood estimates of
model parameters may be obtained from different sampling distributions,
such as Poisson, multinomial and product multinomial distributions.

As it was pointed out by N. Laird and D. Olivier (1981), log-linear
techniques can be easily applied in life- tables analysis to identify the
relationship between the survival time and a set of categorical covariates.



T. R. Hol for d (1976) considered the following representation for the
hazard function h(y; X) of failure time Y

KyiX) = /vexp{XT/0 for yeClk fc=0, 1, K -1 (4)

where hk denotes a constant baseline hazard in the time interval i)*, X is
a fixed covariatc vector and B is a vector of unknown parameters. Non-
proportional hazards model can be reformulated from (4) by allowing the
baseline hazard hk, k =0, 1, K - 1 to depend also on X
The representation (4) implies that, conditional on X, hazard function
h(y;X) is a stepwise function of time and failure times have piecewise
exponential distributions. Log-linear hazard model proposed by Laird and
Olivier flows directly from Holford’s model and takes the form
h(y; X) = \nhk+ XTR for yeQk k=0, 1, .., K- 1 (5)
Let us assume that the vector X specifies the levels of p categorical
covariates and each covariate X, of X has /, levels indexed by iv

s=1, 2,.. p. Denote for simplicity by io the index of time intervals,
io=0, 1 2, ..., K—1. Thus, for the given time interval Qio and for the
fixed set of covariates at levels (iu i2, ..., ip) the hazard function h(y;X)

given in (4) takes a constant value, which can be denoted by Oidi if. Then
employing the usual log-linear “u-terms” notation, introduced by M. W.
Birch (1963), the model (5) can be rewritten in the following form

(6)

where parameters {effects} on the right-hand side of (6) satisfy the following
linear constrains

The non-proportional hazards model can be introduced here by a simple
generalization of (6)

where



Thus, the problem of estimating survival distributions under the model
(6) or (7) reduces to estimating the u-parametcrs, what can be done by
means of slightly modified Iterative Proportional Fitting Routines (see
N. Laird and I). Olivier (1981) for details).

I'ne formula of estimating the log-survival function InS(i) derived from
the piecewise exponential distribution is expressed as follows

InE(i) = -exp{u*} | (0+1- +0 - i*)exp(tzjt°>}  teClk+1

(8)

where U* represents here the estimated total covariate effect.

The modified log-linear model for censored life-table data proposed here
allows to handle many IPF routines for log-linear models without any
modification. The proposed model is closely related to the one given in
(7), however we will assume that 0 , represent probabilities of failure
in time intervals Qio for fixed sets of covariates at levels (ilt i2, ..., ip), This
approach is based on the extended life-table data and is based on a method
called here “the completion method”. The approach allows to apply
standard inference.

4. EXTENDED LIFE-TABLES WITH RIGHT-CONSORED DATA

For simplicity, let us assume that the covariate vector X is not observed.
Let T*> 0 be a fixed real number such that H(T*)<1l. Let
®= fo< h <—< tK= T* < 0° constitute a partition of [0,T*] into K sub-
-intervals of the form Qk= [t*, i,+J for k=0, I,..., K-1. Let us also
assume that n A= [ix, o0).

Let us assume that individuals enter the follow-up study at random
time points. For an i-th individual we observe a pair of random variables
fAi> Zj), where Tt and Z; are defined in Section 1. The observation of
mdividuals terminates when for s items (0 2 is a fixed integer) we obtain
Tij>T*, j =1, 2, s. Let Ns denote the total number of individuals
observed in the experiment. Thus, N, is a random variable distributed
according to the negative binomial distribution with parameters s and
P=1-

We will consider an extended life-table data characterized by the
following statistics



N

Dk= 11 (TieSk Z Atk+l), k=o0, 1, ... K- 1
/=1

DK = 0,

Ok=10 (T leClk,ZleClk), k=0, 1, .., K
i=i
N.

Mk= A o(T,A i Z;A tk+]), =°O -
1=1

» _ o

Wk= Ok+ Mk, k=0, 1, K

where 1(A) denotes a characteristic function of a set A. Notice that there
is WOOk+M 0= N, and WK= 0K

Statistics defined in (9) constitute an extended censored life-table and
will be employed in the procedure called “a completion method”.

