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1. INTRODUCTION

In magnetoelastic materials, the application of mechanical stresses can have 
non-negligible effects on some properties of magnetic domain walls. We have 
already analyzed the effects of magnetostriction and external stresses on the 
equilibrium distribution of magnetization and the vibration spectrum of Bloch 
walls in bulk materials [1 ,2 ] . In this paper, we shall examine the case of a Bloch 
wall in thin films or ribbons. This study aims at basic understanding of domain 
wall properties when magnetoelastic materials are applied to electronic components 
such as bubble devices. In Section 2, we summarize the governing equations 
based on the theory of magnetoelastic interaction by Brown [3 ] and Tiersten 
[4 ] . Section 3 is devoted to the analysis of the influence o f stress on the 
equilibrium distribution of magnetization in a Bloch wall in thin films. We study 
in Section 4 the change in resonance frequency of wall vibration due to the 
application o f external stresses.

2. BASIC EQUATIONS

In ferromagnetic materials with magnetoelastic interactions, the magnetization 
precession is governed by (Tiersten [4 ])
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where ц the magnetization per unit mass, у the gyromagnetic ratio, H  the 
Maxwellian magnetic field, H mn the anisotropy field, Hcx the exchange field. The 
constitutive quantities H an and H "  can be derived from a potential, the free energy I .
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where M , = p Rn, (p* and ц,  are the mass density in the reference state and the 
saturation magnetization per unit mass, respectively) and a is the direction cosine 
of the magnetization which is defined by <х =  ц/р,.  The material symmetry is 
assumed to be uniaxial cubic. The free energy is given by the sum of the exchange, 
the magnetic anisotropy, the magnetoelastic, the elastic energy, and the 
interaction energy between some kind o f crystal defects and the Bloch wall. We 
denote in the following equations X the exchange, К  the anisotropy, B ’s the 
magnetoelastic, C ’s the elastic and К  the interaction constants.

W e consider an isolated Bloch wall in a thin film with thickness T(Fig. 1). The 
equilibrium magnetization is denoted by «°. We can define the perturbation 
components ß p and ß.  as in Fig. 2. The magnetization equation is reduced to in 
equilibrium state:

a0 X H e{{= 0  (3)

in perturbed state:

‘¥ = y ( ß x H e{t+ * ° x h e") (4)
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where H M and hctc are the effective fields in equilibrium and dynamic perturbed 
states, respectively.

It is a fairly complicated problem to obtain analytically the demagnetizing 
field in a Bloch wall in thin films. We follow here the approximate method by Néel 
([5 ]), which assumes that the cross-section of a Bloch wall is an ellipse, whose 
major axes are Tand D, which is uniformly magnetized in the y  direction. D is the 
width of the Bloch wall. If concerned with the dynamic component ß z, it gives rise 
to a demagnetizing field in the z direction, which can be calculated by Néel’s 
approximation for Néel wall. Therefore the demagnetizing fields are given by

Я у= - ^ 1 М у= - 4 т С^ М . а у, h: = - N 2 M sß z = - 4 n ^ M sß: . (5)



3 EQUILIBRIUM DISTRIBUTION OF MAGNETIZATION

Assuming that the angle 0 between the x  axis and the direction of 
magnetization depends only on z, the equation (3) is reduced to

j2  л
X -  2 -  I K  +  MjJVj -  I B ^  -  ej,)] sin 0 cos 0 + 2B2(sin2 0 -  cos2 0) e%= 0  (6 )

where e° is the total initial strain which is split into magnetostriction e” 1 and the 
strain e* due to external stresses. Referring magnetostriction to M otogi & Maugin
[ 1] ,  we can rewrite eq. (6):

j 2  q 2 B 2
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— 1 B 2 c o s  20<^ =  О. (7)

In view o f eq. (7), magnetostriction and the normal components o f ex can induce 
uniaxial anisotropy. The existence of the shear component is quite interesting 
since it induces another type of anisotropy, however, we shall leave the analysis to 
other occasions. Here we assume that e'xy is null and that the strain due to the 
stresses is uniform, so that eq. (7) gives rise to the Landau-Lifshitz 
type distribution:

sin 0 = sech (z/S), cos 0 =  -  tanh (z/<5) (8 )

where the width parameter <5 is defined by

2 B 2
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The demagnetizing factor in eq. (9) contains the wall width D, hence equating
S as D/л, we obtain the relation between the film thickncss T  and the wall width D. 
Fig. 3 shows the variation of D with respect to the tension in the x direction with 
T  the parameters. The material constants are assumed to be X=  10-6 , K  =  104, 
A f,=  500, B l = - 5 x 107, C u =  1012, C12 =  0.5 x 1012, all in cgs unit When the 
film thickness is small, the change in D due to stress is also small because the effect 
of demagnetizing field, which is produced by magnetic surface charge, is 
dominant. However, when T  is rather large, the demagnetizing effect is negligible, 
therefore the stress can significantly change the wall width.

4. FREE VIBRATION OF A BLOCH WALL

We consider the free vibration of a Bloch wall. Discarding the d) namic strain, 
eq. (4) is reduced to

—* ^  =  A ~ f —K ' cos20  ß  - R ß p 
y dt d zz p

+  2  [B ^ co s2 0  exx +  sin2 0  eyy) +  2 B 2 sin 0 cos 0 elxy]  ß f  (10 )
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y dt dz
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where, N2 = 4 u T /(r + D ) , K '  =  K  + M 2,N l  +  2B2l/(C l l - C i2), and R  already 
includes the effects o f magnetostriction. Substituting the wall-type solution which 
is proportional to e~‘“1 sin 0  into ß p and /;.,the resonance frequency is obtained as

" 2 =  ( m  J  [ * " 2B l(e” Sin2 6 +  C0S2 0)1 [M ’ (N2~ NJ  +  R - 2B l e' J  <12)

where we have assumed that e'xy is zero. The frequency w  is not constant but varies 
with z, so that the wall-type solution is no true solution in general cases. However, 
uniaxial stresses Tz in the z direction produce equal Poisson strain in the x  and 
y  direction, therefore the wall-type solution is exact in this case and the frequency 
is reduced to

J ( R  — 2Bl e)^4nM f Ę ^ ^  +  R  — 2B 1e'j (13)

where e is the Poisson strain. We can recognize that Tz can affect the resonance 
frequency. On the other hand, it produces no effects on the equilibrium  
distribution in the Bloch wall. See eq. (7). Fig. 4 shows the variation of ш due to 
the tension in the z direction (R  is set to 103). At some values of T/D, the frequency 
decreases to zero, therefore further application of the tension will produce certain 
instability o f wall vibration. However, when T  and D are very close, the 
demagnetizing effect is so small that the frequency rises up again with the tension.
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