5. COMPLETION METHOD KOR EXTENDED LIFE-TABLES

Let us consider a probability gklk defined as follows

gklk=P(YeCIlk\Y>1tk), k=0, 1, .., K- 1 (10)
This is the probability of failure in Q* conditional on survival past tk. This
probability will be estimated by means of the following statistics

A= gar?T k=01 (11)

The similar estimator of gklk was firstly considered by E. L. Kaplan
and P. Meier (1958) for the sample with a fixed size. It is usually called
the Reduced-Sample Estimator (RSE). Let us define a probability gkl as
follows

gl=P(Yeak\Y"t,), k= 1,2, ..., K-i, I=0o0, 1, .., K- 1 (12)

This is the probability of failure in the interval Qk conditional on survival
past i, for 0 < /< Kk and can be estimated from the following recurrent formula



.. W —1
Wt = i k=12 .., K—1, 1=0 1, K—1  (13)

and the estimated number of failures in the interval M, for O, individuals,
who survived past th can be calculated as

A.l* Oré&ll-; |I=Kk,k-1.... 1,0, k=01, .., K—1 (14)

Let

i=° (15)

oKk=N,- ey

*:0

Ilhe sum Ef=oDt/ on the right-hand site of (15) can be treated as an
estimated number of failures in the interval Ok for those items for which
Zi<tk+i- Thus, Dk is an estimated total numbers of failures in the intervals
0» for k=0,1, ..., K

The set of estimates Dk determines a completed version of an extended
censored life-table defined by the statistics (9). This completion procedure
IS esplained in details in an example in Section 6.

Generally, we can consider extended life-tables constructed for a categorical
covariate vector X fixed at levels (iu i2, ip) and calculate the estimated
numbers of failures similarly as in Tab. 2. Proceeding in such a way for
each combination of levels (ilt i2...... ip) of X we obtain as a result
a P+ 1-dimensional contingency table with estimated numbers of failures
ior each combination (ij, i2, ip) and for each time interval M,0 in its
body. Such a table can be next analysed by means of standard log-linear
techniques mentioned in Section 3.

6. A NUMERICAL EXAMPLE

We will consider a sample of patients who have had received a valve
eniplantation (bioprothesis or mechanical valve) and had to be reopered
because of some valve complications. Patients enter the study at random
time points. The subject of observation was the length of their life after
feoperation (in years). The study was terminated when s = 8 patients



survived past T* = 7 years. Thus, the length of life after reoperation is
a random right-censored variable, for some of the patients were alive
by the end of the study. The total number of patients Na observed
in such an experiment is a random variable. Its realization observed
here was equal to 50.

Let fo=0, tj= 1 t2=1 and fiio= [0,tj), Q, = [ix t2), M2 = [I2, co).
We will consider an extended life-table determined by the statistics Dk, MKk,
Ok for k= 0, 1,2 (see Tab. 1).

Table 1
The Extended Life-Table
Time Dk ok My
Qo= [0, 1) 8 9 4
0,-[1. 7 2 23 10
= [7' 00) 0 8 0

From Tab. 1 we can now estimate total numbers of deaths Dk in each
interval by means of formulae given in (15). These estimates constitute
“a completed version” of Tab. 1 (see Tab. 2).

Table 2

Completed Version of Tab. 1

Time intervals 6 K

fto = [0, D 9.8
=7 8.0
«2 = 17, 00] 32.2

Note, that first two estimates in the second column of Tab. 2 represent
estimated values of Dk for /fc= 0, 1, and the last value is calculated as
N,-U = 0Dk.

7. SOME THEORETICAL RESULTS

Theorem. The estimators Qklk and Qkll defined in (11) and (13) are
unbiased estimators of respective conditional probabilities gklk and gku,



Proof.
Let us assume the following notation

Pk-P(T>xk for k=0, 1, .., K,

4k = P(T>xk Z>xk+l) for k=0, 1, K-1.

For 07l<k and |I~k~™K —1the estimator QKI according to (13)
equals to

= WI+HIJ-\ WI+2 - 1| Wkot- 1 Wk- 1 Dk
M,-1 Mni-\ '"Mk-2-1"Mk-t-1"MKk-1I
For 1=k and 07"k » K —1 we have from (11)
Dk
Qklk~ M ~i!

The expression Dk/(M - 1) can be also written equivalently as
*~(W*+i —I)/(Af* —1), thus for o*l<k and "k *K —1

n WI+i- 1 Wi+a-1 Wi-i-1  Wi-1 /  Wi+l-1
M— MH1—4 22— M~<j—ay M—

and for /= Kk and 0< kK< K —1

Let us denote by Arl, the following expression of the form

wW,*i - Wi+r - i wt-i-i w-i wt+i —i

. . i
AN =\ -1 M1+1-1 "m Mr.2-1 Mr 1-1 Mr- 1

(16)
where r>/. Now the estimator Q*, expresses as follows

- _ {Ak-m —Akt for O0*I<k, I"k$§K -1
Y*,_ [1-A kik for /= k ONKkNK-1 ("



Let us find the expectation of ArU defined in (16) using the joint

distribution of the variables N,, Mt, WI+l, ..., Mr_2, Wr- X Mr-1It Wr,
MT Wr+i.

Notice, that the sample size N, is a random variable with a negative
binomial distribution and that given N, = n the variables WI+1, Mr_2,

Wr-i, Mr-i, Wr, Mr, Wr+l have a multinomial distribution. Thus the joint
probability distribution function is of the form

P(N,= n M, =m, Wi+1l=w)+1, M r_, = mr_,, W, = wr, M, = mr, , = wr+l) =
n-Ivn-1/ m, SV rmr-l~S\fW-~ s\( m"~S
S_ 1)\ml~ sj\wl+l —8SJ \' Wr~S)\mr- y\W r+1-~5

(1-q 0" U(9<-PI+I)m” W, +

m(Pl+1- (,+ le...(Ar-i - Prr'-"-NqPr- Arf'~1'(Ar- Pr+1)""

(Pr+1-PK)W,+i~ ‘PK>

where
n=s, s+ 1,
fil, = S, s+ 1, n,
wi+i=s, s+1, m, i=1/ [+1, r,
m =S, S+ 1, w, i=/+1, r.
The distribution function of Ns, M(, Wi+l, ..., Mr-2, Wr-U i, W,

Mr, Mr+1 can be expressed also equivalently as

P(NS=n, M, = m,, WI+1 = Air_!

m,-1, W, = wr, Mr=mr, Wr+l =

= wr+l)

N-1V m_ 1V . (m-1-s\(wr-"\( mr~1VWH.- 1
i/\w«+i~v VWw—1Anv-iAwr+l-iA s- 1

(1-9,)"-"m 9T -

gi- pi+i\m~w>* ' ( p i + -al+1\w+~T1,*9@l+1\T,*r.

\ 4i v n+1 y W v



Apr- qry  mhgry A r~Pr. " WUAPT<AT'4'Pr+i-P KkY'*1 V Pk

Pr+1 / \Pr+1
where
wr+1 = 5 s+ 1
m, = wl+1, wi+1 + 1, ... i=r 1 -1, I+ 1, |,
w, = m( m,+ I, i=r, r-1, [+ 1, |,
n=m( m+ 1 ..
Thus, the expectation of Aril is equal to
(09 00 v} o o W —1 uUu 1 m
EM,,> = | E .. 1 S
*Ni=ig=w,(l W+)=mi*i m=w,+l n=m, m|l * mr-| | Mr
. p(ws=n,.., w;+! = wP+j) =

y [ WErr — BWKr+n 'Kwox-f €0 v w1l owr+1 -1/ mr—

W =*\ s —1 /V Pr+l / \Pr+1) m,wr+| wr—1 Vwr+1 1

4 - WA T I WL

£ /44 ,-1Vpl+1- *+iy H wiv AtivtH £ WH1- 1/ m—1 )\

WHl=m,+l\m(+l —V \  Pl+l  / \P(+1/  mi-witi mi~ 1 \WI+1—V
i (" ~\\ 1- Uur=&=+i- £ ..... Pttl.?21ii
n=mi\mi~ V < 9r-l 9i-1 <

P (TAtr+l) P(TAET) P (T tI42)

P(T>t,,Z>tr+l) P(T™ir_i,Z"ir) P(T>tl+uzZ>1tl+2)

P(T>tl+1)
P(T>t[z ~i|+i)



P(y>tr+1,Z >tr+t) P{Y"1t,2Z 1t P(Y Z {|+2izZ ™ ii+2)
P(Yztr,Zztrll) P(Y>tr-uZz>tf) P(Y>t,uZ>tl+i)

"P(Y>tltiLZ > tltl) _
P(YZti,Z ti+2)

= p(y~tr+l) p(Y5*o P(I>tl+i) P(y>t,+l) f(I><rtl)
P(Y>*,) P(Y>tr-\) P(Y>il+1) P(I>i)) P(I>t,) °

From the result just obtained and using the definition (17) we have for 0</</c,
Uuu-K-1

, y P(Y>«¥*) P(Y>tk+1) P(Yell.)
A(&K) - AN -w) - -E*t)) = p(Ypt,) ~ P(Y>0 ~P(Y>t,) ~ gl

and for 1=k, O"k"A"K - |
vrt nmA ® >b+ 1) PjYeCK)
((M ( *¥) P(y>i*) P(r>y

what completes the proof.
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Agnieszka Rossa

ANALIZA TABLIC TRWANIA ZYCIA DLA DANYCH CENZUROWANYCH
Z WYKORZYSTANIEM MODELI LOGARYTMICZNO-LINIOWYCH

W pracy przedstawiono propozycje analizy tablicy trwania zycia dla danych prawostronnie
cenzurowanych. Przedstawiona metoda pozwala na sprowadzenie takiej tablicy do wielo-
wymiarowej tablicy kontyngencyjnej, ktérag mozna analizowaé standardowymi technikami
wielowymiarowego wnioskowania statystycznego, np. za pomocg modeli logarytmiczno-liniowych.



